Analisi delle corrispondenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi delle corrispondenze"

Transcript

1 Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello di analizzare le relazioni tra le modalità di due (o più) caratteri qualitativi Ad applicazioni di questo tipo si è già accennato alla fine del capitolo sulla correlazione canonica, quando si fatto riferimento all uso di detta metodologia in presenza di dati qualitativi L analisi delle corrispondenze mira ad individuare la struttura dell associazione interna a una tabella di contingenza tramite la rappresentazione grafica delle modalità dei due caratteri in uno spazio di dimensionalità minima (in quasi tutte le applicazioni il piano cartesiano) 111 Analisi delle corrispondenze semplici Si disponga di una tabella di contingenza in cui n individui sono classificati secondo due fattori qualitativi X 1 e X 2 con rispettivamente k 1 e k 2 livelli X 1 X 2 X 21 X 2h X 2k2 tot X 11 n 11 n 1h n 1k2 n 10 X 1j n j1 n jh n jk2 n j0 X 1k1 n k1 1 n k1 h n k1 k 2 n k1 0 tot n 01 n 0h n 0k2 n 147

2 148 A Pollice - Statistica Multivariata La struttura delle relazioni tra i livelli dei due fattori può essere analizzata considerando i profili riga (distribuzioni delle frequenze relative di X 2 condizionate rispetto a ciascuna modalità di X 1 ) e i profili colonna (distribuzioni delle frequenze relative di X 1 condizionate rispetto a ciascuna modalità di X 2 ): vengono ritenute somiglianti le modalità di X 1 caratterizzate da profili riga simili, e quelle di X 2 caratterizzate da profili colonna simili L analisi delle corrispondenze fornisce una rappresentazione sintetica delle informazioni contenute nella tavola di contingenza attraverso la considerazione delle prossimità tra profili riga e profili colonna Si indichi con N la matrice k 1 k 2 con elemento generico n jh Questa matrice può essere rappresentata nella cosiddetta forma disgiuntiva in cui le due mutabili X 1 e X 2 sono trasformate rispettivamente in k 1 e k 2 variabili dicotomiche Sia X (1) una matrice n k 1 il cui elemento generico X (1) ij vale 1 se l individuo i-esimo è caratterizzato dal j-esimo livello del primo fattore, e vale 0 altrimenti Analogamente si definisca la matrice X (2) per il secondo fattore Si ricava facilmente che vale X (1) X (2) = N (111) Inoltre indicando con D 1 e D 2 rispettivamente le matrici diagonali dei totali di riga e di colonna D 1 = X (1) X (1) = diag(n 10,, n k1 0) D 2 = X (2) X (2) = diag(n 01,, n 0k2 ) (112) è possibile ottenere le matrici dei profili riga e dei profili colonna rispettivamente date, per j = 1,, k 1 ed h = 1,, k 2, da D 1 1 N = [n jh/n j0 ] ND 1 2 = [n jh /n 0h ] (113) Lo studio delle relazioni tra le due mutabili X 1 e X 2 si traduce in quello della correlazione canonica tra i due insiemi di variabili dicotomiche riportate nelle matrici X (1) e X (2) Pertanto è noto come per individuare i vettori a e b di k 1 e k 2 coefficienti che definiscono le due variabili unidimensionali v = X (1) a w = X (2) b (114)

3 Cap 11: Analisi delle corrispondenze 149 massimamente correlate tra loro e con varianza unitaria, bisogna risolvere le due equazioni caratteristiche D 1 1 ND 1 2 N λi k1 = 0 D 1 2 N D 1 1 N λi k 2 = 0 (115) Le soluzioni delle (115) corrispondono agli autovalori e autovettori delle matrici D1 1 ND 1 2 N e D2 1 N D1 1 N Se k 1 k 2, i k 1 autovalori comuni alle due matrici misurano complessivamente la correlazione tra i due gruppi di variabili dicotomiche, ovvero l associazione tra i due fattori Ciascun autovalore λ s = [cov(v s, w s )] 2, con s = 1,, k 1 misura l interdipendenza tra i due gruppi di variabili spiegata dalla s-esima soluzione canonica Inoltre la sua radice quadrata λ s è detta inerzia e misura la variabilità associata a ciascuna dimensione (o asse): il rapporto λ s / k 1 1 s=0 λ s detto frazione di inerzia indica l idoneità della s-esima soluzione a rappresentare l associazione tra i fattori Si noti come il maggiore tra gli autovalori λ 0 abbia sempre valore unitario Infatti considerando a 0 = u k1 e b 0 = u k2 si ottiene v 0 = X (1) a 0 = u n = X (2) b 0 = w 0 (116) In questo caso la correlazione tra v 0 e w 0 (dette coefficienti componenti canoniche banali) è massima e pari a 1 cov(v 0, w 0 ) = λ 0 = 1 (117) Le k 1 soluzioni sono individuate da altrettante coppie di vettori di coefficienti a s e b s che corrispondono agli autovettori normalizzati delle matrici D1 1 ND 1 2 N e D2 1 N D1 1 N associati agli autovalori λ s per s = 0,, k 1 1 Come nell analisi della correlazione canonica ne conseguono le due relazioni di mutua transizione a s = 1 λs D 1 1 Nb s b s = 1 λs D 1 2 N a s (118) ovvero rispettivamente per j = 1,, k 1 e h = 1,, k 2 a sj = 1 k2 n jh λs h=1 n j0 b sh b sh = 1 k1 (119) n jh λs j=1 n 0h a sj

4 150 A Pollice - Statistica Multivariata Inoltre, poiché le diverse componenti canoniche sono tra loro incorrelate, vale per s t ed s, t = 0,, k 1 1 ed in particolare per t = 0 ed s = 1,, k 1 1 v sv t = w sw t = 0 (1110) v su n = v sv 0 = 0 w su n = w sw 0 = 0 (1111) da cui si deduce che le componenti canoniche diverse da quelle banali hanno media nulla Si noti inoltre che k 1 1 s=0 λ s = tr(d 1 1 ND 1 2 N ) = k 1 k 2 j=1 h=1 n 2 jh n j0 n 0h (1112) quindi se N è perfettamente diagonale (caso teorico di massima associazione), allora k 1 = k 2, n jh = 0 per j h, mentre per j = h si ha n jh = n j0 = n 0h In tal caso λ s = 1 per s = 0,, k 1 1 Dall espressione precedente si ricava k 1 1 s=1 k 1 k 2 n 2 jh λ s = 1 = = n j=1 j0 n 0h h=1 [ ] = 1 k 1 k 2 (n jh n j0 n 0h /n) 2 = 1 n n j0 n 0h /n n χ2 (1113) j=1 h=1 dove con χ 2 si è indicato l omonimo indice per la misura dell associazione tra due caratteri qualitativi Tale indice risulta dunque nullo se lo sono tutti gli autovalori associati alle soluzioni non banali 1111 Rappresentazione grafica Si consideri la prima soluzione non banale legata all autovalore λ 1 Il vettore n-dimensionale v 1 = (v 11,, v 1n ) = X (1) a 1 (1114) esprime le n osservazioni in termini della coordinata ottenuta come trasformazione del carattere X 1 Volendo rappresentare la j-esima modalità di X 1 in termini della nuova coordinata v 1, se ne considera la media per gli n j0

5 Cap 11: Analisi delle corrispondenze 151 individui che la posseggono ovvero il centroide della j-esima modalità di X 1 nello spazio della prima componente canonica v 1 (j, 0) = 1 v 1i (1115) n j0 i X 1j Si noti che v 1i è dato dal prodotto della i-esima riga di X (1) per a 1 Se l iesimo individuo è caratterizzato dalla j-esima modalità del primo carattere, allora l i-esima riga di X (1) coincide con il vettore indicatore del j-esimo elemento v 1i = (0,, 0, 1, 0,, 0) a 11 a 1k1 = a 1j (1116) di conseguenza per la (1115), e analogamente per la seconda soluzione legata all autovalore λ 2, si ha che v 1 (j, 0) = a 1j v 2 (j, 0) = a 2j (1117) La j-esima modaltà del primo carattere X 1 ha coordinate (a 1j, a 2j ) sul piano delle prime due componenti canoniche (o coordinate fattoriali) del primo carattere Si vogliano ora rappresentare le modalità del secondo carattere sullo stesso piano Per esprimere la h-esima modalità del carattere X 2 in termini delle coordinate fattoriali del primo carattere, ovvero in termini di a 1 si considerano le seguenti medie ponderate v 1 (0, h) = v 2 (0, h) = P k1 j=1 n jha 1j n 0h P k1 j=1 n jha 2j n 0h (1118) le cui espressioni, tenendo conto delle relazioni di mutua transizione diventano v 1 (0, h) = λ 1 b 1h v 2 (0, h) = λ 2 b 2h (1119) Sul piano fattoriale del primo carattere è dunque possibile rappresentare due serie di punti che corrispondono alle modalità dei due caratteri, in modo da analizzarne le relazioni: i punti riga di coordinate (a 1j, a 2j ) per j = 1,, k 1 e i punti colonna di coordinate ( λ 1 b 1h, λ 2 b 2h ) per h = 1,, k 2

6 152 A Pollice - Statistica Multivariata Analogamente si può considerare il piano fattoriale del secondo carattere, ottenendo i punti riga ( λ 1 a 1j, λ 2 a 2j ) per j = 1,, k 1 e i punti colonna (b 1h, b 2h ) per h = 1,, k 2 Generalmente viene utilizzata una terza rappresentazione che mette sullo stesso piano i due caratteri, considerando i punti riga ( λ 1 a 1j, λ 2 a 2j ) per j = 1,, k 1 e i punti colonna ( λ 1 b 1h, λ 2 b 2h ) per h = 1,, k 2 Poiché per s = 1,, k 1 1 valgono le seguenti relazioni v su n = a sx (1) u n = k 1 j=1 n j0a sj = 0 w su n = b sx (2) u n = k 2 h=1 n 0hb sh = 0 (1120) si ricava facilmente che per s = 1,, k 1 1 vale 1 n k 1 j=1 n j0 λs a sj = 1 n k 2 h=1 n 0h λs b sh = 0 (1121) Dunque per il terzo sistema di coordinate presentato l origine degli assi corrisponde ai centroidi o profili medi dei due caratteri nella rappresentazione fattoriale I punti del grafico che si avvicinano all origine sono quelli i cui profili sono maggiormente somiglianti con quelli medi Analogamente i punti situati in posizione periferica hanno profili che si discostano maggiormente da quelli medi Due modalità del primo carattere aventi profili simili corrispondono a punti riga vicini nella rappresentazione grafica Analogamente per le modalità del secondo carattere Non è possibile dare significato alla prossimità tra un punto riga e un punto colonna, ma piuttosto si può interpretare la posizione di un punto riga rispetto a quella di tutti i punti colonna e viceversa Ciò è possibile grazie alle relazioni d mutua transizione che legano le coordinate di un punto riga a quelle di tutti i punti colonna e viceversa Si badi bene che le analisi delle prossimità tra punti sono valide se lo è la rappresentazione fattoriale e ciò può essere verificato tramite il calcolo della percentuale di inerzia totale spiegata dai primi due assi principali (dalle prime due soluzioni fattoriali) Riguardo all interpretazione del significato degli assi fattoriali si noti che ciascuna modalità dei due caratteri contribuisce alla determinazione di ogni asse in misura proporzionale alla coordinata del punto che la rappresenta sull asse stesso In altri termini quanto più un punto si allontana dall origine nella direzione di un asse, tanto più la modalità che esso rappresenta influisce sull individuazione dell asse stesso

7 Cap 11: Analisi delle corrispondenze Cenni all analisi delle corrispondenze multiple Si disponga ora di p caratteri qualitativi X l con l = 1,, p, ciascuno caratterizzato da k l modalità con p l=1 k l = k Anche in questo caso si può costruire una matrice dati sotto forma disgiuntiva formata da n righe e k colonne X = (X (1),, X (p) ) dalla quale si ricava la cosiddetta matrice di Burt X (1) X (1) X (1) X (l) X (1) X (p) B = X X = X (l) X (1) X (l) X (l) X (l) X (p) = X (p) X (1) X (p) X (l) X (p) X (p) D 1 N 1l N 1p = N 1l D l N lp (1122) N 1p N lp D p Gli elementi della matrice B corrispondono alle frequenze di una tabella di contingenza in cui nella riga e nella colonna madre compaiono le modalità di tutti i p caratteri Lo studio dell associazione tra le k modalità dei p caratteri può dunque avvenire tramite l analisi delle corrispondenze semplici effettuata partendo dalla matrice di Burt piuttosto che dalla matrice N

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali)

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali) RICERCHE DI MERCATO 5.6 Analisi Fattoriale (Componenti Principali) Prof. L. Neri Dip. di Economia Politica Premessa Come evidenziato in precedenza l approccio di segmentazione per omogeneità prevede la

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

L analisi fattoriale

L analisi fattoriale L analisi fattoriale Scopo dell analisi fattoriale e quello di identificare alcune variabili latenti (fattori) in grado di spiegare i legami, le interrelazioni e le dipendenze tra le variabili statistiche

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

NOTA METODOLOGICA. 1. Nota informativa sull interpretazione dei dati statistici. Tutti i contribuenti persone fisiche

NOTA METODOLOGICA. 1. Nota informativa sull interpretazione dei dati statistici. Tutti i contribuenti persone fisiche NOTA METODOLOGICA 1. Nota informativa sull interpretazione dei dati statistici 2. Base dati statistica 3. Tipologie di contribuenti Tutti i contribuenti persone fisiche Concetto di titolare di partita

Dettagli

Valori caratteristici di distribuzioni

Valori caratteristici di distribuzioni Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISICHE UNA ANALISI DELLE ESPERIENZE DI EDUCAZIONE FISICA NELLE SCUOLE: I DATI PACES

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISICHE UNA ANALISI DELLE ESPERIENZE DI EDUCAZIONE FISICA NELLE SCUOLE: I DATI PACES UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISICHE CORSO DI LAUREA TRIENNALE IN STATISTICA E GESTIONE DELLE IMPRESE UNA ANALISI DELLE ESPERIENZE DI EDUCAZIONE FISICA NELLE SCUOLE: I DATI PACES

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Analisi fattoriale 1

Analisi fattoriale 1 Analisi fattoriale Analisi fattoriale: a che serve? L analisi fattoriale permette di rappresentare un set di variabili tramite un insieme più compatto di nuove variate fra loro indipendenti. Da tante variabili

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Analisi dei gruppi (Cluster analysis)

Analisi dei gruppi (Cluster analysis) Capitolo 10 Analisi dei gruppi (Cluster analysis) Partendo da un collettivo multidimensionale, l analisi dei gruppi mira ad assegnarne le unità a categorie non definite a priori, formando dei gruppi di

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

1. Domande mal poste 2. Respons set 3. Curvilinearità degli items 4. Inutilità del dato reperito

1. Domande mal poste 2. Respons set 3. Curvilinearità degli items 4. Inutilità del dato reperito Nota Metodologica IL QUESTIONARIO La stesura del questionario richiede una particolare attenzione nella scelta, nella compilazione e nella successione degli ITEMS che formano lo strumento d indagine. Per

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ 190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ [Questo paragrafo non fa parte del programma di esame] Nei modelli reali le variabili (primali) possono rappresentare, ad esempio,

Dettagli

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2,

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2, Prova scritta di MATEMATICA B1 Vicenza, 17 marzo 008 TEMA 1 1 1 A = 1 0 1. 3 0 1. Stabilire se il seguente sottoinsieme di M(, R): {( ) a + b 1 a S = a, b R}, a + b + 3 a + b è un sottospazio di M(, R).

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI EEMENTI TRIANGOARI E TETRAEDRICI A ATI DIRITTI Nella ricerca di unificazione delle problematiche in vista di una generalizzazione delle procedure di sviluppo di elementi finiti, gioca un ruolo importante

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

8 - Analisi della deformazione

8 - Analisi della deformazione 8 - Analisi della deformazione ü [A.a. - : ultima revisione 6 ottobre ] Esercizio n. Si supponga di voler conoscere sperimentalmente lo stato di deformazione in un punto M di un solido. A tal fine, si

Dettagli

RISPOSTA SISMICA DI STRUTTURE ASIMMETRICHE IN PIANTA: UN METODO SEMPLIFICATO

RISPOSTA SISMICA DI STRUTTURE ASIMMETRICHE IN PIANTA: UN METODO SEMPLIFICATO ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA FACOLTÀ DI INGEGNERIA Dipartimento Ingegneria Civile, Ambientale e dei Materiali CORSO DI LAUREA IN INGEGNERIA CIVILE TESI DI LAUREA in Progetto in Zona Sismica

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

Collana di Fisica e Astronomia

Collana di Fisica e Astronomia Collana di Fisica e Astronomia A cura di: Michele Cini Stefano Forte Massimo Inguscio Guido Montagna Oreste Nicrosini Franco Pacini Luca Peliti Alberto Rotondi Giampaolo Cicogna Metodi Matematici della

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Tecniche di analisi multivariata

Tecniche di analisi multivariata Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Concetti introduttivi

Concetti introduttivi Indice 1 Concetti introduttivi 3 1.1 Studi sperimentali e studi osservazionali..................... 3 1.2 Concetti iniziali: indipendenza fra eventi..................... 6 1.3 Indipendenza fra variabili

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

ANALISI DEI DATI BIOLOGICI

ANALISI DEI DATI BIOLOGICI ANALISI DI DATI BIOLOGICI RAPPRSNTAR L COMUNITA tramite descrizioni grafiche e relazioni tra gli organismi presenti nei vari campioni. DISCRIMINAR dei siti sulla base della loro composizione biologica.

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013)

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013) VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/213) Daniela De Canditiis modulo di CdP di teoria dei segnali - Ingegneria dell informazione - (Sapienza - Latina) VARIABILI ALEATORIE MULTIVARIATE Molto spesso

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

5. Le tecniche di analisi multidimensionale e la segmentazione del mercato

5. Le tecniche di analisi multidimensionale e la segmentazione del mercato 5. Le tecniche di analisi multidimensionale e la segmentazione del mercato In questo capitolo Per definire gli obiettivi aziendali e approntare le relative strategie, ogni azienda deve poter conoscere

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli