Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari"

Transcript

1 Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della sua matrice completa) ne determinano il comportamento (esistenza o meno delle soluzioni). Torniamo a un esempio simile a quello visto un paio di lezioni fa. Esempio 80 Consideriamo la matrice A = e interpretiamola come la matrice dei coefficienti di un sistema (con 3 equazioni e 3 incognite). Vi faccio notare che ho scelto questa matrice di una forma particolare: la terza colonna è uguale alla somma delle prime due, ossia le tre colonne sono linearmente dipendenti. Diciamo che ora vogliamo risolvere il sistema Ax = b. Secondo voi, ci sarà soluzione qualunque sia la scelta della colonna dei termini noti b? Scriviamolo così b 1 2 x + 0 y + 2 z = b Come già vi ho fatto notare che risolvere questo sistema equivale a dire che si può scrive b come combinazione lineare dei tre vettori colonna. Ma i tre vettori sono linearmente dipendenti, ossia sono tutti su uno stesso piano e quindi tutte le loro combinazioni saranno ancora sullo stesso piano. Detto in modo più generale, questo piano è quello generato dai primi due vettori colonna di A, ossia è l insieme di tutte le combinazioni lineari dei primi due vettori di A. Questo insieme è uno spazio vettoriale di dimensione 2, lo chiameremo un sottospazio vettoriale di V 3 di dimensione 2. Torniamo al nostro sistema, ci sono due casi: 1. Se b appartiene al piano generato dai vettori colonna, allora chiaramente si può scrivere come loro combinazione lineare, ossia il sistema è compatibile. Questo caso corrisponde a scegliere b linearmente dipendente dai primi due vettori colonna di A. 92 b 3

2 Lezione Se invece b è linearmente indipendente dai primi due vettori colonna (ossia non appartiene al piano da essi generato), allora, chiaramente, non si può scrivere come loro combinazione lineare, ossia il sistema è incompatibile. Vedete, la proprietà che distingue i due casi è questa: - Nel primo caso la matrice A e la matrice A b hanno solo due vettori indipendenti - Nel secondo caso aggiungendo la colona dei termini noti ad A, cambia il numero delle colonne indipendenti. Ma allora la proprietà dirimente è questa: il numero delle colonne indipendenti delle matrici A e A b Diamo un nome a questa proprietà. Definizione 81 Diciamo che una matrice A M mn ha rango r (che si indica con rango(a) = r), se r è il numero delle colonne indipendenti della matrice A. Per esempio la matrice A vista all inizio ha rango 2 (solo due colonne indipendenti), ossia rango(a) = 2. Oppure se considero la matrice formata dagli elementi della base canonica di V (questa matrice ha un nome - matrice identità - ma lo vedremo più avanti), chiaramente le tre colonne sono indipendenti e quindi rango = Vi faccio notare che questo numero, il rango, che noi associamo alle matrici, si può assegnare a tutte le matrici, non solo quelle quadrate. Esempio 82 La matrice 2 5 A = ( ) ha tutte le colonne proporzionale, quindi tutte dipendenti a due a due. In questo caso diciamo che il rango è 1 Rango(A) = 1! Osservazione 83 Il rango di una matrice che abbiamo definito come il numero delle colonne indipendenti (e che presto scopriremo come calcolare operativamente) è anche il numero delle righe linearmente indipendenti. Questo si verifica facilmente nei tre esempi che abbiamo appena visto (negli ultimi due è evidente. Verificatelo nel primo esempio!)

3 Lezione Osservazione 84 Si vede anche che il rango di una matrice m n è un numero che verifica sempre rango(a) min{m, n} (questo è il più piccolo tra m e n). Che il rango sia minore o uguale al numero delle colonne, n, è evidente dalla definizione. Per convincersi che non è più grande del numero delle righe (senza affidarsi all osservazione precedente) basta ricordarsi che le colonne, avendo m coefficienti sono vettori di uno spazio di dimensione m e abbiamo visto che in uno spazio di dimensione m le basi hanno esattamente m elementi, quindi il numero dei vettori indipendenti deve essere al più m! Convinti? Vi avevo anticipato che la lineare dipendenza e independenza sono nozioni delicate e richiedono un po di concentrazione. Come vi ho già accennato impareremo nella prossima lezione a calcolare il rango di una qualsiasi matrice usando un metodo completamente algebrico. Adesso però facciamo il punto di quello che abbiamo capito sui sistemi usando questa nozione (ossia che è la relazione che c è tra il rango della matrice completa e quello della matrice dei coefficienti che determina la compatibilità del sistema). Questo è fatto con il seguente teorema. Teorema 85 (Il teorema di Rouchè-Capelli) Un sistema lineare con m equazioni e n incognite è compatibile se e soltanto se rango(a) = rango(a b ) (il rango della matrice dei coefficienti è uguale al rango della matrice completa). Potete tornare indietro e verificare che nell esempio iniziale, dei due casi si aveva: 1. rango(a) = 2 e rango(a b ) = 2 2. rango(a) = 2 e rango(a b ) = 3!! Quindi se i ranghi di A e A b non coincidono non ci sono soluzioni (in questo caso si dice anche che il sistema è impossibile). Attenzione quello che segue è sostanzialmente la dimostrazione del Teorema di Rouchè-Capelli. Per convincersi che questo teorema è vero basta generallizzare l esempio iniziale: dato un qualsiasi sistema con m equazioni e n incognite per cui si ha rango(a) = r ci sono due possibilità: o rango(a b ) = r, quindi la colonna dei termini noti è ancora dipendente dalle colonne di A, ossia appartiene al sottospazio V r generato dalle r colonne indipendenti di A e quindi si può scrivere come loro combinazione lineare. Il sistema allora è compatibile. oppure rango(a b ) = r+1, ossia la colonna dei termini noti è indipendente dalle r colonne indipendenti di A, ossia non sta nel sottospazio generato da esse e quindi non si può scrivere come loro combinazione lineare. Il sistema in questo caso è incompatibile.

4 Lezione Esempio 86 Consideriamo il sistema 2x 2 3x 3 = 0 2x 1 + 6x 3 = 0 x 1 + x 2 x 3 = 0 Un sistema fatto così, cioè con i termini noti tutti nulli si chiama un sistema omogeneo. Questo evidentemente è un caso particolare rispetto a quelli visti finora e quindi rientra nella teoria appena vista. Però gli diamo un nome perchè questa caratteristica di avere tutti i termini noti nulli fa sì che tutti i sistemi omogenei abbiano alcune proprietà in comune. La prima salta agli occhi: secondo voi il sistema qui sopra è compatibile? Guardatelo bene, una soluzione c è sempre, qual è? Quella nulla, cioè (0, 0, 0). Questo è vero sempre: i sistemi omogenei sono sempre compatibili. In particolare hanno sempre la soluzione (0, 0,..., 0) (questa la chiamiamo: soluzione banale). D altronde questo è coerente con il Teorema di Rouchè-Capelli. Infatti le due matrici (dei coefficienti e completa) A = e A b = hanno chiaramente lo stesso rango (la colonna dei termini noti, essendo nulla, non può cambiare il numero delle colonne indipendenti). A questo punto la domanda naturale è: c è solo la soluzione banale? In questo caso si, perché si può verificare che i tre vettori colonna della matrice dei coefficienti sono indipendenti (ossia la matrice ha rango 3 uguale al numero delle incognite) e quindi l unico modo per scrivere il vettore nullo come loro combinazione lineare è quello di usare coefficienti tutti nulli, ossia x x x 3 6 = implica che x 1 = x 2 = x 3 = 0. Esempio 87 Consideriamo quest altro sistema omogeneo { x1 + x 2 + x 3 = 0 2x 1 x 2 + 2x 3 = 0 In questo caso la matrice dei coefficienti ( ) A = ha rango 2 (la cosa è di facile verifica, infatti le prime due colonne non sono proporzionali e il rango non può essere più grande di 2 che il numero delle righe) mentre il numero delle incognite è 3. In questo caso oltre alla soluzione banale ce ne sono infinite altre. Infatti la prima e la terza colonna di A sono uguale e quindi è chiaro che la terna (1, 0, 1) è soluzione, cioè ( ) ( ) ( ) ( ) ( 1) =

5 Lezione Allora si vede facilmente che moltiplicando questa terna per unqualsiasi scalare si ha ancora una soluzione, ossia tutte le terne del tipo (λ, 0, λ), con λ R, sono soluzione. In altre parole ci sono 1 soluzioni (1 parametro libero). Ma questo lo sapevamo già: l intersezione di due piani è una retta. Esempio 88 Consideriamo ora il sistema { x1 + x 2 + x 3 + 2x 4 = 0 2x 1 x 2 + 2x 3 + x 4 = 0. Qui la matrice dei coefficienti è A = ( ) (notate che è la stessa di prima con l aggiunta di una colonna). Ancora una volta il rango di questa matrice è 2, mentre il numero delle incognite è 4. Quindi in questo caso si ha ovviamente la soluzione banale, ma ce ne sono altre due indipendenti tra di loro. Infatti potete verificare senza difficoltà che la quaterna k 1 = (1, 0, 1, 0) è soluzione (quella di prima più l aggiunta di zero nell ultimo posto), ma anche la quaterna k 2 = (1, 1, 0, 1) lo è, infatti ( ) ( ) ( ) ( ) ( ) ( 1) = Notate che le due quaterne soluzioni non banali sono indipendenti (non proporzionali). Ma allora è facile vedere, usando le operazioni tra le matrici e i sistemi scritti in forma matriciale che tutte le combinazioni lineari di k 1 e k 2 sono ancora soluzioni. Ci proviamo? Dire che k 1 e k 2 sono soluzioni equivale a dire che Ak 1 = 0 e Ak 2 = 0. Verifichiamo che una combinazione lineare ak 1 + bk 2 = (a + b, b, a, b) è soluzione. Ma è facile A(ak 1 + bk 2 ) = aak 1 + bak 2 = a0 + b0 = 0!! (è vero!) Vedete in questo consiste la linearità, nel fatto che una combinazione lineare di soluzioni è ancora soluzione. In conclusione ci sono infinite soluzioni e sono tutte quelle appartenenti al sottospazio generato da k 1 e k 2, ossia un sottospazio vettoriale di dimensione 2. Quello che abbiamo visto in questi esempi si può generalizzare in un risultato, valido per qualsiasi sistema omogeneo, che mi dice quante soluzioni ci sono a seconda della relazione che c è tra il rango e il numero delle incognite Teorema 89 (Classificazione dei sistemi omogenei) Dato un sistema omogeneo con m equazioni e n incognite. Se r è il rango della matrice dei coefficienti, rango(a) = r, allora si possono verificare i due seguenti casi: 1) Se r = n, allora esiste solo la soluzione banale 2) Se r < n, allora ci sono infinite soluzioni che formano un sottospazio di dimensione n r, ossia individuate da n r parametri liberi ( n r soluzioni)

6 Lezione Proverò a convincervi che questo risultato è vero. Dimostrazione È chiaro che se r = n, allora le n colonne della matrice dei coefficienti sono indipendenti. Quindi per definizione di lineare indipendenza, sappiamo che l unico modo di scrivere lo zero come combinazione lineare dei vettori colonna, ossia di risolvere il sistema omogeneo, è quello di scegliere tutti i coefficienti nulli (ossia si ha solo la soluzione nulla). Facciamo ora, parzialmente, il caso in cui r < n. Se r < n allora le n colonne della matrice dei coefficienti A sono dipendenti, quindi, come nell Esempio 87, posso scrivere lo zero come combinazione lineare non banale (coefficienti non tutti nulli) delle colonne di A. Questo, come nell esempio, mi fa trovare una soluzione non banale e quindi tutti i suoi multipli. Per verificare che ci sono esattamente n r soluzioni bisognerebbe far vedere che è sempre possibile trovare n r soluzioni indipendenti (come nell Esempio 88 in cui ne ho trovate 2 = 4 2) e quindi usare il fatto che tutte le loro combinazioni lineari sono ancora soluzioni (ricordate: il sistema è lineare e omogeneo). Questo è sempre possibile così come abbiamo fatto nell esempio, ma dirlo a parole in generale sarebbe inutile. Quindi a patto di accettare quest ultima affermazione, considero chiusa la questione e la dimostrazione finita. Come conseguenza della classificazione dei sistemi omogenei, vedrete che possiamo ottenere una completa classificazione di qualsiasi sistema. Quindi non solo saremo in grado di dire (usando il teorema di Rouchè-Capelli) se il sistema è compatibile o meno, ma anche dire esattamente quante soluzioni questo abbia. Questo è riassunto nel seguente lemma. Lemma 90 (Classificazione dei sistemi compatibili) Dato un sistema con m equazioni e n incognite. Se questo sistema è compatibile, cioè rango(a) = rango(a b ) = r, allora si possono verificare i due seguenti casi: 1) Se r = n, allora esiste un unica soluzione 2) Se r < n, allora ci sono infinite soluzioni con n r parametri liberi ( n r soluzioni) Dimostrazione È chiaro che se r = n, allora tutte le colonne della matrice A sono indipendenti e quindi (come abbiamo già notato) c è un unico modo di scrivere la colonna dei termini noti b come loro combinazione lineare (ossia le colonne formano una base del sottospazio di dimensione n da esse generato). Supponiamo ora di stare nella situazione in cui r < n. Sappiamo che esiste almeno una soluzione (grazie al Teorema di Rouchè-Capelli), chiamiamola k 0, ossia che verifica Ak 0 = b. Inoltre poichè rango(a) = r < n sappiamo anche che il sistema omogeneo associato ad A ammette proprio n r soluzioni, ossia c è un sottospazio di V n di dimensione n r i cui elementi k verificano l equazione omogenea, ossia Ak = 0. Ma si verifica facilmente che se sommo a k 0 una qualsiasi soluzione k del sistema omogeneo associato ad A, quello che ottengo è ancora una soluzione. Infatti A(k 0 + k) = Ak 0 + Ak = b + 0 = b.

7 Lezione Come volevasi dimostrare! In conclusione, abbiamo dimostrato (proprio così, dimostrato) che le soluzioni di Ax = b sono tutte della forma k 0 +k, con k che appartiene allo spazio n k dimensionale delle soluzioni del sistema omogeneo. Ossia abbiamo dimostrato che ci il sistema Ax = b ammette n r soluzioni. A questo punto è chiaro che non appena saremo in grado di calcolare il rango di una matrice potremo applicare la strategia descritta in questa lezione e riassunta dal seguente schema, per ottenere una completa descrizione della natura del sistema in esame. CLASSIFICAZIONE DEI SISTEMI RICAPITOLAZIONE Sistema con m equazioni e n incognite Teorema di Rouchè-Capelli rango(a) < rango(a b ) rango(a) = rango(a b ) = r INCOMPATIBILE (nessuna soluzione) r = n una soluzione COMPATIBILE r < n n r soluzioni A =matrice dei coefficienti A b =matrice completa Concludiamo questa lezione con un paio di esempi in cui il rango si può decidere a occhio e in cui possiamo facilmente implementare la strategia sopra descritta. Esempi 1. Consideriamo il sistema x 1 + 3x 2 x 3 + x 4 = 1 x 2 + x 3 x 4 = 2 2x 3 + 2x 4 = 3 2x 4 = 4.

8 Lezione La matrice dei coefficienti del sistema è la seguente Una matrice con tutti gli elementi sotto la diagonale uguali a zero, come in questo caso, si dice triangolare (la prima colonna ha gli elementi tutti nulli tranne il primo, la seconda ha gli elementi tutti nulli tranne il primo e il secondo e così via) e si dice ridotta una matrice che si può far diventare trangolare scambiando l ordine delle colonne. È molto facile vedere che una matrice così ha rango massimo (cioè 4). È chiaro per esempio che non è possibile scrivere l ultima colonna come combinazione lineare delle altre. Inoltre la matrice A b A b = ha anche lei rango 4 (poiché ci sono solo 4 righe), e quindi il teorema di Rouchè- Capelli ci dice che c è almeno una soluzione. Infine sappiamo che questa soluzione è unica perché 4 è anche il numero delle incognite. In realtà se fate mente locale, realizzate che un sistema fatto così ha sempre soluzione unica. Infatti l ultima equazione dà una sola soluzione per x 4. Sostituendo x 4 nella penultima equazione si trova un solo valore per x 3 e così via (il sistema si risolve esplicitamente a cascata dal basso, provate a farlo!). 2. Facciamo un altro esempio (ottenuto dal precedente cancellando l ultima equazione) x 1 + 3x 2 x 3 + x 4 = 1 x 2 + x 3 x 4 = 2 2x 3 + 2x 4 = 3 la cui matrice dei coefficienti è Anche in questo caso si vede a occhio (grazie alla presenza degli zeri) che i primi tre vettori colonna sono indipendenti (se non ci credete verificatelo) e quindi in questo caso si ha rango(a) = rango(a b ) = 3 (perché ci sono solo 3 righe). Ma allora il sistema è compatibile e poiché rango(a) = rango(a b ) = 3 < 4 =numero delle incognite, si dovrebbero avere 1 soluzioni. Ma questo lo si vede anche bene guardando il sistema e fruttando il fatto che ha una struttura particolare: nell ultima equazione posso scegliere arbitrariamente x 4 e quindi determinare x 3. Poi posso sostituire l x 4 scelto e l x 3 trovato di conseguenza nella seconda equazione e determinare x 2 e così via. Insomma trovo una soluzione per ogni scelta di x 4, ossia ho 1 grado di libertà.

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Lezione 9: Le matrici

Lezione 9: Le matrici Lezione 9: Le matrici Ancora un po di sistemi in generale: le notazioni Nella lezione precedente abbiamo visto vari esempi di sistemi lineari in cui si verificavano i seguenti casi: una sola soluzione,

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Lezione 5: Dipendenza e indipendenza lineare

Lezione 5: Dipendenza e indipendenza lineare Lezione 5: Dipendenza e indipendenza lineare Abbiamo visto varie operazioni tra i vettori, in particolare abbiamo più volte determinato vettori ottenuti con operazioni del tipo: 3u v, u + v, u v,... Diamo

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Parte 4. Spazi vettoriali

Parte 4. Spazi vettoriali Parte 4. Spazi vettoriali A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Spazi vettoriali, 2 Prime proprietà, 3 3 Dipendenza e indipendenza lineare, 4 4 Generatori, 6 5 Basi, 8 6 Sottospazi,

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Lezione 11: Il Determinante

Lezione 11: Il Determinante Lezione 11: Il Determinante Abbiamo capito come sia sufficiente determinare il rango della matrice dei coefficienti e della matrice completa di un sistema per determinarne completamente il comportamento.

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

RANGO DI UNA MATRICE ρ(a)

RANGO DI UNA MATRICE ρ(a) RANGO DI UNA MATRICE (A) a,... a A M M am,... a, n mn, K É il massimo ordine di un minore estratto con determinante non nullo. Equivalentemente è il massimo numero di righe (colonne) linearmente indipendenti.

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Note sui sistemi lineari

Note sui sistemi lineari Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli