Manualetto. Aggiornato al 31/07/2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Manualetto. Aggiornato al 31/07/2014"

Transcript

1 Sistema emulato Periferiche 8086 Manualetto studenti.polito.it Aggiornato al 31/07/2014

2 Canali del sistema emulato Routine Descrizione Canale Indice IVT ISR_PA_IN L 8086 riceve un dato dalla porta parallela A.* 7 39 ISR_PA_OUT La porta parallela A riceve un dato dall 8086.** 6 38 ISR_PB_IN L 8086 riceve un dato dalla porta parallela B.* 5 37 ISR_PB_OUT La porta parallela B riceve un dato dall 8086.** 4 36 ISR_COUNT0 Il contatore 0 termina il suo conteggio ISR_COUNT12 Il contatore 1+2 termina il suo conteggio Struttura di un programma Assembler DIM EQU 50 DATI DB 10 (?) INIT_IVT INIT_IVT INIT_MIO INIT_MIO INIT_TUO INIT_TUO ISR_PIPPO I ISR_PIPPO ISR_PLUTO I ISR_PLUTO ; All esame te la puoi risparmiare ; Occhio agli indirizzi dei registri!.startup CLI CALL INIT_IVT CALL INIT_MIO CALL INIT_TUO STI BLOCK: ; HLT JMP BLOCK.EXIT END

3 Utilizzo dello stack Nota: il seguente esempio non è precisissimo. Si consiglia di far riferimento all apposita sezione delle slide presenti sul Portale della Didattica. EDURA MOV BP, SP PUSH SI PUSH CX PUSH AX PUSH DX MOV SI, [BP+6] ; Parametro in ingresso #1 MOV CX, [BP+4] ; Parametro in ingresso #2 MOV BX, [BP+2] ; Parametro in uscita #1 POP DX POP AX POP CX POP SI EDURA.STARTUP LEA AX, VARIABILE PUSH AX ; Parametro in ingresso #1 MOV AX, DIM PUSH AX ; Parametro in ingresso #2 SUB SP, 2 ; Parametro in uscita #1 CALL EDURA POP AX MOV RITORNO, AL ADD SP, 4.EXIT END ; Recupero il parametro in uscita ; "Riavvolgo" lo stack (4 = 2*n) con n = # parametri in ; ingresso passati (non di ritorno!)

4 8253 Contatore all interno del sistema. Dopo un/ogni conteggio si lancia una INT ; === Parola di controllo === ; [SC1 SC0 RL1 RL0 M2 M1 M0 BCD] ; * SC1 - SC0 : Contatore da programmare ; # 00: Contatore 0 ; # 01: Contatore 1 ; # 10: Contatore 2 ; * RL1 - RL0: Modalità di lettura / carica ; # 01: Solo il byte meno significativo LSB ; # 10: Solo il byte più significativo MSB ; # 11: Entrambi, prima LSB poi MSB ; * M2 - M1 - M0: Modo di funzionamento ; # 000: Modo 0 (dopo tot. ms scatena INT) ; # X10: Modo 2 (ogni tot. ms scatena INT) ; Se devo usare due contatori in cascata, il contatore 1 va sempre ; in modo 2 (in modo da dividere il clock) e il contatore 2 va in ; modo 0 o 2 a seconda della specifica complessiva del testo ; (dopo: 0, ogni: 2). ; * BCD: Conteggio binario o BCD? ; # 0: Binario ; Contatore 0 MOV AL, 00XXXXX0B ; Contatore 1 MOV AL, 01XXXXX0B ; Contatore 2 MOV AL, 10XXXXX0B ; === Valori === ; * Se programmo N conto N INT ; * Se mi servono 16 bit (RL = 11) devo usare tutte e quattro le ; istruzioni relative a un contatore, altrimenti solo le prime ; due. ; Contatore 0 MOV AX, 0BEACH ; 0BEACH è da sostituire! :) ; Contatore 1 MOV AX, 0BEACH OUT 061H, AL OUT 061H, AL ; Contatore 2 MOV AX, 0BEACH OUT 062H, AL OUT 062H, AL

5 ; Esempio di gestione contatore Videolezione 26 ; Si vuole scatenare una richiesta di interruzione ogni 4 secondi, disponendo di ; un clock di 2 MHz. Il periodo di clock è 0,5 us, quindi per arrivare a 4 sec. ; devo contare fino a Il valore è troppo grande da rappresentare su ; 16 bit, quindi uso i contatori 1 e 2 in cascata. Ogni volta che termino un ; conteggio si scatena un interruzione che porta alla chiamata di ISR_COUNT12. ISR_COUNT12 INC BX I ISR_COUNT12 ; Il contatore 1 verrà programmato con 16 bit e ogni tot. ms scatena ; un interruzione MOV AL, B ; Il contatore 2 verrà programmato con 16 bit e ogni tot. ms scatena ; un interruzione MOV AL, B ; è ad esempio scomponibile in 4000*2000. Entrambi questi ; valori possono essere memorizzati su 16 bit. MOV AX, 4000D OUT 061H, AL OUT 061H, AL MOV AX, 2000D OUT 062H, AL OUT 062H, AL

6 8255 Permette a un dispositivo esterno di comunicare col µp, ricevendo N bit contemporaneamente. L INT è scatenata dalla ricezione di un dato. ; === Parola di controllo # 1 === ; [1 D6 D5 D4 D3] [D2 D1 D0] ; ; Configurazione del gruppo A ; * D6 D5: Modo ; # 00: Modo 0 (no handshaking) ; # 01: Modo 1 (gestione dell'interrupt) ; * D4: Uso la porta A (080H) in ; # 0: Output ; # 1: Input ; * D3: Uso la parte alta della porta C (082H) in ; # 0: Output ; # 1: Input ; ; Configurazione del gruppo B ; * D2: Modo ; # 0: Modo 0 (no handshaking) ; # 1: Modo 1 (gestione dell'interrupt) ; * D1: Uso la porta B (081H) in ; # 0: Output ; # 1: Input ; * D0: Uso la parte bassa della porta C in ; # 0: Output ; # 1: Input MOV AL, 1XXXXXXXB ; === Parola di controllo #2 === ; Se ho bisogno di una combinazione di comportamenti posso inviare ; più di una parola di controllo all indirizzo 083H. ; ; * INT in caso di input sulla porta A (STB) MOV AL, B ; * INT in caso di output sulla porta A (ACK) MOV AL, B ; * INT in caso di input o output sulla porta B (ACK) MOV AL, B

7 ; Esempio di gestione porta parallela Videolezione 30 ; Il sistema riceve dati su 8 bit sulla porta A dell'8255, ogni volta che questi ; sono disponibili. Una volta ricevuti 3 valori, comincia a inviarli sulla porta ; B nell'ordine in cui li ha ricevuti. DATI DB 10 (?) ; Questa routine è chiamata ogni volta che faccio STB (= dato + conferma su A). ; Si noti che in questo caso particolare, tale routine funge anche da avviamento ; per il successivo output dei dati sulla porta B: attenzione che ISR_PB_OUT non ; parte fin quando non si manda il primo ACK di ricezione. ISR_PA_IN ISR_PA_IN IN AL, 080H MOV DATI[DI], AL INC DI CMP DI, 3 JNE FINE_PA_IN XOR DI, DI MOV AL, DATI[DI] OUT 081H, AL FINE_PA_IN: I ; Questa routine è chiamata ogni volta che faccio ACK (= dato + conferma su B). ; Si noti che in questa routine c è sicuramente un qualche meccanismo che mi fa ; tornare alla testa del buffer e un meccanismo che salti al bisogno OUT 081H, ; AL e dunque non consenta altri ACK. In questo caso i meccanismi sono uguali. ISR_PB_OUT ISR_PB_OUT INC DI CMP DI, 3 JE FINE_PB_OUT MOV AL, DATI[DI] OUT 081H, AL JMP FINE_I FINE_PB_OUT: FINE_I: XOR DI, DI I ; Gruppo A: modo 1, porta A in input. Gruppo B: modo 1, porta B in output. ; Scateno interrupt in caso di input sulla porta A e output sulla porta B. MOV AL, B MOV AL, B MOV AL, B

8 8259 Gestore delle interruzioni. INIT_8259 INIT_8259 ; === ICW1 === ; [ LTIM 0 SNGL IC4] ; * LTIM: Level Triggered Mode ; # 0: Edge Triggered Mode ; * SNGL: Modo Single o Cascade ; # 1: Modo Single ; * IC4: Presenza della parola ICW4 ; # 1: Sì MOV AL, B ; === ICW2 === ; T7 T6 T5 T4 T ; * T7-T3: bit alti indirizzo vettore INT ; # 00100: vettore INT a indirizzo 32 MOV AL, B ; === ICW4 === ; [0 0 0 SFNM BUF M/S AEOI upm] ; * SFNM: Special Fully Nested Mode ; # 0: No ; * BUF - M/S: Modo bufferizzato ; # 00: No ; * AEOI: Automatic End Of Interrupt ; # 1: Auto EOI ; # 0: Normal EOI ; Se ho priorità fissa e non ho vincoli di priorità rispetto al ; normale posso usare AEOI. Altre richieste di INT, anche meno ; prioritarie, possono interrompere quella vecchia a patto di ; sproteggere la ISR con STI/CLI (vedi esempio 1). ; Se invece uso EOI, la nuova INT che arriva resta pendente: ogni ; volta che arriva un INT non si fa niente fino a quando non ; specifico con la OCW2 che ho terminato di servire un certo INT. ; Una volta servito, si ritorna al main e si vede chi è il più ; prioritario che ha richiesto di essere servito: solo a questo ; punto scatterà la nuova INT (vedi esempio 2). ; La cosa vale anche se le richieste arrivano contemporaneamente: ; si serve prima il dispositivo più prioritario, e poi a seguire ; tutti gli altri. ; * upm: Processore ; # 1: 8086 MOV AL, X1B ; === OCW1 === ; [M7 M6 M5 M4 M3 M2 M1 M0] ; * My: disabilita il canale INT y ; # 1: canale y disabilitato MOV AL, XXXXXXXXB ISR_PIPPO ; In caso di gestione EOI MOV AL, B ; === OCW2 === I ISR_PIPPO

9 ; Esempio 1 - Uso gestore delle interruzioni Videolezione 34 ; Esempio in AEOI. Ho un timer che ogni volta che conta 1000 incrementa AX. ; Contemporaneamente posso avere degli input dalla porta A del mio sistema. ; Dato che il contatore è sul CH3 mentre la porta parallela è sul CH7, quando mi ; arriva una INT dal contatore mentre è in servizio la routine di gestione della ; porta parallela questa viene interrotta (occhio, senza STI/CLI non funziona!), ; viene eseguita la routine che gestisce il contatore e infine viene terminata ; la routine della porta parallela. ISR_PA_IN ISR_PA_IN STI IN AL, 080H CLI I ISR_COUNT0 INC AX I ISR_COUNT0 MOV AL, B MOV AL, B MOV AL, B MOV AX, 1000D ; Uso AEOI. Abilito CH7 e CH3. INIT_8259 MOV AL, B MOV AL, B MOV AL, B MOV AL, B INIT_8259

10 ; Esempio 2 - Uso gestore delle interruzioni Videolezione 34 ; Esempio in EOI. Specifiche analoghe al precedente, ma questa volta l arrivo di ; una INT per il CH3 quando è in servizio il CH7 non interrompe la routine di ; gestione della porta parallela. Solo quando un INT qualsiasi è completamente ; servito si passa a rianalizzare l Interrupt Request Register, selezionando la ; richiesta più prioritaria. Le istruzioni sottolineate evidenziano l invio di ; OCW2 per specificare l EOI. ISR_PA_IN ISR_PA_IN IN AL, 080H MOV BL, AL NOP MOV AL, B I ISR_COUNT0 INC BX NOP MOV AL, B I ISR_COUNT0 ; Uso EOI. INIT_8259 INIT_8259 MOV AL, B MOV AL, B MOV AL, B MOV AX, 1000D MOV AL, B MOV AL, B MOV AL, B MOV AL, B

Sistemi di Elaborazione a Microprocessore 8259. (Controllore Program m abile delle Interruzioni) M. Rebaudengo - M. Sonza Reorda

Sistemi di Elaborazione a Microprocessore 8259. (Controllore Program m abile delle Interruzioni) M. Rebaudengo - M. Sonza Reorda 8259 (Controllore Program m abile delle Interruzioni) M. Rebaudengo - M. Sonza Reorda Politecnico di Torino Dip. di Automatica e Informatica 1 M. Rebaudengo, M. Sonza Reorda Generalità L'8259 è stato progettato

Dettagli

Il problema dello I/O e gli Interrupt. Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano

Il problema dello I/O e gli Interrupt. Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano Il problema dello I/O e gli Interrupt Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano Il Calcolatore e le periferiche Periferica Decodifica Indirizzi Circuiti di Controllo Registri

Dettagli

Sistemi di Elaborazione a Microprocessore (interfaccia parallela) M. Rebaudengo - M. Sonza Reorda

Sistemi di Elaborazione a Microprocessore (interfaccia parallela) M. Rebaudengo - M. Sonza Reorda 8255 (interfaccia parallela) M. Rebaudengo - M. Sonza Reorda Politecnico di Torino Dip. di Automatica e Informatica 1 M. Rebaudengo, M. Sonza Reorda Generalità L'Intel 8255 implementa un interfaccia di

Dettagli

CALCOLATORI ELETTRONICI II

CALCOLATORI ELETTRONICI II CALCOLATORI ELETTRONICI II L INTERFACCIA PARALLELA Argomenti della lezione Le interfacce parallele Il dispositivo Intel 855 Architettura Funzionamento Le interfacce parallele Esempio Le interfacce parallele

Dettagli

UNITA PERIFERICA DI TIPO PARALLELO - PIA MC 6821

UNITA PERIFERICA DI TIPO PARALLELO - PIA MC 6821 UNITA PERIFERICA DI TIPO PARALLELO - PIA MC 6821 Indirizzamento interno dei registri: Registro di controllo CRA: Bit 7 Bit 6 Bit 5,4,3 Bit 2 Bit 1,0 IRQA1 IRQA2 CA2 DDRA CA1 Significato dei singoli bit:

Dettagli

Componenti principali. Programma cablato. Architettura di Von Neumann. Programma cablato. Cos e un programma? Componenti e connessioni

Componenti principali. Programma cablato. Architettura di Von Neumann. Programma cablato. Cos e un programma? Componenti e connessioni Componenti principali Componenti e connessioni Capitolo 3 CPU (Unita Centrale di Elaborazione) Memoria Sistemi di I/O Connessioni tra loro 1 2 Architettura di Von Neumann Dati e instruzioni in memoria

Dettagli

Processore Danilo Dessì. Architettura degli Elaboratori.

Processore Danilo Dessì. Architettura degli Elaboratori. Processore 8088 Architettura degli Elaboratori Danilo Dessì danilo_dessi@unica.it Subroutine Anche nel linguaggio assemblativo è possibile suddividere un programma in subroutine Per invocare una subroutine

Dettagli

Sistemi Elettronici #6. Subroutine

Sistemi Elettronici #6. Subroutine Subroutine Una subroutine è un insieme di istruzioni che si adoperano più volte insieme e nella stessa sequenza. Se usiamo l espressione RJMP per chiamare una subroutine all uscita di essa non ho un ritorno

Dettagli

Il sistema delle interruzioni nel processore MC68000 (cenni)

Il sistema delle interruzioni nel processore MC68000 (cenni) Corso di Calcolatori Elettronici I A.A. 2011-2012 Il sistema delle interruzioni nel processore MC68000 (cenni) Lezione 33 Prof. Antonio Pescapè Università degli Studi di Napoli Federico II Facoltà di Ingegneria

Dettagli

Componenti e connessioni. Capitolo 3

Componenti e connessioni. Capitolo 3 Componenti e connessioni Capitolo 3 Componenti principali CPU (Unità Centrale di Elaborazione) Memoria Sistemi di I/O Connessioni tra loro Architettura di Von Neumann Dati e instruzioni in memoria (lettura

Dettagli

Componenti principali

Componenti principali Componenti e connessioni Capitolo 3 Componenti principali n CPU (Unità Centrale di Elaborazione) n Memoria n Sistemi di I/O n Connessioni tra loro Architettura di Von Neumann n Dati e instruzioni in memoria

Dettagli

CONTATORE/TIMER PROGRAMMABILE CTC Z80 1. Piedinatura 2. Struttura interna 4. Modo timer 5. Modo Counter 8. Programmazione del CTC 13

CONTATORE/TIMER PROGRAMMABILE CTC Z80 1. Piedinatura 2. Struttura interna 4. Modo timer 5. Modo Counter 8. Programmazione del CTC 13 CONTATORE/TIMER PROGRAMMABILE CTC Z80 1 Piedinatura 2 Struttura interna 4 Modo timer 5 Modo Counter 8 Programmazione del CTC 13 Gerarchia di priorità delle interruzioni 17 Interfacciamento 17 Contatore/Timer

Dettagli

Programmazione Assembly per 8088: Esercizi svolti

Programmazione Assembly per 8088: Esercizi svolti Programmazione Assembly per 8088: Esercizi svolti Marco Di Felice 13 dicembre 2006 1 Esercizio 1 (esercizio 1 del Tanenbaum, Appendice C) TESTO. Dopo l esecuzione dell istruzione MOV AX, 702 qual è il

Dettagli

Nel microprocessore 8086 abbiamo una gran quantità di registri

Nel microprocessore 8086 abbiamo una gran quantità di registri I registri del microprocessore 8086 Nel microprocessore 8086 abbiamo una gran quantità di registri AH AL AX 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 B H B L BX 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 C H C L CX 1 0 1 1

Dettagli

Interazione con il DOS e il BIOS

Interazione con il DOS e il BIOS Interazione con il DOS e il BIOS ARGOMENTI PRESENTATI IN QUESTI LUCIDI Routine di BIOS e DOS Due modalità diverse di restituire il controllo al DOS L interazione con le routine del DOS: l interrupt 21H

Dettagli

Interfacciamento di periferiche I/O al μp 8088

Interfacciamento di periferiche I/O al μp 8088 Interfacciamento di periferiche I/O al μp 8088 5.1 Principali segnali della CPU 8086 5.2 Periferiche di I/O e loro gestione 5.3 Collegamento di periferiche di input 5.4 Collegamento di periferiche di output

Dettagli

L Assembler 8086. Istruzioni Aritmetiche. M. Rebaudengo - M. Sonza Reorda. Politecnico di Torino Dip. di Automatica e Informatica

L Assembler 8086. Istruzioni Aritmetiche. M. Rebaudengo - M. Sonza Reorda. Politecnico di Torino Dip. di Automatica e Informatica L Assembler 8086 M. Rebaudengo - M. Sonza Reorda Politecnico di Torino Dip. di Automatica e Informatica 1 M. Rebaudengo, M. Sonza Reorda Si suddividono in: istruzioni per il calcolo binario istruzioni

Dettagli

Periferiche CPU. Misure e Sistemi Microelettronici Sistemi 6-1 SREG. Data Bus Address Bus Control Bus

Periferiche CPU. Misure e Sistemi Microelettronici Sistemi 6-1 SREG. Data Bus Address Bus Control Bus Periferiche Interface Interface Interface Interface CPU SREG CREG DREG Il processore scambia informazioni con le periferiche attraverso dei registri. Tipicamente: Control REGister; Status REGister; Data

Dettagli

Sistema Operativo - Gestione della Memoria lista argomenti di studio

Sistema Operativo - Gestione della Memoria lista argomenti di studio Sistema Operativo - Gestione della Memoria lista argomenti di studio Istruzioni assembly salti assoluti salti relativi Linking Rilocazione Statica Istruzioni rilocabili (salti relativi) Istruzioni Non

Dettagli

Architettura di una CPU

Architettura di una CPU Massimo VIOLANTE Politecnico di Torino Dipartimento di Automatica e Informatica Sommario Organizzazione di un processore Linguaggio macchina Modi di indirizzamento Tipi di istruzioni 2 M. Violante 1.1

Dettagli

Informatica Generale 07 - Sistemi Operativi:Gestione dei processi

Informatica Generale 07 - Sistemi Operativi:Gestione dei processi Informatica Generale 07 - Sistemi Operativi:Gestione dei processi Cosa vedremo: Esecuzione di un programma Concetto di processo Interruzioni Sistemi monotasking e multitasking Time-sharing Tabella dei

Dettagli

DOLLAR EQU '$' ; nome e cognome possono avere al max questa lunghezza. ; N.B. ogni stringa deve terminare con '$'

DOLLAR EQU '$' ; nome e cognome possono avere al max questa lunghezza. ; N.B. ogni stringa deve terminare con '$' TITLE CodiceFiscale: per esame 1/7/2009 comment * Costruzione della prima parte (11 caratteri) del codice fiscale. N.B. Anziche' nello stack (come richiesto nel compito), qui i caratteri calcolati sono

Dettagli

Livelli del sottosistema di I/O

Livelli del sottosistema di I/O Input/Output 1 Livelli del sottosistema di I/O Software di I/O di livello utente Software di sistema indipendente dal dispositivo Driver dei dispositivi Gestori delle interruzioni Hardware Modo utente

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 4 ISC Esercizi per il recupero del debito formativo: Facendo esclusivamente uso delle istruzioni del linguaggio macchina mnemonico del microprocessore INTEL 8086 viste

Dettagli

Il microprocessore 8086

Il microprocessore 8086 1 Il microprocessore 8086 LA CPU 8086 Il microprocessore 8086 fa parte della famiglia 80xxx della INTEL. Il capostipite di questa famiglia è stato l 8080, un microprocessore ad 8 bit che ha riscosso un

Dettagli

Principali periferiche

Principali periferiche Principali periferiche Timer Periferica per il conteggio esatto del tempo Esempio: 8254 3 contatori "indietro" da 16 bit: si può impostare un valore iniziale fino a 0xFFFF in ciascuno dei tre contatori;

Dettagli

Calcolatori Elettronici Lezione A2 Architettura i8086

Calcolatori Elettronici Lezione A2 Architettura i8086 Calcolatori Elettronici Lezione A2 Architettura i8086 Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Architettura i8086 Sommario: L i8086 Registri Accesso alla memoria: indirizzi

Dettagli

Consegne estive per gli studenti con sospensione del giudizio nella materia Sistemi per l'elaborazione e la trasmissione dell'informazione.

Consegne estive per gli studenti con sospensione del giudizio nella materia Sistemi per l'elaborazione e la trasmissione dell'informazione. Consegne estive per gli studenti con sospensione del giudizio nella materia Sistemi per l'elaborazione e la trasmissione dell'informazione. Facendo esclusivamente uso delle istruzioni del linguaggio macchina

Dettagli

Lezione XII: La gestione delle eccezioni in MINIX

Lezione XII: La gestione delle eccezioni in MINIX 1 Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it 4 aprile 2008 1 c 2008 M. Monga. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia

Dettagli

per(il(corso(di(architetture(dei(sistemi(di(elaborazione(

per(il(corso(di(architetture(dei(sistemi(di(elaborazione( Esercizi(Assembler(8086(e(ARM( per(il(corso(di(architetture(dei(sistemi(di(elaborazione( Prof.(Mezzalama,(Ing.(Bernardi( v1.0marzo2013 Autore:MaggioLuigi E6mail:luis_may86@libero.it Portfolio:http://www.luigimaggio.altervista.org

Dettagli

Istruzioni di modifica della sequenza di elaborazione

Istruzioni di modifica della sequenza di elaborazione Istruzioni di modifica della sequenza di elaborazione Permettono di modificare la sequenza di esecuzione delle istruzioni di un programma, normalmente controllata dal meccanismo automatico di avanzamento

Dettagli

L Assembler 80x86 Concetti Generali. M. Rebaudengo M. Sonza Reorda P. Bernardi

L Assembler 80x86 Concetti Generali. M. Rebaudengo M. Sonza Reorda P. Bernardi L Assembler 80x86 Concetti Generali M. Rebaudengo M. Sonza Reorda P. Bernardi Sommario Introduzione Pseudo-Istruzioni Operatori Modi di Indirizzamento Istruzioni Sommario Introduzione Pseudo-Istruzioni

Dettagli

Orologio Digitale. Obiettivo. Analisi Hardware. Il TIC

Orologio Digitale. Obiettivo. Analisi Hardware. Il TIC Orologio Digitale Obiettivo Il nostro intento è creare un programma ed implementarlo in linguaggio Assembly 8086, che stampi a schermo un orologio digitale. Inizialmente il valore sarà sincronizzato con

Dettagli

Calcolatori Elettronici Parte X: l'assemblatore as88

Calcolatori Elettronici Parte X: l'assemblatore as88 Anno Accademico 2013/2014 Calcolatori Elettronici Parte X: l'assemblatore as88 Prof. Riccardo Torlone Università Roma Tre L'assemblatore as88 Disponibile presso: CD-ROM allegato al libro di testo del corso

Dettagli

Assembly. Modello x86

Assembly. Modello x86 Assembly Modello x86 1 Il microprocessore Un MICROPROCESSORE è un circuito integrato dotato di una struttura circuitale in grado di attuare un prefissato SET di ISTRUZIONI 2 Caratteristiche del microprocessore

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Gestione eccezioni nel MIPS Interruzioni Anno Accademico 2004/2005 Francesco Tortorella Modi di esecuzione user / kernel Due modi di esecuzione: User kernel Per ognuno dei due modi di esecuzione

Dettagli

Modi di esecuzione user / kernel

Modi di esecuzione user / kernel Corso di Gestione eccezioni nel MIPS Interruzioni Anno Accademico 2006/2007 Francesco Tortorella Modi di esecuzione user / kernel Due modi di esecuzione: User kernel Per ognuno dei due modi di esecuzione

Dettagli

SET/CLEAR LOAD DATA FROM STRING

SET/CLEAR LOAD DATA FROM STRING SET/CLEAR STD CLD AZIONE: Imposta ad 1 (STD) o a zero (CLD) il valore del flag DF. Sono istruzioni senza parametri. Vanno sempre messi!! FLAG di cui viene modificato il contenuto: Nessuno (a parte DF).

Dettagli

Uno sguardo al codice chiarificherà i dettagli. La tabella di invio interrupt intmap è definita nel file io.h.

Uno sguardo al codice chiarificherà i dettagli. La tabella di invio interrupt intmap è definita nel file io.h. CAPITOLO 9 - ELABORAZIONE DEGLI INTERRUPT L interrupt hardware è un meccanismo potente per fornire il supporto di molti servizi del sistema operativo. Come descritto nel capitolo 2, una richiesta di interrupt

Dettagli

I.T.I. A. RIGHI e VIII Napoli Specializzazione Informatica Tradizionale Corso D Materia: Sistemi. Elementi di Assembly 8086

I.T.I. A. RIGHI e VIII Napoli Specializzazione Informatica Tradizionale Corso D Materia: Sistemi. Elementi di Assembly 8086 I.T.I. A. RIGHI e VIII Napoli Specializzazione Informatica Tradizionale Corso D Materia: Sistemi Elementi di Assembly 8086 1 Assembly 8086 I registri Per poter elaborare le informazioni ricevute dall esterno,

Dettagli

Formato tipico delle istruzioni nelle architetture R-R (Es. DLX)

Formato tipico delle istruzioni nelle architetture R-R (Es. DLX) Formato tipico delle istruzioni nelle architetture R-R (Es. DLX) 6 bit 5 bit 5 bit 5 bit bit R Codice operativo RS RS2 Rd Estensione al Cod. op ( bit) Istruzioni aritmetiche e logiche del tipo Rd Rs op

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Calcolatori Elettronici Lezione A4 Programmazione a Moduli

Calcolatori Elettronici Lezione A4 Programmazione a Moduli Calcolatori Elettronici Lezione A4 Programmazione a Moduli Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Sommario Programmazione a moduli Programmi con linguaggi misti Tempo

Dettagli

Elementi di Architettura

Elementi di Architettura Elementi di Architettura Fondamenti di Informatica Roberto BASILI Marzo, 2007 Classi di Istruzioni Istruzioni di assegnamento/modifica Istruzioni di controllo delle sequenze Istruzioni di I/O Classi di

Dettagli

CALCOLATORI ELETTRONICI II

CALCOLATORI ELETTRONICI II CALCOLATORI ELETTRONICI II L ASSEMBLATORE Microsoft MASM MASM Argomenti della lezione Faremo riferimento al linguaggio sorgente accettato dall assemblatore Microsoft MASM nelle versioni successive alla

Dettagli

)21'$0(17,',,1)250$7,&$,,

)21'$0(17,',,1)250$7,&$,, )21'$0(17,',,1)250$7,&$,, (6(5&,7$=,21(Qƒ,//,1*8$**,2$66(0%/(5 Indicare (in binario) lo stato dei flag C, O, S, Z, P e del registro AH dopo l esecuzione delle due MOV AH, 70 ADD AH, 70 La prima istruzione

Dettagli

Il sottosistema di I/O. Input Output digitale

Il sottosistema di I/O. Input Output digitale Il sottosistema di I/O Il sottosistema di I/O consente la comunicazione fra il calcolatore ed il mondo esterno. Fanno parte del sottosistema i dispositivi (Unità di I/O) per la comunicazione uomo/macchina

Dettagli

Esercizi per il corso di Architettura dei Calcolatori. Anno accademico 2008/09. Si prevede l utilizzo dell emulatore Eniac ( presentato a lezione )

Esercizi per il corso di Architettura dei Calcolatori. Anno accademico 2008/09. Si prevede l utilizzo dell emulatore Eniac ( presentato a lezione ) Esercizi per il corso di Architettura dei Calcolatori Anno accademico 2008/09 Si prevede l utilizzo dell emulatore Eniac ( presentato a lezione ) 1) Caricare nel registro accumulatore AX il contenuto della

Dettagli

Influenza dell' I/O sulle prestazioni (globali) di un sistema

Influenza dell' I/O sulle prestazioni (globali) di un sistema Influenza dell' I/O sulle prestazioni (globali) di un sistema Tempo totale per l'esecuzione di un programma = tempo di CPU + tempo di I/O Supponiamo di avere un programma che viene eseguito in 100 secondi

Dettagli

Il linguaggio assembly 8086

Il linguaggio assembly 8086 Il linguaggio assembly 8086 Introduzione Il linguaggio macchina Il linguaggio naturale di un microprocessore è il linguaggio macchina. Nel linguaggio macchina non esistono riferimenti astratti o simbolici

Dettagli

Il sistema di Input/Output

Il sistema di Input/Output Corso di Calcolatori Elettronici I A.A. 2010-2011 Il sistema di Input/Output Lezione 35 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea in Ingegneria

Dettagli

PASSI DI SVILUPPO DI UN PROGRAMMA: ESEMPIO

PASSI DI SVILUPPO DI UN PROGRAMMA: ESEMPIO PASSI DI SVILUPPO DI UN PROGRAMMA: ESEMPIO Programma diviso in due moduli: MA.ASM: programma pricipale e funzioni di utilità MB.ASM: sottoprogramma di elaborazione Primo modulo: MA.ASM EXTRN alfa: BYTE

Dettagli

Il processore Pentium

Il processore Pentium Caratteristiche principali (I) Architettura interna a 32 bit Address bus a 32 bit: si possono indirizzare fino a 4 GB di memoria fisica Data bus a 64 bit (si tratta in pratica di 2 data bus a 32 bit in

Dettagli

Memoria cache. Memoria cache. Miss e Hit. Problemi. Fondamenti di Informatica

Memoria cache. Memoria cache. Miss e Hit. Problemi. Fondamenti di Informatica FONDAMENTI DI INFORMATICA Prof PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Memoria cache, interrupt e DMA 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide

Dettagli

ISA Input / Output (I/O) Data register Controller

ISA Input / Output (I/O) Data register Controller ISA Input / Output (I/O) Numerose Periferiche di tanti tipi diversi, collegati alla CPU mediante BUS diversi. Solo Input (tastiera, mouse), producono dati che la CPU deve leggere. Solo Output (Schermo),

Dettagli

Macchina di von Neumann/Turing

Macchina di von Neumann/Turing Macchina di von Neumann/Turing Concetto di programma memorizzato Memoria principale per dati e istruzioni ALU opera su dati in formato binario Unità di controllo che interpreta le istruzioni in memoria

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: crossi@deis.unibo.it Classificazione Processori

Dettagli

Il sistema di I/O. Calcolatori Elettronici 1. Architettura a bus singolo. Memoria. Unità di I/O. Interfaccia. Unità di I/O.

Il sistema di I/O. Calcolatori Elettronici 1. Architettura a bus singolo. Memoria. Unità di I/O. Interfaccia. Unità di I/O. Il sistema di I/O Calcolatori Elettronici 1 Architettura a bus singolo Memoria CPU Interfaccia Unità di I/O Interfaccia Unità di I/O Calcolatori Elettronici 2 1 Interfaccia Svolge la funzione di adattamento

Dettagli

Specifiche del protocollo di comunicazione semplificato per il modulo seriale di I/O

Specifiche del protocollo di comunicazione semplificato per il modulo seriale di I/O Specifiche del protocollo di comunicazione semplificato per il modulo seriale di I/O Architettura del frame di comunicazione Il frame di comunicazione è lungo 13 bytes ed ha questo formato nell ordine

Dettagli

Breve guida AL LINGUAGGIO ASSEMBLY (emulatore EMU8086)

Breve guida AL LINGUAGGIO ASSEMBLY (emulatore EMU8086) PROF. CARMELO CALARCO Breve guida AL LINGUAGGIO ASSEMBLY (emulatore EMU8086) 1 IL LINGUAGGIO ASSEMBLY Il linguaggio assembly è un linguaggio di programmazione a basso livello. Per linguaggi di basso livello

Dettagli

Il ciclo del processore semplificato BOOTSTRAP FETCH EXECUTE

Il ciclo del processore semplificato BOOTSTRAP FETCH EXECUTE Roadmap Inquadramento del problema La fase di interrupt nel ciclo del processore Le cause di interruzione Le fasi di uninterruzione Ripristino del programma Latenza Identificazione di dispositivi: soluzioni

Dettagli

Tutta la famiglia dei processori Intel (x86) si basa ed e' compatibile con il primo processore di questo tipo: l'8086.

Tutta la famiglia dei processori Intel (x86) si basa ed e' compatibile con il primo processore di questo tipo: l'8086. I processori Intel Tutta la famiglia dei processori Intel (x86) si basa ed e' compatibile con il primo processore di questo tipo: l'8086. L'8086 e' un processore a 16 bit quindi i suoi registri potranno

Dettagli

5. I device driver. Device driver - gestori delle periferiche. Struttura interna del sistema operativo Linux. Tipi di periferiche. Tipi di periferiche

5. I device driver. Device driver - gestori delle periferiche. Struttura interna del sistema operativo Linux. Tipi di periferiche. Tipi di periferiche Device driver - gestori delle periferiche Struttura interna del sistema operativo Linux Sono moduli software che realizzano l interfacciamento e la gestione dei dispositivi periferici Interagiscono con

Dettagli

Corso Sistemi Operativi

Corso Sistemi Operativi Corso Sistemi Operativi Ing. Pierfrancesco Bellini pierfrancesco.bellini@unifi.it Laboratorio DISIT Dip. Ingegneria dell Informazione Via S. Marta, 3 Programma a.a. 2016/17 Introduzione Struttura di un

Dettagli

I Processi nel Sistema Operativo Unix. Gerarchie di processi Unix. Stati di un processo Unix. Stati di un processo Unix.

I Processi nel Sistema Operativo Unix. Gerarchie di processi Unix. Stati di un processo Unix. Stati di un processo Unix. I Processi nel Sistema Operativo Unix Processi Unix Unix è un sistema operativo multiprogrammato a divisione di tempo: l unità di computazione è il processo. Caratteristiche del processo Unix: processo

Dettagli

Architettura di un sistema di calcolo

Architettura di un sistema di calcolo Richiami sulla struttura dei sistemi di calcolo Gestione delle Interruzioni Gestione della comunicazione fra processore e dispositivi periferici Gerarchia di memoria Protezione. 2.1 Architettura di un

Dettagli

Sistemi Operativi. La gestione delle risorse

Sistemi Operativi. La gestione delle risorse Sistemi Operativi La gestione delle risorse Introduzione Il sistema operativo ha il compito di fornire la gestione dell hardware ai programmi dell utente. Utente utilizza i programmi applicativi Programmi

Dettagli

Chapter 7 Registers and Register Transfers

Chapter 7 Registers and Register Transfers Logic and Computer Design Fundamentals Chapter 7 Registers and Register Transfers Part 1 Registers, Microoperations and Implementations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks

Dettagli

System call per la gestione di processi

System call per la gestione di processi System call per la gestione di processi Chiamate di sistema per creazione di processi: fork() sostituzione di codice e dati: exec...() terminazione: exit() sospensione in attesa della terminazione di figli:

Dettagli

Calcolatori Elettronici II parte (CdL Ingegneria Informatica) Esame del 22 settembre 2011 tempo a disposizione: 1 ora e 30 minuti

Calcolatori Elettronici II parte (CdL Ingegneria Informatica) Esame del 22 settembre 2011 tempo a disposizione: 1 ora e 30 minuti Calcolatori Elettronici II parte (CdL Ingegneria Informatica) Esame del 22 settembre 2011 tempo a disposizione: 1 ora e 30 minuti Compito Num. 1 COGNOME:...NOME:... 1) (20%) Si vuole realizzare una CPU

Dettagli

Esercizi Logica Digitale,Circuiti e Bus

Esercizi Logica Digitale,Circuiti e Bus Esercizi Logica Digitale,Circuiti e Bus Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 214/214 1 2 Esercizio 1 Si consideri la funzione booleana di 3 variabili G(a,b, c) espressa dall equazione seguente:

Dettagli

Calcolatori Elettronici T. Input/Ouput

Calcolatori Elettronici T. Input/Ouput Calcolatori Elettronici T Input/Ouput 1 Il sottosistema di I/O Il sottosistema di I/O consente la comunicazione fra il calcolatore ed il mondo esterno. Fanno parte del sottosistema i dispositivi (Unità

Dettagli

Struttura interna del sistema operativo Linux

Struttura interna del sistema operativo Linux Struttura interna del sistema operativo Linux 5. I device driver A cura di: Anna Antola Giuseppe Pozzi DEI, Politecnico di Milano anna.antola/giuseppe.pozzi@polimi.it -versione del 30 marzo 2004-1-04.-04

Dettagli

Corso di Calcolatori Elettronici I

Corso di Calcolatori Elettronici I Corso di Calcolatori Elettronici I Il sistema di Input-Output Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2014-2015 Roberto Canonico Corso di Calcolatori Elettronici I A.A. 2014-2015

Dettagli

Input/output da file I/O ANSI e I/O UNIX FLUSSI E FILE FLUSSI FLUSSI di TESTO FLUSSI BINARI FILE

Input/output da file I/O ANSI e I/O UNIX FLUSSI E FILE FLUSSI FLUSSI di TESTO FLUSSI BINARI FILE Input/output da file Il linguaggio C non contiene istruzioni di I/O, in quanto tali operazioni vengono eseguite tramite funzioni di libreria standard. Questo approccio rende estremamente flessibile e potente

Dettagli

INTRODUZIONE AI SISTEMI OPERATIVI EMBEDDED

INTRODUZIONE AI SISTEMI OPERATIVI EMBEDDED 1 INTRODUZIONE AI SISTEMI OPERATIVI EMBEDDED ROUND ROBIN ROUND ROBIN CON INTERRUPT FUNCTION QUEUE SCHEDULING REAL TIME OPERATING SYSTEMS (RTOS) INTERRUPT PROGRAMMATI: TIMER INTRODUZIONE 2 In relazione

Dettagli

Sistemi Operativi 1. Mattia Monga. 11 marzo Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia

Sistemi Operativi 1. Mattia Monga. 11 marzo Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia 1 Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it e 11 marzo 2008 1 c 2008 M. Monga. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia

Dettagli

LA GESTIONE DELLA I/O

LA GESTIONE DELLA I/O LA GESTIONE DELLA I/O Il S.O. È l interfaccia tra l hardware e i programmi che effettuano richieste di I/O Sottosistema di I/O strutturato in moduli chiamati DRIVER uno per ogni dispositivo I Driver rendono

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Architettura degli Elaboratori Corso di Laurea Triennale in Informatica Università degli Studi di Bari Anno Accademico 2009-2010 Laboratorio lez1: il processore 8086/88 Prof. S.Pizzutilo I processori Intel

Dettagli

Corso di programmazione Arduino DI MALVEZZI DAVIDE

Corso di programmazione Arduino DI MALVEZZI DAVIDE Corso di programmazione Arduino DI MALVEZZI DAVIDE Argomenti Pin digitali e pin analogici Gestione di timer e bottoni Utilizzo della porta seriale Oggetto String Controllo di schermi LCD Utilizzo dell

Dettagli

Davide Gennaretti, Matteo Nicolini

Davide Gennaretti, Matteo Nicolini Seminario sui Microcontrollori Davide Gennaretti, Matteo Nicolini AA 2003-04 II Facoltà di Ingegneria Elettronica Cesena Cosa sono i microcontrollori? Piccoli computer concentrati in un chip Un Datapath

Dettagli

CAP. 4: Aspetti generali del Sistema Operativo Linux. l http://home.dei.polimi.it/silvano/acso.htm

CAP. 4: Aspetti generali del Sistema Operativo Linux. l http://home.dei.polimi.it/silvano/acso.htm Struttura interna del sistema Operativo Linux CAP. 4: Aspetti generali del Sistema Operativo Linux CAP. 5: Funzionalità del calcolatore l http://home.dei.polimi.it/silvano/acso.htm Funzionalità del Sistema

Dettagli

Introduzione agli interrupt

Introduzione agli interrupt Corso di laurea in Ingegneria dell Informazione Indirizzo Informatica Reti e sistemi operativi Introduzione agli interrupt Le interruzioni (interrupt) I sistemi operativi attuali si basano sugli interrupt

Dettagli

Il linguaggio assembly

Il linguaggio assembly Il linguaggio assembly Introduzione al linguaggio macchina Indice Che cos è l assembly Elementi del linguaggio Memoria di programma Registri interni e di I/O Registri particolari Rappresentazione dell

Dettagli

Reti e Sistemi per l Automazione LADDER LOGIC. Stefano Panzieri Ladder Logic - 1

Reti e Sistemi per l Automazione LADDER LOGIC. Stefano Panzieri Ladder Logic - 1 LADDER LOGIC Stefano Panzieri Ladder Logic - 1 Linguaggi di Programmazione IEC 1131 Linguaggio a contatti (Ladder Diagram) Diagramma a blocchi funzionali (FBD) Diagramma sequenziale funzionale (SFC) Lista

Dettagli

Esercizio 1. Progettare la PO a partire dal microprogramma eseguibile e successivamente:

Esercizio 1. Progettare la PO a partire dal microprogramma eseguibile e successivamente: Architettura degli Elaboratori Prima prova di verifica intermedia - A.A. 2014-2015 Riportare Nome, Cognome, Numero di matricola e Corso di appartenenza su tutti i fogli consegnati. I risultati saranno

Dettagli

Istruzioni di trasferimento dati

Istruzioni di trasferimento dati Istruzioni di trasferimento dati Leggere dalla memoria su registro: lw (load word) Scrivere da registro alla memoria: sw (store word) Esempio: Codice C: A[8] += h A è un array di numeri interi Codice Assembler:

Dettagli

Le procedure. L insieme delle istruzioni (4) Prima della chiamata di una procedura. Le procedure (2) Architetture dei Calcolatori (lettere A-I)

Le procedure. L insieme delle istruzioni (4) Prima della chiamata di una procedura. Le procedure (2) Architetture dei Calcolatori (lettere A-I) Le procedure L insieme delle istruzioni (4) Architetture dei Calcolatori (lettere A-I) In ogni linguaggio di programmazione si struttura il proprio codice usando procedure (funzioni, metodi, ) L utilizzo

Dettagli

4b. Esercizi sul livello di Rete Inoltro in IP

4b. Esercizi sul livello di Rete Inoltro in IP 4b. sul livello di Rete Inoltro in IP 4b-1 o Un router riceve sull interfaccia eth1 una serie di pacchetti. L interfaccia ha come indirizzo MAC bbbb:6c3c:5656:3b34 e l indirizzo IP: 131.175.21.254. Il

Dettagli

Sistema Operativo - Gestione della Memoria per moderne CPU. Address Binding Dinamico in esecuzione mediante Segmentazione, Paginazione e Memoria

Sistema Operativo - Gestione della Memoria per moderne CPU. Address Binding Dinamico in esecuzione mediante Segmentazione, Paginazione e Memoria Sistema Operativo - Gestione della Memoria per moderne CPU. Address Binding Dinamico in esecuzione mediante Segmentazione, Paginazione e Memoria Virtuale (Swap su Disco Lista Argomenti Concetto di Address

Dettagli

Assembler 8086/8088: Concetti Generali

Assembler 8086/8088: Concetti Generali L Assembler 8086 Concetti Generali M. Rebaudengo - M. Sonza Reorda Politecnico di Torino Dip. di Automatica e Informatica 1 M. Rebaudengo, M. Sonza Reorda Sommario Introduzione Pseudo-Istruzioni Operatori

Dettagli

Sono tipicamente causati da dispositivi hardware. normale flusso di esecuzione viene interrotto, e la CPU passa a gestire l interrupt

Sono tipicamente causati da dispositivi hardware. normale flusso di esecuzione viene interrotto, e la CPU passa a gestire l interrupt Interruzioni in MIPS 32 Input/Output Interrupt Sono tipicamente causati da dispositivi hardware esterni, e collegati al processore attraverso delle linee di controllo di bus, come ad esempio le periferiche

Dettagli

Esercizi su Programmazione in Assembler i386. Prof. Riccardo Torlone Università Roma Tre

Esercizi su Programmazione in Assembler i386. Prof. Riccardo Torlone Università Roma Tre Esercizi su Programmazione in Assembler i386 Prof. Riccardo Torlone Università Roma Tre Esercizio I Scrivere un programma in linguaggio assemblativo 8088 che, presi due dati a e b in memoria, calcola l

Dettagli

Strutture di controllo in C++

Strutture di controllo in C++ Strutture di controllo in C++ Fondamenti di Informatica R. Basili a.a. 2006-2007 Il controllo: selezione Spesso la sequenza delle istruzioni non e prevedibile a priori ma dipende strettamente dalle configurazioni

Dettagli

1 Esercizi con architettura a 1 bus

1 Esercizi con architettura a 1 bus 1 Esercizi con architettura a 1 bus 1.1 Fetch dell istruzione NOTA: l istruzione ClearY azzera il registro Y mentre l istruzione CB imposta a 1 il bit di riporto/prestito in modo da sommare/sottrarre 1.

Dettagli

Numeri Reali. Sottoinsieme discreto dei Numeri Razionali. Sequenze di bit. Underflow. Densità che dipende dal numero di bit usati

Numeri Reali. Sottoinsieme discreto dei Numeri Razionali. Sequenze di bit. Underflow. Densità che dipende dal numero di bit usati Numeri Reali Sottoinsieme discreto dei Numeri Razionali Sequenze di bit Overflow Underflow Overflow 0 Densità che dipende dal numero di bit usati 1 Numeri Reali Virgola fissa (1/5) Si usa un numero fisso

Dettagli

Sistemi di Elaborazione: esercizio con il D12

Sistemi di Elaborazione: esercizio con il D12 Sistemi di Elaborazione: esercizio con il D12 Un sistema basato su PIC18F8720 a 24 MHz è dotato di 32 KB di EPROM agli indirizzi alti e 64 KB di RAM statica agli indirizzi bassi. Il sistema è dotato inoltre

Dettagli

ARCHITETTURA DEI MICROPROCESSORI INTEL 8086/8088

ARCHITETTURA DEI MICROPROCESSORI INTEL 8086/8088 ARCHITETTURA DEI MICROPROCESSORI INTEL 8086/8088 microprocessori Intel di terza generazione progetto originario del 1979, ancora oggi interessanti per: 1. motivi didattici: l architettura dei processori

Dettagli

Assembly (3): le procedure

Assembly (3): le procedure Architettura degli Elaboratori e delle Reti Lezione 13 Assembly (3): le procedure Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 13 1/23 Chiamata

Dettagli

Attuatore 4 canali 10A Easy DIN GW 90 835. Manuale tecnico

Attuatore 4 canali 10A Easy DIN GW 90 835. Manuale tecnico Attuatore 4 canali 10A Easy DIN GW 90 835 Manuale tecnico 1 Sommario 1 Introduzione... 3 2 Applicazione... 3 2.1 Limiti delle associazioni... 3 2.2 Priorità tra le funzioni... 3 3 Menù Impostazioni...

Dettagli