Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione"

Transcript

1 Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe

2 Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo è associato u campo magetico B ach esso oscillate. I due campi si propagao mateedo direzioi di oscillazioe perpedicolari l uo all altro e perpedicolari alla direzioe di propagazioe La velocità di propagazioe delle ode elettromagetiche el vuoto è c = m/s. La luce è u oda elettromagetica (così come le ode radio, le microode, i raggi X,.)

3 Origie e atura delle ode elettromagetiche: Le ode e.m. hao ua doppia atura: odulatoria e corpuscolare I alcui casi il comportameto è di tipo odulatorio, ad esempio ei feomei di iterfereza e diffrazioe, metre i altri casi, quado si ha u iterazioe co la materia a cui viee trasferita l eergia dell oda, il comportameto è di tipo corpuscolare. L eergia trasportata dalle ode elettromagetiche è cocetrata i pacchetti detti quati o fotoi. L eergia E dei fotoi è direttamete proporzioale alla frequeza f secodo la relazioe: E h f dove h è la costate di Plack, il cui valore è: h = 6, J s.

4 Lo spettro delle ode elettromagetiche: Raggi gamma: origie ucleare, m Raggi X: prodotti tramite la decelerazioe di elettroi su u bersaglio, m (0 m m) Raggi UV: emissioe dal sole assorbimeto i stratosfera (ozoo), 4x0-7 -6x0-0 m (400 m 0.6 m) Luce visibile: corrispodeza approx. colori: m violetto ; m blu m verde ; m giallo m aracio ; m rosso Raggi IR: emessi dai corpi caldi; 700 m - mm Microode: mm- 30 cm (es. fori) Ode radio: > 30 cm (es. telecomuicazioe)

5 La polarizzazioe: U fascio di luce è ormalmete il risultato della sovrapposizioe di u gra umero di ode emesse dagli atomi o molecole della sorgete di luce. Ne cosegue che il vettore campo elettrico può vibrare i ogi direzioe, mateedosi però sempre perpedicolarmete alla direzioe di propagazioe dell oda. Si dice allora che l oda è o polarizzata. U oda è polarizzata liearmete se il vettore campo elettrico oscilla i ogi istate lugo ua sola direzioe. Il piao formato dalla direzioe del campo elettrico e dalla direzioe di propagazioe è il piao di polarizzazioe

6 La polarizzazioe: La polarizzazioe della luce avviee facedo passare l oda attraverso u polarizzatore, che trasmette solo i compoeti del vettore campo elettrico che soo paralleli al suo asse di trasmissioe. E possibile verificare la direzioe di polarizzazioe e variare l itesità della luce polarizzata utilizzado u aalizzatore. I 0 I I I cos 0 legge di Malus Ioltre visto che il valor medio di cos è pari ad ½, si ha che l itesità della luce iizialmete o polarizzata viee dimezzata quado passa tramite u solo polarizzatore

7 Ottica geometrica Riflessioe, rifrazioe, dispersioe

8 Riflessioe di u oda Raggio di luce che icide su ua superficie: Riflessioe speculare: superficie piaa e liscia Riflessioe diffusa: superficie ruvida : irregolarità delle stesse dimesioi della

9 Riflessioe di u oda Riflessioe speculare: il raggio icidete, il raggio riflesso e la ormale alla superficie di icideza, passate per il puto di icideza, giaccioo su uo stesso piao; l agolo di icideza è uguale all agolo di riflessioe '

10 Rifrazioe di u oda Idice di rifrazioe di u mezzo: c v velocità della luce el velocità della luce el vuoto mezzo il raggio icidete, il raggio rifratto e la ormale alla superficie di separazioe fra i due mezzi, passate per il puto di icideza, giaccioo su uo stesso piao; l agolo di icideza e l agolo di rifrazioe dipedoo dalla velocità della luce ei mezzi attraversati (e quidi dall idice di rifrazioe dei due mezzi) secodo la relazioe: si si v v legge di Sell

11 Rifrazioe di u oda Quado u oda passa da u mezzo ad u altro la sua frequeza o varia. Variao ivece la velocità e la lughezza d oda v v f f v v v v c c L idice di rifrazioe di u qualsiasi mezzo può essere espresso come: mezzo oda el lughezza d vuoto oda el lughezza d ' ' 0

12 Rifrazioe di u oda (esempio) U fascio di luce di lughezza d oda di 550 m che si propaga i aria icide su ua lastra di materiale trasparete. Il fascio icidete forma u agolo di 40 co la ormale ed il raggio rifratto forma u agolo di 6 co la ormale. A) Trovare l idice di rifrazioe del materiale B) Trovare la velocità della luce el materiale C) Calcolare la lughezza d oda della luce el materiale

13 Rifrazioe di u oda (esempio) U fascio di luce di lughezza d oda di 550 m che si propaga i aria icide su ua lastra di materiale trasparete. Il fascio icidete forma u agolo di 40 co la ormale ed il raggio rifratto forma u agolo di 6 co la ormale. A) Trovare l idice di rifrazioe del materiale B) Trovare la velocità della luce el materiale C) Calcolare la lughezza d oda della luce el materiale Idice di rifrazioe del materiale si si si si si si

14 Rifrazioe di u oda (esempio) U fascio di luce di lughezza d oda di 550 m che si propaga i aria icide su ua lastra di materiale trasparete. Il fascio icidete forma u agolo di 40 co la ormale ed il raggio rifratto forma u agolo di 6 co la ormale. A) Trovare l idice di rifrazioe del materiale B) Trovare la velocità della luce el materiale C) Calcolare la lughezza d oda della luce el materiale Velocità della luce el materiale c v velocità della luce el velocità della luce el vuoto mezzo v c m.47 / s m / s

15 Rifrazioe di u oda (esempio) U fascio di luce di lughezza d oda di 550 m che si propaga i aria icide su ua lastra di materiale trasparete. Il fascio icidete forma u agolo di 40 co la ormale ed il raggio rifratto forma u agolo di 6 co la ormale. A) Trovare l idice di rifrazioe del materiale B) Trovare la velocità della luce el materiale C) Calcolare la lughezza d oda della luce el materiale Lughezza d oda della luce el materiale 0 lughezza d' oda el lughezza d' oda el vuoto mezzo m m

16 Riflessioe totale (itera) Si verifica solo quado la luce passa da u mezzo di u dato idice di rifrazioe ad u mezzo co idice di rifrazioe miore di (esempio: acqua-aria) L agolo limite l è l agolo tale per cui l agolo di rifrazioe è pari a 90 : si si 90 l si (vale per < ) l

17 Riflessioe totale (itera): la fibra ottica

18 Riflessioe totale (esempio) Trovare l agolo limite per la superficie acqua-aria se l idice di rifrazioe dell acqua è pari a.33 sil si 90 si l.33 si 0.75 l l 48.8

19 Dispersioe Idice di rifrazioe di u mezzo: c v velocità della luce el vuoto velocità della luce el mezzo v L idice di rifrazioe di u mezzo dipede dalla lughezza d oda della luce che si propaga el mezzo T L agolo di rifrazioe che si ha quado la luce attraversa la superficie di separazioe tra due mezzi dipede dalla lughezza d oda. Per u raggio di luce policromatico (es. luce biaca) co la rifrazioe si può otteere la scomposizioe delle varie compoeti cromatiche

20 Prismi ed arcobaleo si si si si Soo maggiormete rifratti (ossia è miore) i raggi co lughezza d oda miore (per i quali l idice di rifrazioe è maggiore). Quidi la luce viola (~400 m) viee rifratta di più della luce rossa (~ 650 m) quado passa dall aria ad u altro materiale

21 Pricipio di Huyges Assuzioe: modello odulatorio (la luce come u oda e o u fascio di particelle) Costruzioe geometrica per determiare la posizioe di u uovo frote d oda a partire dalla coosceza di u frote d oda precedete Tutti i puti su u dato frote d oda si possoo cosiderare come sorgeti putiformi di ode sferiche elemetari, che si propagao verso l estero co la velocità caratteristica dell oda i quel mezzo. Dopo u certo itervallo di tempo la posizioe del uovo frote d oda è la superficie tagete alle ode elemetari.

TRASMISSIONE IN FIBRA OTTICA

TRASMISSIONE IN FIBRA OTTICA TRASMISSIONE IN FIBRA OTTICA Storia delle comuicazioi ottiche 84 a.c.: caduta di Troia comuicata a Micee (550km di distaza) attraverso ua serie di fuochi allieati 794 d.c.: rete di Chappe collega Parigi

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Ottica geometrica. R. Zei Fisica Applicata alla Biomedicina Slide 1

Ottica geometrica. R. Zei Fisica Applicata alla Biomedicina Slide 1 Ottica geometrica R. Zei Fisica Applicata alla Biomedicia Slide Itroduzioe L ottica geometrica tratta i feomei che possoo essere descritti tramite la propagazioe i liea retta, la riflessioe e la rifrazioe

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

- 1 - L ottica geometrica studia il comportamento dei raggi luminosi. Le leggi che governano il comportamento dei raggi sono 5:

- 1 - L ottica geometrica studia il comportamento dei raggi luminosi. Le leggi che governano il comportamento dei raggi sono 5: - 1-1 CAPITOLO I I questo capitolo cerchiamo di riassumere molto brevemete i pricipali cocetti di ottica geometrica che sarao ecessari el prosieguo di questa dispesa. 1.1 Leggi dell ottica geometrica L

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali Iformatica Grafica per e arti L'esatto coore di u puto suo schermo viee determiato daa combiazioe dee proprieta' dee uci e degi oggetti iumiati. Le proprieta' di rifessioe dea uce da parte degi oggetti

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

MODELLAZIONE DEL SOTTOSUOLO CON LA GEOFISICA APPLICATA ALLE ONDE DI SUPERFICIE

MODELLAZIONE DEL SOTTOSUOLO CON LA GEOFISICA APPLICATA ALLE ONDE DI SUPERFICIE Q U A D E R N I P E R L A P R O G E T T A Z I O N E MODELLAZIONE DEL SOTTOSUOLO CON LA GEOFISICA APPLICATA ALLE ONDE DI SUPERFICIE Teciche SASW, MASW, FTAN, H/V, ReMi, MAM e HVRS di FAUSTINO CETRARO INDICE

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

I 3 addendi nel modello di Lighting di OpenGL. Modello di illuminazione di OpenGL. luce finale = ambiente + riflessione + emissione.

I 3 addendi nel modello di Lighting di OpenGL. Modello di illuminazione di OpenGL. luce finale = ambiente + riflessione + emissione. Modello di illumiazioe di OpeG el resto di questa lezioe vediamo il modello di illumiazioe di OpeG è il modello di lightig storico quello adottato dalla Fixed Pipelie di OpeG eza shader programmati: l

Dettagli

Guide d onda planari dielettriche (Slab)

Guide d onda planari dielettriche (Slab) Guide d oda plaari dielettriche (Slab) La propagazioe si basa, i primo luogo, sulla riflessioe itera totale alle due iterfacce. La regioe itera viee chiamata core metre la regioe che lo circoda viee chiamata

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Capitolo 3 ANALISI DI RETI A MICROONDE. 3.1 Impedenze, tensioni e correnti equivalenti

Capitolo 3 ANALISI DI RETI A MICROONDE. 3.1 Impedenze, tensioni e correnti equivalenti Capitolo 3 ANALISI DI REI A MICROONDE 3. Impedeze, tesioi e correti equivaleti Alle frequeze delle microode la misura di tesioi e correti è difficile (o addirittura impossibile) a meo che o sia dispoibile

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

FISICA DELLE RADIAZIONI IONIZZANTI

FISICA DELLE RADIAZIONI IONIZZANTI UNIVERSITA DEGLI STUDI DI PAVIA DIPARTIMENTO DI FISICA NUCLEARE E TEORICA FISICA DELLE RADIAZIONI IONIZZANTI SAVERIO ALTIERI AA 2013-2014 Testi cosigliati F. H. Attix Itroductio to radiological Physics

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE

c n OTTICA GEOMETRICA RIFLESSIONE E RIFRAZIONE INDICE DI RIFRAZIONE OTTICA GEOMETRICA U oda e.m. si propaga rettilieamete i u mezzo omogeeo ed isotropo co velocità c v = > si chiama idice di rifrazioe e dipede sia dal mezzo sia dalla lughezza d oda della radiazioe RIFLESSIONE

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Ottica della Contattologia I. Ottica delle lac. Differenze ottiche nella clinica della visione

Ottica della Contattologia I. Ottica delle lac. Differenze ottiche nella clinica della visione Ottica della Cotattologia I Ottica delle LAC Ottica delle lac 1.Le differeze ottiche tra lac e occhiali ell ambito della cliica della visioe 2.Le lac dal puto di vista ottico Dr. Fabrizio Zeri zeri@fis.uiroma3.it

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

La dispersione cromatica

La dispersione cromatica Fibre ottiche per mpesazioe di dispersioe cromatica La dispersioe cromatica La velocità di propagazioe degli impulsi i u mezzo state di propagazioe b(w è la velocità di gruppo vg=1/db/dw. elle fibre ottiche

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica.

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica. FOTODIDATTICA CONOSCERE LA LUCE Le caratteristiche fisiche, l analisi dei fenomeni luminosi, la temperatura di colore. Iniziamo in questo fascicolo una nuova serie di articoli che riteniamo possano essere

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S S0 X k, co X k k co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti e ideticamete

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Programma lezione XII

Programma lezione XII Lezioe XII Programma lezioe XII / Ottia la storia Ode di lue o partielle di lue? Riflessioe e rifrazioe Riflessioe totale Dispersioe Lezioe XII Ottia fisia - storia / Sio a tutto il medioeo, teologia,

Dettagli

Sistemi Intelligenti Introduzione all inferenza statistica

Sistemi Intelligenti Introduzione all inferenza statistica Sistemi Itelligeti Itroduzioe all ifereza statistica Alberto Borghese Uiversità degli Studi di Milao Laboratory of Applied Itelliget Systems (AIS-Lab) Dipartimeto di Scieze dell Iformazioe borghese@di.uimi.it

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Fluidi non newtoniani

Fluidi non newtoniani Petea Aa matricola: 9603 Lezioe del 0/04/00 0:30-3:30 ossi Giulia matricola: 0878 Fluidi o ewtoiai INDICE DELLA LEZIONE DEL 0/04/00 AGOMENTO:FLUIDI NON NEWTONIANI Comportameto reologico dei fluidi... -

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Analisi delle Schede di Dimissione Ospedaliera

Analisi delle Schede di Dimissione Ospedaliera Aalisi delle Schede di Dimissioe Ospedaliera ANALISI DELLE SCHEDE DI DIMISSIONE OSPEDALIERA CON DIAGNOSI ALCOL E DROGA CORRELATE Si descrive, per gli ai 2000-2004, il ricorso alle strutture ospedaliere

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

12 SECONDO PRINCIPIO DELLA TERMODINAMICA

12 SECONDO PRINCIPIO DELLA TERMODINAMICA SECONDO PRINCIPIO DELL ERMODINMIC Il primo pricipio della termodiamica stabilisce l equivaleza fra calore scambiato e lavoro meccaico e quidi che il calore assorbito o ceduto da u sistema termodiamico

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

Laboratorio classi quarte Esperienza 1 LSS J.F. Kennedy. Vogliamo studiare come si comporta la luce entrando e uscendo da una mezzaluna di plexiglas.

Laboratorio classi quarte Esperienza 1 LSS J.F. Kennedy. Vogliamo studiare come si comporta la luce entrando e uscendo da una mezzaluna di plexiglas. RIFRAZIONE E DISPERSIONE 1 Esercizio 1 Vogliamo studiare come si comporta la luce etrado e uscedo da ua mezzalua di plexiglas. u La mezzalua deve essere posta sul foglio di carta millimetrata: il lato

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Un modello di interazione tra CPU e dispositivi di I/O

Un modello di interazione tra CPU e dispositivi di I/O Idice lezioe: Richiami e otazioi: Abbiamo visto: sistema moolitico (I + E + O) dividiamo I e O da E, e affidiamo loro ua CPU replichiamo gli I e gli O per parallelizzare sigolarmete gli I e O Parallelizzazioe

Dettagli

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c.

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c. I LEZIONE Il ostro iteto è aalizzare i dettaglio i metodi di cifratura che si soo susseguiti el corso della storia prestado particolare attezioe all impiato matematico che e cosete la realizzazioe Iiziamo

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Presentazione Convenzione Corpo Volontari Garibaldini e Blu Energy Srl per la promozione delle Energie Rinnovabili www.blu-energy.

Presentazione Convenzione Corpo Volontari Garibaldini e Blu Energy Srl per la promozione delle Energie Rinnovabili www.blu-energy. Presetazioe Covezioe Corpo Volotari Garibaldii e Blu Eergy Srl per la promozioe delle Eergie Riovabili Le pricipali caratteristiche del progetto www.blu-eergy.it Diamo il ostro cotributo Blu Eergy e il

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

INTERFACCIA COMUNICAZIONE SERIALE PER ESA ESTRO

INTERFACCIA COMUNICAZIONE SERIALE PER ESA ESTRO Bollettio E708 rev0 7/06/0 INTERFACCIA COMUNICAZIONE SERIALE PER SERIE - CARATTERISTICHE Tesioe di alimetazioe: 90 40vac Frequeza di alimetazioe: 40 70 Hz Assorbimeto massimo: 40W Temperatura di fuzioameto:

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

MOTO UNIFORME NEI CANALI A PELO LIBERO

MOTO UNIFORME NEI CANALI A PELO LIBERO Carlo Gregoretti Idraulica capitolo 8 0 Nov. 08 64 MT UNIFRME NEI CANALI A PEL LIBER 8. Leggi di moto uiforme per caali a sezioi compatte Ua correte i u caale di sezioe costate tede ad assumere u regime

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

INTRODUZIONE ALLE RUOTE DENTATE

INTRODUZIONE ALLE RUOTE DENTATE INTRODUZIONE ALLE RUOTE DENTATE Le ruote detate soo orgai meccaici molto diffusi e utilizzati per trasmettere il moto rotatorio tra alberi i modo da garatire la costaza del rapporto di trasmissioe. La

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

INTRODUZIONE AI DISPOSITIVI ELETTRONICI. Appunti delle prime lezioni del corso di. Elettronica I. Prof. Marco SAMPIETRO.

INTRODUZIONE AI DISPOSITIVI ELETTRONICI. Appunti delle prime lezioni del corso di. Elettronica I. Prof. Marco SAMPIETRO. INTRODUZIONE AI DISPOSITIVI ELETTRONICI Apputi delle prime lezioi del corso di Elettroica I Prof Marco SAMPIETRO Ao 001/0 Politecico di Milao Facoltà di Igegeria INTRODUZIONE ALLA FISICA DEI SEMICONDUTTORI

Dettagli