Modelli decisionali su grafi - Problemi di Localizzazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli decisionali su grafi - Problemi di Localizzazione"

Transcript

1 Modelli decisionali su grafi - Problemi di Localizzazione Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Percorso Minimo tra tutte le coppie di vertici 2 Si può applicare n volte Dijstra oppure il più conveniente algoritmo di Floyd-Murchland Algoritmo (Floyd-Murchland) 1. Porre 1, c ii 0 i, c ij se (i,j) E 2. i : c i e j : c j calcola c ij min[c ij,(c i +c j )] 3. Se i con c ii < 0 un ciclo negativo passante per i, non esiste soluzione finita e l algoritmo termina. Se i, c ii 0e n trovata la soluzione. La matrice [c ij ] fornisce le distanze minime da ogni nodo i ad ogni nodo j. L algoritmo termina. Se i, c ii 0e n, +1 e torna al passo (2).

2 Percorso Minimo tra tutte le coppie di vertici 3 L algoritmo di Floyd-Murchland si può applicare anche in presenza di costi negativi. Al passo -mo la matrice [c ij ] fornisce le distanze minime tra ogni coppia di nodi considerando solo l insieme {1,2,...,} di possibili nodi intermedi. Per determinare i percorsi si può usare il metodo, proposto da Hu, per conservare l informazione della sequenza di nodi da seguire:... Percorso Minimo tra tutte le coppie di vertici 4 Il metodo di Hu Si definisce la matrice [p ij ] tale che p ij è il nodo immediatamente precedente j nel percorso minimo tra i e j. Si inizializza p ij i Si aggiorna ad ogni passo (2) la matrice [p ij ] come segue: pij pj pij se se ci + cj < cij cij ci + cj Alla fine il percorso minimo tra i e j si può trovare seguendo a ritroso la sequenza p ij w, p iw z, p iz,..., p ih i.

3 Percorso Minimo tra tutte le coppie di vertici 5 Se si inizializza con c ii, nella soluzione c ii rappresenta il costo (lunghezza) del più breve ciclo che passa per il nodo i. (esempio) Location Problems: modelli ed applicazioni! Decisioni a medio e lungo termine (pianificazione)! Caratteristiche dei modelli: Orizzonte temporale (mono-periodo, multi-periodo) Omogeneità dei flussi (single-commodity, multi-commodity) Livelli dei flussi (singolo livello, due livelli)! Imprese logistiche e di servizi: Localizzare nodi logistici (centri di produzione, magazzini, centri di distribuzione) Dimensionare i flussi logistici (trasporti) Dimensionare le capacità dei nodi Localizzare servizi (ospedali, protezione civile)

4 Modello singolo prodotto a un livello 7! Un livello: costo trasporto a monte ed a valle del sistema trascurabile Esempio: localizzazione di centri di distribuzione V 2 V 1 siti potenziali punti di domanda G (V 1 V 2, A) ipotesi: domanda frazionabile, costi lineari Modello singolo prodotto a un livello! Formulazioni d j, j V 2 livello di domanda in j (dato) q i, i V 1 capacità del sito i (dato) u i, i V 1 livello di attività del sito i (var. decisionale) s ij, i V 1 j V 2 quantità di prodotto inviata da i a j (var. decisionale) c ij, i V 1 j V 2 costo del trasporto tra i e j (dato) f i, i V 1 costo della produzione nel sito i (dato) min cijsij + fu i i i V 1j V2 i V 1 sij ui i V1 j V 2 sij dj j V2 i V 1 ui qi i V1 sij 0 i V 1,j V2 ui 0 i V1 " Cosa rappresentano i vincoli?

5 Modello singolo prodotto a un livello 9! Formulazioni Costo della produzione con set-up (attivazione) f i set-up, g i costo marginale per la produzione nel sito i: fi + gu i i F(u i i) 0 ui ui 0 0 y i i V 1 var.binaria (1 sito i attivato, 0 sito i non attivato) la formulazione si modifica fiui i V1 i i V1 ( f y + g u ) i i i ui qi ui yiqi i V1 Modello singolo prodotto a un livello 10! Formulazioni Imporre un numero prefissato p di nodi da introdurre: y i p i V 1 Variazione: individuare tra n possibili località quelle in cui ospitare p centri di smistamento minimizzando la distanza totale " Tutti i nodi in V possono ospitare i centri " Non è importante la capacità produttiva " Non ci sono costi di set-up "... " Come si può formulare?

6 Modello singolo prodotto a un livello 11! Formulazioni Capacità minima q i- e massima q i+ di un sito: q i- y i u i q i+ y i Costi di esercizio lineari a tratti e concavi f i f i F(u i i) fi ' + g i'ui fi " + g i"ui 0 0 ui u i' ui u i' ui 0 u i Si sostituisce i con due nodi i e i Minimizzando solo uno dei due (quello a costo minore per la u i ottima) sarà selezionato Modello multi prodotto a due livelli 12! Formulazioni K prodotti diversi ma di classe omogenea V 1 insieme impianti produttivi V 2 insieme centri di distribuzione potenziali (di cui attivarne p) V 3 insieme dei punti di domanda p i, i V 1 K massima quantità di realizzabile in i (cap. impianto) d r, r V 3 K livello di domanda di in r non frazionabile q j-, q j+ j V 2 capacità min e max del centro j c ijr, i V 1 j V 2 r V 3 K costo trasporto di da i a r via j f j, g j j V 2 costi fissi e marginali del centro j (dato) z j, j V 2 var. binaria associata alla selezione del centro j y jr, j V 2 r V 3 var. binaria associata alla assegnazione di r a j s ijr, i V 1 j V 2 r V 3 K quantità di inviata da i a r via j

7 Modello multi prodotto a due livelli min c s ijr ijr i V1j V2r V3 K s ijr j V2r V3 s d r y jr j V2,r V3, K ijr soddisf. domanda i V1 y jr 1 r V3 fornitura non frazionabile j V2 q z d j j r y jr q + z j j V j 2 r V3 K z j p capacità centri j V2 z j B j V2 numero centri da attivare y jr B j V2,r V3 s ijr p i V1, K i capacità impianti 0 i V1, j V2,r V3, K + f z g d j j + j r y jr j V 2 r V3 K 13 14! I problemi di localizzazione possono essere modellati come problemi di centro e di mediana su grafi: Problemi di mediana (minisum) minimizzare la media delle distanze tra gli utenti ed il servizio di afferenza Problemi di centro (minimax) minimizzare la distanza tra utente e servizio nel caso peggiore (per il cliente più lontano)! I problemi di centro sono spesso utili nel settore dei servizi pubblici

8 15! I punti di servizio possono essere localizzati sui nodi (problemi di vertice) o in un punto qualsiasi degli archi e dei nodi (problemi assoluti)! Definizioni è dato un grafo G(V,E) generico è nota d(v i,v j ) distanza tra due vertici per ogni coppia di vertici è noto w(v i ) peso di un vertice per ogni vertice si indica con d(x,y) la distanza tra due punti generici del grafo 1-mediana (assoluta) di G ogni punto x di G per cui è minima la funzione f(x) 1 V d(x,vi ) w(vi) vi V 1! Teorema (Haimi) In un grafo connesso non orientato G esiste almeno un vertice v che è anche 1-mediana! Definizioni dato un grafo G(V,E) generico e le grandezze prima definite si dice eccentricità di un punto x la distanza pesata di x dal vertice più lontano e(x) max { d(x,vi)w(vi) } v i V 1-centro (assoluto) di G il punto x avente eccentricità minima

9 17! Definizioni dato un grafo G(V,E) generico e le grandezze prima definite dato un insieme di p punti di G(V,E), X p {x 1, x 2,...,x p } ed un vertice v, si dice distanza di v da X p la quantità d(v,xp ) min x X i p d(v,xi ) " Nota: se v è un cliente si assume che si serva dal punto più vicino p-mediana (assoluta) di G ogni insieme di p punti X p di G per cui è minima la funzione f(xp) d(xp,vi ) w(vi ) v V i 1! Teorema (Haimi) In un grafo non orientato e connesso G(V,E) esiste almeno un insieme di p vertici che costituisce una p-mediana assoluta Difficoltà " Determinare la 1-mediana in grafi connessi e non orientati è semplice " Determinare la p-mediana su un grafo qualunque è un problema NP-hard " Nel caso di alberi è un problema polinomiale

10 19 Algoritmo per il calcolo della mediana 1. Calcolare la matrice D(G)[d(v i,v j )] delle distanze fra ogni coppia di vertici e moltiplicare ogni colonna j-ma per il peso w(v j ). Sia D (G) la matrice così ottenuta. 2. Sommare gli elementi di ciascuna riga di D (G) e scegliere la riga h-ma corrispondente alla somma minima. Il vertice v h è la mediana di G. 20 Esempio (con pesi dei vertici unitari) Mediana assoluta V V V 4 3 V V 7 V 9 V V 3 2

11 21 Esempio (con pesi dei vertici unitari) somma D(G) V1 0 V 2 11 V3 V 4 4 V5 V M V7 V M M V 1 V 2 V 3 V 4 V 5 V V 7 V 22 Mediana di un albero Risultati Dato un albero T, con archi e nodi pesati, se si elimina un arco qualsiasi (u, z) si ottengono due sotto alberi T u e T z. T u u z T z

12 23 Mediana di un albero U insieme dei nodi di T u Z insieme dei nodi di T z La mediana appartiene ad U se e solo se w(u) w(z). Teorema Posto w(u) w(z) la determinazione della mediana di T è equivalente a quella del sotto-albero T u in cui al posto del peso del vertice u si sostituisce la somma w(u)+w(z). 24 Mediana di un albero Algoritmo per il calcolo della mediana di un albero (1) Scegliere un nodo v i di grado 1. (2) Se w(v i ) w(v)/2 allora v i è la mediana assoluta; se w(v i )<w(v)/2 cancellare v i ed incrementare di w(v i ) il peso del vertice v j adiacente a v i. Tornare al passo 1.

13 25! Definizioni dato un grafo G(V,E) generico e le grandezze prima definite dato un insieme di p punti di G(V,E), X p {x 1, x 2,...,x p } p-centro (assoluto) di G(V,E) ogni insieme di p punti X p di G per cui è minima la funzione Difficoltà r(x p ) max d(xp,vi) w(vi) v V i " Determinare il 1-centro vertice in grafi connessi è semplice " In grafi non orientati connessi il 1-centro si può determinare con un metodo grafico " Determinare il p-centro di un grafo qualunque è un problema NP-hard 2 Algoritmo per il calcolo del centro vertice (1) Calcolare la matrice D(G)[d ij ] delle distanze fra ogni coppia di vertici (v i,v j ). (2) Moltiplicare ogni colonna j-ma per il peso w(v j ). (3) Determinare il massimo su ogni riga ottenendo e(vi) max v j V { d w(v ) } ij j (4) Il centro vertice x è il vertice a cui corrisponde il valore minimo tra gli e(v i ).

14 27! Esempio Ipotesi: pesi unitari v 4 v 1 v 3 4 v v 2 f(v1) f(v2) f(v3) f(v4) f(v5) e(v 1) e(v2 ) e(v3 ) 4 e(v 4) 0 e(v5 ) mediana 1-centri Vertice 2! Il metodo grafico di Haimi per il 1-centro assoluto Si considera un arco alla volta Per ciascun arco (v i,v j ) determina il punto x ij di eccentricità minima Quindi tra i vari punti x ij determina il punto di eccentricità minima in assoluto v h w(v h ) d(v i,v h ) d(v j,v h ) v i t y l(v i,v h ) l-t v j d(y,v h ) min { d(v i,v h ) + t, d(v j,v h ) + l(v i,v h ) - t } Si tracciano gli andamenti delle d(y,v h )w(v h ) al variare di y in (v i,v h ) rispetto ad ogni nodo v h quindi si determina l inviluppo massimo di tali grafici Il punto x ij di eccentricità minima per l arco corrisponde ad uno dei minimi dell inviluppo massimo

15 29! Il metodo grafico di Haimi per il 1-centro assoluto Esempi di andamenti della distanza di y in un arco dai vertici d (y,v h ) d (y,v h ) d (y,v h ) v i y v j v v j i y v v j i y Sovrapponendo i grafici si determina l inviluppo massimo ed il suo minimo d (y,v h ) max d(y,vh ) w(vh) V v h v i x ij y v j 30! Tecniche euristiche per la determinazione della p- mediana (ottimi locali) Approccio 1 1. Scegliere arbitrariamente p vertici u 1,...,u p 2. Assegnare ogni altro vertice ad uno dei p vertici scelti in base alla minima distanza. Sia V i l insieme dei vertici assegnati ad u i. Calcolare la somma S delle distanze 3. Per ogni V i cercarelamediana z i e sostituirla a u i.calcolarela nuova somma S delle distanze. Se S <S tornare al passo 2, altrimenti l algoritmo termina. Approccio 2 Scegliere arbitrariamente p vertici quindi operare degli scambi (un nuovo vertice sostituisce uno tra quelli presenti nell insieme selezionato) in modo che la funzione obiettivo abbia il massimo decremento

16 Localizzazione: modelli di copertura 31! Si utilizza il modello del Set-Covering Si deve determinare in quali nodi attivare un servizio in modo che gli utenti lo ricevano entro un tempo massimo T G(V 1 V 2, A), V 1 siti potenziali, V 2 siti utenza, t ij tempo (minimo) tra i e j f j, j V 1 costo di attivazione di j p i, i V 2 penalità mancato servizio di i A[a ij ] matrice d incidenza utenti-siti: a ij 1 se t ij T e a ij 0 se t ij >T V 1 siti potenziali j t ij Ta ij 1 i t j >T a j 0 V 2 punti di domanda Localizzazione: modelli di copertura 32! Si utilizza il modello del Set-Covering Variabili decisionali: # y j, j V 1 vettore d incidenza, attivazione siti y j B # z i, i V 2 cliente non servito z j B (slac binaria) min fjyj + pizi j V 1 i V 2 aijyj + zi 1 j V 1 yj B j V1 zi B i V2 i V2 E un problema di set-covering (NP-hard)

17 Localizzazione: modelli di copertura 33! Si utilizza il modello del Set-Covering Se i costi di attivazione dei siti fossero uguali tra loro ci si può porre il problema di stabilire il numero minimo di siti da attivare per servire i clienti nel tempo minimo complessivo x ij, i V 2, j V 1 x ij B cliente i servito dal sito j M costante sufficientemente grande (big-m) min Myj + tijxij j V 1 i V 2 j V1 aijxij 1 i V2 j V 1 xij yj i V2,j V1 yj B j V1 xij B i V2,j V1

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Problemi di localizzazione di servizi (Facility Location Problems)

Problemi di localizzazione di servizi (Facility Location Problems) 9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Problemi di localizzazione

Problemi di localizzazione Problemi di localizzazione Claudio Arbib Università di L Aquila Prima Parte (marzo 200): problemi con singolo decisore . Introduzione Un problema di localizzazione consiste in generale nel decidere dove

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Modelli per la Logistica Distributiva: Single Commodity Minimum Cost Flow Problem Multi Commodity Minimum Cost Flow Problem Fixed Charge

Dettagli

Problemi di Flusso e Applicazioni

Problemi di Flusso e Applicazioni Problemi di Flusso e Applicazioni Andrea Scozzari a.a. 2013-2014 May 20, 2014 Andrea Scozzari (a.a. 2013-2014) Problemi di Flusso e Applicazioni May 20, 2014 1 / 5 Flussi Multiprodotto I problemi presi

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

Grafi e Funzioni di Costo ESERCIZI

Grafi e Funzioni di Costo ESERCIZI Grafi e Funzioni di Costo ESERCIZI Esercizio1 Si determini la matrice di incidenza archi-percorsi ed i costi di percorso per la rete di trasporto rappresentata in figura. 1 4 2 3 5 Ramo Costo Ramo Costo

Dettagli

età (anni) manutenzione (keuro) ricavato (keuro)

età (anni) manutenzione (keuro) ricavato (keuro) .6 Cammini minimi. Determinare i cammini minimi dal nodo 0 a tutti gli altri nodi del seguente grafo, mediante l algoritmo di Dijkstra e, se applicabile, anche mediante quello di Programmazione Dinamica.

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Introduzione ai Problemi di Flusso su Reti

Introduzione ai Problemi di Flusso su Reti UNIVERSI DI PIS IROCINIO ORMIVO IVO - I CICLO CLSSE DI BILIZIONE MEMIC PPLIC Introduzione ai Problemi di lusso su Reti Relatore: Prof. V. Georgiev.U: Prof. M. Berni Elisabetta lderighi R.O e Riforma della

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia La Pharmatix è un azienda di Anagni che produce due principi attivi, A e B, che consentono un profitto per grammo venduto di 20 e 30 euro rispettivamente.

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Esercizio 1. min. Esercizio 2. Esercizio 3

Esercizio 1. min. Esercizio 2. Esercizio 3 A UNIVERSIÀ DEGLI SUDI ROMA RE Ricerca Operativa Primo appello gennaio 00 Esercizio Portando il problema in forma standard si aggiungono le variabili e 4. Impostando il problema artificiale è sufficiente

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco 6) FLUSSI Definizione di flusso Si definisce rete di flusso un grafo orientato e connesso con i) un solo vertice con esclusivamente archi uscenti ii) un solo vertice con esclusivamente archi entranti Tradizionalmente

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Il problema del commesso viaggiatore e problemi di vehicle routing

Il problema del commesso viaggiatore e problemi di vehicle routing Il problema del commesso viaggiatore e problemi di vehicle routing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata Luca Bertazzi 0 3 Ulisse: da Troia a Itaca Troia Itaca 509 km Quale è stato invece il viaggio di Ulisse? Il viaggio di Ulisse Troia

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A Ricerca Operativa 1 Seconda prova intermedia Si è rotto un aereo che doveva trasportare un elevato numero di persone dalla città 3 alla città 8. Si rende quindi necessario utilizzare i posti disponibili

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano Rilassamento Lagrangiano AA 2009/10 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina Problemi di trasporto Consideriamo un problema di programmazione lineare con una struttura matematica particolare. Si può utilizzare, per risolverlo, il metodo del simplesso ma è possibile realizzare una

Dettagli

Metodi & Modelli per le Scelte Economiche

Metodi & Modelli per le Scelte Economiche Metodi & Modelli per le Scelte Economiche [domande di teoria utilizzate in passato per la prova scritta le soluzioni NON vengono fornite, occorrerà quindi verificare la esattezza delle diverse possibili

Dettagli

Problemi dello zaino e di bin packing

Problemi dello zaino e di bin packing Problemi dello zaino e di bin packing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Euristiche per il Problema del Commesso Viaggiatore Renato Bruni bruni@dis.uniroma.it Il materiale presentato

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente Grafi (non orientati e connessi): minimo albero ricoprente Una breve presentazione Definizioni Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è

Dettagli

Analisi interazione domanda/offerta: modelli di assegnazione

Analisi interazione domanda/offerta: modelli di assegnazione Corso di Laurea Ingegneria Civile e Ambientale - AA Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Week #9 Assessment. Practice makes perfect... November 23, 2016

Week #9 Assessment. Practice makes perfect... November 23, 2016 Week #9 Assessment Practice makes perfect... November 23, 2016 Esercizio 1 Un azienda di trasporto deve caricare m camion {1,..., m} in modo da servire giornalmente un dato insieme di clienti. Nei camion

Dettagli

CASO 1) Pesi positivi ( diretto o indiretto) Algoritmo di Dijkstra

CASO 1) Pesi positivi ( diretto o indiretto) Algoritmo di Dijkstra 4) DISTANZE Problematiche Si suppone un grafo in cui ad ogni arco e' associato un peso (distanza). Il grafo puo' essere sia diretto che non diretto. Se non e' diretto ogni arco puo' essere pensato come

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Analisi interazione domanda/offerta: modelli di assegnazione

Analisi interazione domanda/offerta: modelli di assegnazione Corso di Laurea Ingegneria Civile - AA 1112 Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento di

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

TEORIA DEI SISTEMI DI TRASPORTO

TEORIA DEI SISTEMI DI TRASPORTO UNIVERSITA' DI ROMA "TOR VERGATA" FACOLTA DI INGEGNERIA TEORIA DEI SISTEMI DI TRASPORTO DOCENTE Prof. Ing. UMBERTO CRISALLI ESEMPI APPLICATIVI (PARTE 1) a cura di Ing. Antonio Comi 1 SOMMARIO Premessa...

Dettagli

Soluzioni degli esercizi di formulazione di PL{0, 1}

Soluzioni degli esercizi di formulazione di PL{0, 1} Soluzioni degli esercizi di formulazione di PL{0, 1} Salvatore Nocella 12 febbraio 2007 1 Al lavoro Due operai devono eseguire un certo numero di lavori J = {1,..., n}, ciascuno della durata di un ora.

Dettagli

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica

Dettagli

Il valore di flusso che si ottiene è

Il valore di flusso che si ottiene è 1) Si consideri un insieme di piste da sci e di impianti di risalita. Lo si modelli con un grafo orientato che abbia archi di due tipi: tipo D (discesa e orientato nel senso della discesa) e tipo R (risalita

Dettagli

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso Claudio Arbib Università di L Aquila Ricerca Operativa Reti di flusso Sommario Definizioni di base Flusso di un campo vettoriale Divergenza Integrale di Gauss-Greene Flusso in una rete Sorgenti, pozzi

Dettagli

Esercizi per il corso di. Logistica I. a.a Daniela Favaretto. Dipartimento di Matematica Applicata Università Ca Foscari di Venezia

Esercizi per il corso di. Logistica I. a.a Daniela Favaretto. Dipartimento di Matematica Applicata Università Ca Foscari di Venezia sercizi per il corso di Logistica I a.a. - aniela avaretto ipartimento di Matematica pplicata Università a oscari di Venezia sercizio Individuare un albero di supporto di lunghezza minima (SST) sul seguente

Dettagli

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory:

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: Esercizi di PLI a cura di A. Agnetis Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: max z = 40x + 24x 2 + 5x + 8x 4 8x + 6x 2 + 5x + 4x 4 22 x i 0 x i intero Si tratta di un

Dettagli

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo Mix Produttivo Si dispone di i=1,...,m risorse produttive (ad esempio, materie prime) in quantità limitata. La massima disponibilità delle risorse è b 1,...,b m Si possono produrre j=1,...,n diversi prodotti

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente Routing Introduzione Il livello 3 della pila ethernet ha il compito di muovere i pacchetti dalla sorgente attraversando più sistemi Il livello di network deve quindi: Scegliere di volta in volta il cammino

Dettagli

Routing IP. IP routing

Routing IP. IP routing Routing IP IP routing IP routing (inoltro IP): meccanismo per la scelta del percorso in Internet attraverso il quale inviare i datagram IP routing effettuato dai router (scelgono il percorso) Routing diretto

Dettagli

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Ricerca Operativa (Operations Research) The Science of Better Modelli e algoritmi per la soluzione di problemi

Dettagli

Coverage. Visto che il coverage si basa su aree dell ambiente che vengono monitorate non è

Coverage. Visto che il coverage si basa su aree dell ambiente che vengono monitorate non è L. Pallottino, Sistemi Robotici Distribuiti - Versione del 10 Dicembre 2015 393 Coverage Si consideri ora il problema di coordinare una squadra di robot con dei sensori omnidirezionali in modo da garantire

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Struttura delle reti logistiche

Dettagli

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs Lezioni di Ricerca Operativa Dott. F. Carrabs.. 009/00 Lezione 6: - mmissibilità di un vincolo - Vincoli alternativi - Vincoli alternativi a gruppi - Rappresentazione di funzioni non lineari: Costi fissi

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

L Analisi Marginale ed il problema della produzione

L Analisi Marginale ed il problema della produzione L Analisi Marginale ed il problema della produzione Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Il problema della produzione 2 Problemi micro-economici delle aziende: quali prodotti

Dettagli

Metodi di Ottimizzazione per la Logistica e la Produzione

Metodi di Ottimizzazione per la Logistica e la Produzione Metodi di Ottimizzazione per la Logistica e la Produzione Laboratorio Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia MOLP Parte I 1 / 41 Contenuto della

Dettagli

Tecniche euristiche Ricerca Locale

Tecniche euristiche Ricerca Locale Tecniche euristiche Ricerca Locale PRTLC - Ricerca Locale Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento

Dettagli

I metodi Electre. La scelta fra le alternative: i metodi Electre. Perché introdurre l incompletezza? I metodi Electre: elementi comuni

I metodi Electre. La scelta fra le alternative: i metodi Electre. Perché introdurre l incompletezza? I metodi Electre: elementi comuni I metodi Electre La scelta fra le alternative: i metodi Electre Electre = ELimination Et Choix Traduisant la REalité scopo: mettere a punto un metodo decisionale il più aderente possibile alla realtà rifiutano

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Dai ponti di Königsberg al postino cinese

Dai ponti di Königsberg al postino cinese Dai ponti di Königsberg al postino cinese Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/1 - Corso di Ricerca Operativa Università

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it Anno accademico 2000/2001 La Ricerca Operativa (Operation

Dettagli

Ottimizzazione Discreta Esercizi V: Soluzioni

Ottimizzazione Discreta Esercizi V: Soluzioni Ottimizzazione Discreta Esercizi V: Soluzioni Grafi e cammini minimi A.A. 214/215 Esercizio 1 (a) Nella terminologia della teoria dei grafi, si chiede di dimostrare che ogni grafo non orientato G = (V,E),

Dettagli

LA PROGRAMMAZIONE MATEMATICA (p.m.)

LA PROGRAMMAZIONE MATEMATICA (p.m.) LA PROGRAMMAZIONE MATEMATICA (p.m.) Un problema di programmazione matematica è un problema di ottimizzazione riconducibile alla seguente espressione generale: ricercare i valori delle variabili x 1, x

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli