L offerta della singola impresa: l impresa e la massimizzazione del profitto

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L offerta della singola impresa: l impresa e la massimizzazione del profitto"

Transcript

1 L offert dell singol imres: l imres e l mssimizzzione del rofitto

2 Qundo un imres ot er un ino di roduzione sceglie un certo livello di inut che le grntisc un dto outut L scelt del ino di roduzione h l oiettivo di mssimizzre il rofitto Assumimo che l imres oeri in un mercto concorrenzile: i rezzi degli inut e dell outut sono dti e non ossono essere modificti Il rofitto è definito come ricvi meno costi: π n m i yi i j j j n outut dove i,,n m fttori roduttivi dove j,,m

3 Nel reve eriodo i rofitti ossono essere negtivi nche roducendo un quntità ri zero. Inftti esistono costi fissi dovuti ll resenz di fttori roduttivi fissi che ossono essere usti solo in quntità refisste (es. ffitto di un locle er uso foresteri gto nticitmente e fissto er un eriodo determinto, ll scdenz del eriodo, cioè nel lungo eriodo, si ricontrtt il rezzo ) Nel lungo eriodo tutti i fttori sono vriili quindi il rofitto minimo srà zero. Esistono solo costi vriili che vrino in se ll quntità rodott (es. corrente elettric ust er rodurre, se non roduco non uso corrente)

4 rolem di mssimizzzione del rofitto nel lungo eriodo nel cso l imres roduc un solo outut m, π y Sotto il vincolo y f ( ), che indic come il ino di roduzione de essere relizzile e mmissiile Risolvendo er il vincolo di uguglinz imo mπ, f ( ),

5 Le condizioni di ottimo sono: ( ) ( ) f f,, Il vlore del rodotto mrginle di ogni fttore deve essere ugule l rezzo reltivo del fttore stesso Mettendo sistem le due condizioni di ottimo si trovno i livelli di inut che mssimizzno il rofitto ( ) ( ),,,, * *

6 Nel reve eriodo l funzione di roduzione è: y f ( ), Quindi il rolem di mssimizzzione del rofitto divent m π y Dll funzione rofitto ottenimo le rette di isorofitto y π + + L rett di isorofitto rresent tutte le cominzioni di inut d outut ssocite d un livello costnte del rofitto.

7 y Rette di isorofitto y f ( ), * y π + * L intercett sull sse y indic rofitti + costi fissi. I costi fissi non vrino, l unic cos che vri tr un rett e l ltr è il livello del rofitto Rette con intercett verticli iù elevte indicno livelli di rofitto mggiori

8 L condizione di ottimo è: (, ) f MP L cominzione ottim di inut e outut si trov nel unto di tngenz tr l rett di isorofitto e l funzione di roduzione. MP > ; MP < L soluzione l rolem di mssimizzzione è un cominzione di inut ed outut sull funzione di roduzione ssocito con l rett di isorofitto iù elevt CONSIDERA Perché Non rresentno un soluzione ottim?

9 Grficmente: y MP MP < MP >

10 MP > Dt l funzione di roduzione sree ossiile umentre il rofitto imiegndo un mggiore quntità di dell inut MP < Dt l funzione di roduzione sree ossiile umentre il rofitto diminuendo l quntità imiegt dell inut

11 Sttic Comrt Se ument l quntità ottim del fttore diminuisce. Le curve di domnd dei fttori hnno inclinzione negtiv ' Se diminuisce, il livello del fttore diminuisce ' ' > ' < dto che il fttore è fisso l outut y diminuisce. L curv di offert h inclinzione ositiv

12 L vrizione del rezzo del fttore non influenz l scelt ottimle: il fttore rest fisso dto che simo nel reve eriodo. L inclinzione dell rett di isorofitto non cmi, quindi l scelt ottim del fttore e dell outut non cmino. Cmi solo il rofitto Si uò dimostrre che er un imres che oer in condizioni di concorrenz erfett e con tecnologi rendimenti di scl costnti, il rofitto di equilirio di lungo eriodo è zero.

13 Intuizione: Cos ccdree se in un mercto concorrenzile un imres con tecnologi rendimenti di scl costnti fcesse rofitto ositivo nel lungo eriodo? L imres otree essere incentivt d esndersi illimittmente, m.. otree ingrndirsi così tnto d non essere iù in grdo di oerre con efficienz, quindi ess effettivmente non godree di rendimenti costnti er tutti i livelli di outut rodotti L grnde esnsione otree fr cquisire ll imres un osizione dominnte nel mercto. Ess otree quindi sfruttre quest osizione er vrire il rezzo di mercto: questo unto erdimo l iotesi di mercto concorrenzile. Inoltre: Il rofitto ositivo con RCosS nel reve eriodo otree ttrrre nel lungo eriodo un numero crescente di imrese, così l quntità totle offert sul mercto umenteree riducendo il rezzo. Ne conseguiree un schiccimento del rofitto di tutte le imrese verso lo zero

14 Conviti del ftto che il rofitto di equilirio di lungo eriodo di un imres con tecnologi rendimenti costnti di scl in un mercto concorrenzile si zero Cerchimo l funzione di offert dell imres nel lungo eriodo nel cso di funzione di roduzione Co-Dougls Prolem di mssimizzzione nel lungo eriodo nel cso di funzione di roduzione Co-Dougls ( ) f, Le condizioni del rimo ordine sono f f (, ) (, ) 0 0

15 Moltilicndo l rim esressione er e l second er, ottenimo: 0 Dto che l quntità rodott è dt d,llor: y y y Risolvendo er e ottenimo le domnde dei due fttori come funzione dell quntità ottim di outut: * * y y 0

16 Inserendo le domnde ottime dei fttori nell funzione di roduzione imo: y y y y y + y D cui: L funzione di offert ottim dell imres divent:

17 Dto che: ( ) ( ) ( ) + t t t t t f, t ( ) t ( ) tf, con +, imo rendimenti costnti di scl erchè ( ) ( t + ) tf (, ) f ( t t ), Con +>, si hnno rendimenti crescenti di scl erchè t ( ) ( < t + ) tf (, ) < f ( t t ), Con +<, si hnno rendimenti decrescenti di scl erchè t ( ) ( > t + ) tf (, ) > f ( t t ),

18 Se l imres resent rendimenti costnti di scl l funzione di offert non è definit Se i rezzi di outut e inut mntengono il rofitto ugule zero (RICORDATE SIAMO NEL LUNGO PERIODO) un imres con tecnologi Co-Dougls srà indifferente l livello dell rori offert y Inftti imo Form indetermint

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

L Offerta dell impresa e dell industria

L Offerta dell impresa e dell industria L Offerta dell imresa e dell industria Studiamo l offerta dell imresa nel mercato di concorrenza erfetta Un mercato caratterizzato da concorrenza erfetta se: 1-I I rezzi sono fissi: l imresa non è in grado

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza perfetta

Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza perfetta Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza erfetta Giusee Vittucci Marzetti 17 febbraio 2017 a domanda di lavoro in concorrenza erfetta a domanda di lavoro è una domanda di tio

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA DMANDE E RISPSTE DI MATEMATICA APPLICATA ALL ECNMIA Ques.36 - Cit il nome di qulche vribile incontrt in economi. Cos si uò dire circ il loro segno? Ris. 36 Sono vribili economiche: l quntità rodott e oert,

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. FACOLTÀ DI ECONOMIA Dipartimento di Scienze Economiche H. P. Minsky. Dott.ssa Paola Gritti

UNIVERSITÀ DEGLI STUDI DI BERGAMO. FACOLTÀ DI ECONOMIA Dipartimento di Scienze Economiche H. P. Minsky. Dott.ssa Paola Gritti UNIVERSITÀ DEGLI STUDI DI BERGAMO FACOLTÀ DI ECONOMIA Diprtimento di Scienze Economiche H. P. Minsk Esercitzioni di Economi dell Impres Dott.ss Pol Gritti Il corso Docente: Pro. Gincrlo Grziol Esercitzioni:

Dettagli

MODELLI DI OLIGOPOLIO

MODELLI DI OLIGOPOLIO MODELLI DI OLIGOOLIO di Christin Grvgli e Alessndro Grffi MODELLO DI COURNOT. IOTESI. SUL MERCATO OERANO DUE IMRESE: l impres e l impres DUOOLIO. RODUCONO LO STESSO IDENTICO BENE BENE OMOGENEO. LE IMRESE

Dettagli

CAPITOLO 12 MONOPOLIO. Monopolio = forma di mercato in cui un unico venditore offre un prodotto per il quale non esistono stretti sostituti.

CAPITOLO 12 MONOPOLIO. Monopolio = forma di mercato in cui un unico venditore offre un prodotto per il quale non esistono stretti sostituti. Caitolo Monoolio agina CAPITOLO MONOPOLIO Monoolio forma di mercato in cui un unico venditore offre un rodotto er il quale non esistono stretti sostituti. Non uò iù valere l iotesi di rice-taking, erché

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

LE FUNZIONI ECONOMICHE

LE FUNZIONI ECONOMICHE M A R I O G A R G I U L O LE FUNZIONI EONOMIHE APPLIAZIONE DELL ANALISI MATEMATIA FUNZIONI EONOMIHE L economia è lo studio di come imiegare, con maggior convenienza, il denaro di cui si disone er raggiungere

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

ESERCITAZIONE 5: ESERCIZI DI RIPASSO

ESERCITAZIONE 5: ESERCIZI DI RIPASSO Microeconomia CLEA A.A. 00-00 ESERCITAZIONE 5: ESERCIZI DI RIPASSO Esercizio 1: Scelte di consumo (beni comlementari) Un consumatore ha referenze raresentate dalla seguente funzione di utilità: U (, )

Dettagli

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un I RADICALI Per ricordre H L misur di un segmento non eá semre esrimiile medinte un numero rzionle er esemio, se un qudrto h lto unitrio, l misur dell su digonle, che eá, non eá rzionle. Per misurre occorre

Dettagli

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale Funzione di utilità Un pprofondimento dell teori del consumo Utilità totle ed Utilità mrginle Il consumtore tre enessere dl consumo di eni Supponimo di poter misurre il suo enessere in utils (unità di

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Ma il costo marginale è pari al costo del lavoro per unità di prodotto, ovvero al rapporto tra produttività marginale e salario unitario.

Ma il costo marginale è pari al costo del lavoro per unità di prodotto, ovvero al rapporto tra produttività marginale e salario unitario. Caitolo 4 Il fattore lavoro agina CAPITOO 4 I FATTORE AVORO Nel breve eriodo (solo il fattore lavoro variabile) l imresa uguaglia il costo marginale al ricavo marginale. Ma il costo marginale è ari al

Dettagli

Modelli di oligopolio

Modelli di oligopolio Appendice 10A Modelli di oligopolio Modelli di oligopolio Si present, in quest Appendice, un nlisi formle degli equiliri nei modelli di oligopolio di Cournot, Bertrnd e Stckelerg. Si prte dl presupposto

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Pesca 1 1/3 Raccolta frutta

Pesca 1 1/3 Raccolta frutta Vntggi Comprti rendimo due esi e dove si producno 2 beni utilizzndo un solo fttore produttivo il Lvoro ese Attività esc /3 Rccolt frutt /6 /3 Ore di lvoro (20 ) necessrie per pescre un kg di pesce in 3

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 17 Offerta dell industria

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 17 Offerta dell industria UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 17 Offerta dell industria Prof. Gianmaria Martini Offerta di un industria concorrenziale Ricordiamo che l industria è

Dettagli

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale Lezione n. 5 Snn-Rndio: quilibrio onomio Generle in onomi ert (222) Benefii del Commerio Internzionle I grfii li trovte in MMK 1 onomi ert (222) Il modello in eonomi ert Condizione di equilibrio er il

Dettagli

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo Corso di Economia Politica rof. S. Paa Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo eriodo Facoltà di Economia Università di Roma La Saienza L equilibrio tra domanda e offerta Sovraoniamo

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE FUNZIONI LOGARITMICHE Voglimo vedere come dl grfico δ di un funzione y=f(x) si può pssre l grfico δ dell funzione y = f (x). Dobbimo vere ben presente il grfico dell funzione y = x con x R + e con >0,

Dettagli

TFA A048. Matematica applicata. Incontro del 28 aprile 2014, ore 15-17

TFA A048. Matematica applicata. Incontro del 28 aprile 2014, ore 15-17 TFA A048. Matematica alicata Incontro del 8 arile 04, ore 5-7 Aunti di didattica della matematica alicata all economia e alla finanza. Alicazioni dell analisi (funzioni in iù variabili) a roblemi di Economia

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

OLIGOPOLIO Sul mercato è presente un numero N di imprese N non è cosìgrande da poter giustificare l assunzione che le decisioni delle imprese non

OLIGOPOLIO Sul mercato è presente un numero N di imprese N non è cosìgrande da poter giustificare l assunzione che le decisioni delle imprese non OLIGOPOLIO Sul mercato è resente un numero N di imrese N non è cosìgrande da oter giustificare l assunzione che le decisioni delle imrese non hanno influenza sul rezzo di mercato La concorrenza monoolistica

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Lezione 14 Il mercato e il prezzo: Il meccanismo delle domanda e dell offerta

Lezione 14 Il mercato e il prezzo: Il meccanismo delle domanda e dell offerta Corso di Scienza Economica (Economia Politica) rof. G. Di Bartolomeo Lezione 14 Il mercato e il rezzo: Il meccanismo delle domanda e dell offerta Facoltà di Scienze della Comunicazione Università di Teramo

Dettagli

Il modello con due fattori di produzione (Heckscher-Ohlin)

Il modello con due fattori di produzione (Heckscher-Ohlin) Il modello con due fttori di produzione (Heckscher-Ohlin) Due Pesi: Itli e Frnci Due Prodotti: - Stoff (metri) - Cibo (clorie) Due fttori di produzione: Terr e Lvoro Domnd cui voglimo rispondere:in che

Dettagli

Offerta e Rendimenti di Scala in Concorrenza Perfetta

Offerta e Rendimenti di Scala in Concorrenza Perfetta Offerta e Rendimenti di Scala in Concorrenza Perfetta Maria-Augusta Miceli Diartimento di Economia e Diritto Università di Roma "La Saienza" Lezioni di Economia Industriale March 17, 216 Abstract L obiettivodiuestocaitoloèilraortotralafunzione

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

CAUSE DI FALLIMENTO DEL MERCATO

CAUSE DI FALLIMENTO DEL MERCATO CAUSE DI FALLIMENTO DEL MERCATO A. Mercati non concorrenziali 1. Scarsa numerosità degli oeratori 2. Rendimenti di scala crescenti 3. Barriere o costi di entrata e uscita 4. Presenza di accordi e intese

Dettagli

Microeconomia Errata corrige capitoli 1, 2, 3, 4

Microeconomia Errata corrige capitoli 1, 2, 3, 4 Microeconomia Errata corrige caitoli 1, 2, 3, 4 Stefano Staffolani Caitolo 1 Pag. 2, ultimo aragrafo: Le imrese roducono beni e servizi grazie utilizzando... Le imrese roducono beni e servizi utilizzando

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

CONCORRENZA PERFETTA E DINAMICA

CONCORRENZA PERFETTA E DINAMICA 1 CONCORRENZA PERFETTA E DINAMICA 1. La caratterizzazione dell'equilibrio di mercato Per caratterizzare un mercato di concorrenza erfetta consideriamo un certo numero di imrese che roducono e offrono tutte

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

EQUILIBRI ACIDO-BASE

EQUILIBRI ACIDO-BASE EQUILIBRI ACIDO-BASE N.B. Tlvolt, per semplicità, nell trttzione si utilizzerà l notzione H + per il protone idrto in cqu m si ricordi che l form corrett è H 3 O + (q). Acidi e si secondo Arrhenius cido:

Dettagli

Esercitazione 2-15 Ottobre Equilibrio idrostatico

Esercitazione 2-15 Ottobre Equilibrio idrostatico Esercitione di Meccnic dei fluidi con Fondmenti di Ingegneri Chimic Esercitione 2-15 Ottobre 2015 Equilibrio idrosttico È stt ricvt leione l equione fondmentle dell sttic dei fluidi pesnti e incomprimibili,

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

x. Il surplus del consumatore è dato dall area del triangolo ACE = 312, 5

x. Il surplus del consumatore è dato dall area del triangolo ACE = 312, 5 Esercizi sulle Forme di mercato. Siano note le seguenti funzioni di domanda/offerta: x = 6,6 x = 80 4 a. determinare l equilibrio b. chiarire qual è il valore dell elasticità dell offerta al rezzo c. determinare

Dettagli

ELEMENTI DI MICROECONOMIA PER L'APPLICAZIONE DELL'ANALISI ALL'ECONOMIA

ELEMENTI DI MICROECONOMIA PER L'APPLICAZIONE DELL'ANALISI ALL'ECONOMIA ELEMENTI DI MICROECONOMI PER L'PPLICZIONE DELL'NLISI LL'ECONOMI 1. LE FUNZIONI DI DOMND E DI OFFERT Si assume di dover osservare le vicende del mercato di un certo bene in un determinato eriodo di temo.

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Gli Elementi di Euclide

Gli Elementi di Euclide Gli Elementi di Euclide Muro Sit e-mil: murosit@tisclinet.it Versione provvisori. Novembre 2011. 1 Indice 1 L struttu degli Elementi. 1 2 Le prime proposizioni 3 3 Il quinto postulto 4 Simplicio: Voi procedete

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

2 Le fluttuazioni economiche: domanda e offerta aggregata

2 Le fluttuazioni economiche: domanda e offerta aggregata 2 Le fluttuazioni economiche: domanda e offerta aggregata 2.1 Crescita economica e fluttuazioni È tradizione suddividere la Macroeconomia in due cami di studio distinti: la crescita e le fluttuazioni.

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione Usur di tio desivo su un lbero di trsissione ffetti del fretting su un lbero di trsissione ffetti del itting su un ingrnggio Conttto con rotolento uro o ccognto d strisciento reltivo Conttto tr sfer e

Dettagli

La perdita secca di monopolio.

La perdita secca di monopolio. La erdita secca di monoolio. La erdita secca di monoolio. Consideriamo il caso generale in cui si abbia una funzione di domanda inversa di mercato =a-b ed una funzione di offerta =c+d Va notato che la

Dettagli

LEZIONE 6 ARGOMENTO: VALUTAZIONE ECONOMICA DELLE RISORSE. Argomento. Valutazione di progetti e/o scelte pubbliche

LEZIONE 6 ARGOMENTO: VALUTAZIONE ECONOMICA DELLE RISORSE. Argomento. Valutazione di progetti e/o scelte pubbliche 1 LEZIONE 6 ARGOMENTO: VALUTAZIONE ECONOMICA DELLE RISORSE Argomento. Vlutzione di progetti e/o scelte pubbliche 1) Economi del benessere ovvero come misurre il benessere e le sue vrizioni 2) I fondmenti

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Economia regionale. Analisi dei processi localizzativi. Modelli economici regionali e analisi dell interazione spaziale

Economia regionale. Analisi dei processi localizzativi. Modelli economici regionali e analisi dell interazione spaziale Economia regionale Analisi dei rocessi localizzativi Modelli economici regionali e analisi dell interazione saziale Sviluo economico regionale e analisi delle olitiche regionali Il concetto di sazio Sazio

Dettagli

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE LEZIONI N 26, 27 E 28 STUDIO SISTEATICO DELLE GIUNZIONI BULLONATE Adottimo un criterio di clssificzione bsto sulle crtteristiche di sollecitzioni trsmesse dlle ste collegte. Per qunto rigurd le unioni

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

Il monopolio Approfondimenti

Il monopolio Approfondimenti 1 Il monoolio Arofondimenti 1. Introduzione Si è visto nel caitolo recedente che il monoolista realizza un livello di outut a cui corrisonde un rezzo sul mercato sueriore al costo marginale. Non desta

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

Domanda e Offerta Viki Nellas

Domanda e Offerta Viki Nellas omanda e Offerta Viki Nellas Esercizio 1 Le curve di domanda e di offerta in un dato mercato er un dato bene sono risettivamente: d 50 2 e s 10 a) eterminate il rezzo e la quantità di equilibrio. b) eterminate

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

CAPITOLO 8 Crescita economica II: la tecnologia, i dati empirici e la politica economica

CAPITOLO 8 Crescita economica II: la tecnologia, i dati empirici e la politica economica CAPITOLO 8 Crescit economic II: l tecnologi, i dti empirici e l politic economic Domnde di ripsso 1. Secondo il modello di Solow solo il progresso tecnologico può influenzre il tsso di crescit di stto

Dettagli

UNA CILIEGIA TIRA L ALTRA

UNA CILIEGIA TIRA L ALTRA UNA CILIEGIA TIRA L ALTRA» M. L prim sorst di irr "E' l'uni he ont. Le ltre, sempre più lunghe, sempre più insignifinti, dnno solo un ppesntimento tiepido, un'ondnz spret. L'ultim, forse, riquist, on l

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

Il tasso di cambio e i mercati monetari e finanziari. Giuseppe De Arcangelis 2015 Economia Internazionale

Il tasso di cambio e i mercati monetari e finanziari. Giuseppe De Arcangelis 2015 Economia Internazionale Il tsso di cmbio e i mercti monetri e finnziri Giuseppe De Arcngelis 2015 Economi Internzionle 1 Introduzione Determinzione dell equilibrio mcroeconomico e del tsso di cmbio di equilibrio con ruolo centrle

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

ELLISSI E PROBLEMI ISOPERIMETRICI

ELLISSI E PROBLEMI ISOPERIMETRICI ELLISSI E PROBLEMI ISOPERIMETRICI Testo del prolem Si dt un ellisse di semisse mggiore e semisse minore. Riuscite determinre un curv chius pin che i l stess lunghezz dell ellisse e che rcchiud un superficie

Dettagli