Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?"

Transcript

1 Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza tra i due fuochi. Fa girare un paletto in modo da percorrere la corda tenendola sempre tesa. La curva che rimane tracciata sul terreno ha la forma che viene chiamata ellisse. Mentre Il paletto scorre lungo la corda rimane costante la somma, uguale alla lunghezza della corda, delle sue distanze dai fuochi. La forma dell ellisse, a parità di lunghezza della corda, dipende dalla distanza focale. Ad esempio se i due fuochi fossero pianati uno a fianco all altro (praticamente coincidenti), si avrebbe una circonferenza che, quindi, è un caso particolare di ellisse. A mano a mano che la distanza focale aumenta la circonferenza si schiaccia e il suo schiacciamento, detto eccentricità, sarà massimo (l ellisse degenera in un segmento) quando la distanza focale diviene uguale alla lunghezza della corda. L ellisse, come la circonferenza, la parabola e l iperbole è una conica ottenuta intersecando un cono indefinito a due falde con un piano Prof. Giuseppe Frassanito pag. 1

2 Definizione Si chiama ellisse il luogo geometrico dei punti del piano per i quali è costante la somma delle distanze da due punti fissi detti fuochi. Equazione dell ellisse Consideriamo i due fuochi F 1 e F posti a una distanza pari a c. Indichiamo con a la somma delle distanze dei punti dell ellisse dai fuochi. L equazione dell ellisse dipende dal sistema di riferimento. Determiniamo l equazione canonica dell ellisse, cioè l equazione rispetto al sistema di riferimento che ha l asse x passante per i due fuochi e l asse y passante per il punto medio del segmento F 1F. P(x,y) F 1(-c,0) F (c; 0) F 1 F = c PF 1 + PF = a (1) () Poiché in un triangolo un lato è minore della somma degli altri due, considerato il triangolo PF 1F si ha a > c a > c a > c a c > 0 Possiamo porre b = a c (3) Determiniamo le distanze PF 1 = (x + c) + y Sostituiamo tali distanze nella () PF = (x c) + y (x + c) + y + (x c) + y = a Prof. Giuseppe Frassanito pag.

3 Otteniamo l equazione canonica dell ellisse che cercheremo di scrivere in modo più semplice in modo che non contenga radicali. Trasportiamo un radicale al secondo membro (x + c) + y = a (x c) + y Poiché entrambi i membri sono positivi possiamo elevarli al quadrato [ (x + c) + y ] = [a (x c) + y ] (x + c) + y = 4a + (x c) + y 4a (x c) + y Semplificando abbiamo + c + cx + y = 4a + + c cx + y 4a (x c) + y 4cx = 4a 4a (x c) + y a (x c) + y = a cx Eleviamo nuovamente entrambi i termini al quadrato e ordiniamo a [(x c) + y ] = [a cx] a [ + c cx + y ] = a 4 + c a cx a + a c a cx + a y = a 4 + c a cx a c + a y = a 4 a c (a c ) + a y = a (a c ) Ricordando che abbiamo b = a c b + a y = a b Dividendo tutto per a b otteniamo l equazione canonica o normale dell ellisse a + y Prof. Giuseppe Frassanito pag. 3 = 1 b

4 Grafico dell ellisse Osservando l equazione dell ellisse a + y = 1 b notiamo che le incognite compaiono elevate al quadrato. Questo vuol dire che il suo grafico è simmetrico rispetto agli assi cartesiani e rispetto all origine. Le intersezioni con l asse delle x sono e con l asse delle y A ( a; 0) e A(a; 0) B ( b; 0) e B(b; 0) I punti A, A, B, B sono detti vertici dell ellisse. I segmenti AA' e BB' sono detti assi dell'ellisse e poiché a > b AA' è detto asse maggiore e BB' asse minore. Il grafico dell ellisse si trova tutto all interno del rettangolo i cui lati sono paralleli agli assi e passano per i quattro vertici. Per dimostrare tale affermazione ricaviamoci dall equazione canonica y a + y y x = 1 = 1 b b a y = b (1 x a ) y = b a (a ) Affinché gli ultimi due membri risultino uguali deve risultare a > 0 a x a Con ragionamenti analoghi ricavando si ottiene che anche Prof. Giuseppe Frassanito pag. 4

5 b y b Considerando il triangolo rettangolo OCF e applicando il teorema di Pitagora, otteniamo la relazione (3) vista in precedenza b = a c Da tale relazione possiamo ricavare le coordinate dei fuochi b = a c c = a b c = ± a b F 1 ( a b ; 0) F ( a b ; 0) Eccentricità L eccentricità, in base a quanto affermato all inizio, indica la forma più o meno schiacciata dell ellisse. Essa è indicata con la lettera e ed è data dal seguente rapporto e = c a = a b a Poiché c < a si ha 0 < e < 1 Se e = 0 c = 0 c = 0 a i fuochi coincidono con l origine e l ellisse diventa una circonferenza. Prof. Giuseppe Frassanito pag. 5

6 All aumentare dell eccentricità l ellisse risulta più schiacciata sull asse maggiore. Nel caso limite e = 1 c = 1 c = a a si riduce all asse maggiore e l ellisse diventa degenere. Ellisse con fuochi sull asse y Se i fuochi dell ellisse sono sull asse delle y il procedimento per determinare l equazione è analogo a quello seguito per l ellisse con i fuochi sull asse x. In questo caso si indica con b la somma costante delle distanze dei punti dell ellisse dai fuochi PF 1 + PF = b Con calcoli analoghi ai precedenti si ottiene la stessa equazione Prof. Giuseppe Frassanito pag. 6

7 a + y = 1 b I fuochi hanno coordinate F 1 (0; b a ) F (0; b a ) L eccentricità, essendo b la lunghezza dell asse maggiore sarà e = c b = b a b Esempio Determinare le coordinate dei vertici e dei fuochi dell ellisse di equazione: 4 + 5y = 100 Scriviamo l equazione canonica dividendo tutto per y 4 = 1 a = 5, b = ; c = 5 4 = 1 Coordinate dei vertici e dei fuochi (±5; 0), (±0; ), F(± 1; 0) Prof. Giuseppe Frassanito pag. 7

8 Posizione di una retta rispetto ad un ellisse Una retta rispetto ad un ellisse può essere Esterna, cioè non ha punti di intersezione con l ellisse Tangente, cioè ha in comune con l ellisse solo il punto di tangenza Secante, cioè i punti di intersezione con l ellisse sono due Per determinare le coordinate dei punti di intersezione tra l ellisse e la retta è necessario risolvere il sistema formato dall equazione della retta e dall equazione dell ellisse. Se la retta è esterna il delta risulterà negativo e il sistema non avrà soluzioni. Se è tangente il delta sarà uguale a zero e il sistema ammetterà due soluzioni reali e coincidenti. Se la retta è secante il delta risulterà maggiore di zero e il sistema ammetterà due soluzioni reali e coincidenti. Esempio Studiare la posizione della retta di equazione x + y 6 = 0 rispetto all ellisse + y 18 = 0 Risolviamo il sistema x + y 6 = 0 + y 18 = 0 x = 6 y + y 18 = 0 x = 6 y (6 y) + y 18 = 0 x = 6 y y 4y + y 18 = 0 x = 6 y y 4y + 3 = 0 Prof. Giuseppe Frassanito pag. 8

9 Il discriminante dell equazione di grado è positivo perciò la retta è secante e il sistema ammette due soluzioni reali e distinte A(4; 1) e B(0; 3) Le equazioni delle tangenti ad un ellisse Le rette per un punto e tangenti all ellisse possono essere due se il punto è esterno una se il punto appartiene all ellisse nessuna se il punto è interno all ellisse. Per determinare le equazioni delle eventuali rette tangenti condotte da un punto P(x 0; y 0) all ellisse si deve annullare il delta dell equazione risolvente il sistema tra l equazione del fascio di rette passante per P e l equazione dell ellisse. Prof. Giuseppe Frassanito pag. 9

10 Esempio Determinare le equazioni delle rette tangenti condotte dal punto P(6; -) di equazione x 1 + y 4 = 1 Scriviamo l equazione del fascio di rette ci centro P: y + = m(x 6) y = mx 6m Scriviamo il sistema formato dalle equazioni del fascio e dell ellisse y = mx 6m 1 + y 4 = 1 Sostituiamo la y dall equazione della retta nell equazione dell ellisse 1 y = mx 6m + (mx 6m ) 4 = 1 y = mx 6m 1 + m + 36m + 4 1m x 4mx + 4m = 1 4 y = mx 6m + 3m + 108m m x 1mx + 7m = 1 y = mx 6m (1 + 3m ) 1(3m + m)x + 108m + 7m = 0 Imponiamo la condizione di tangenza 4 = 0 36(3m + m) (1 + 3m )(108m + 7m) = 0 36(9m 4 + m + 6m 3 ) (108m + 7m + 34m m 3 ) = 0 34m m + 16m 3 108m 7m 34m 4 16m 3 = 0 Prof. Giuseppe Frassanito pag. 10

11 7m 7m = 0 m + m = 0 m = 0 ; m = 1 Sostituiamo i valori di m trovati nel fascio di rette e troviamo le equazioni delle due tangenti t 1 : y =, t : y = x + 4 Formula dello sdoppiamento Per determinare l equazione della retta tangente all ellisse in un suo punto P(x 0; y 0) si può utilizzare la formula dello sdoppiamento che si ottiene dalla forma canonica dell ellisse sostituendo il termine con xx 0 e y con yy 0. Esempio xx 0 a + yy 0 b = 1 Determinare l equazione della retta tangente all ellisse di equazione x + y = 1 nel suo punto di 9 6 coordinate P( 3; ). Applicando la formula dello sdoppiamento otteniamo 3x 9 + y 6 = 1 y = 3 3 x + 3 Prof. Giuseppe Frassanito pag. 11

12 Come determinare l equazione di un ellisse Per determinare l equazione dell ellisse sono sufficienti due condizioni con le quali impostare un sistema di due equazioni nelle incognite a e b. Alcune possibili condizioni sono: Le lunghezze dei semiassi Coordinate di un fuoco e di un vertice Le coordinate di un punto e quelle del fuoco Le coordinate di un punto e l eccentricità Le coordinate di due punti Coordinate del fuoco e l eccentricità Esempio 1 Determinare l equazione dell ellisse con i fuochi sull asse x e avente a = 4 e b = y = 1 Esempio Determinare l equazione dell ellisse con i fuochi sull asse x avente a = e c = 1. Sapendo che b = a c b = 4 1 b = 3 L equazione dell ellisse sarà Esempio y 3 = 1 Determina l equazione dell ellisse con fuochi sull asse delle y avente vertice in (0; 4) ed eccentricità 7 4. Sappiamo che b = 4 b = 4 c b = 7 c 4 4 = 7 b = 4 c = 7 4 Prof. Giuseppe Frassanito pag. 1

13 a = b c a = 16 7 a = 9 L ellisse avrà equazione Esempio y 16 = 1 Scrivere le equazioni delle ellissi, riferite al centro e ai propri assi, sapendo che a = 4 3 ed e = 1 3 Se i fuochi si trovano sull asse delle x abbiamo: e = 1 3 c a = 1 3 c = a 1 3 c = c = 4 9 b = a c b = b = b = L ellisse ha equazione y = 1 9x y 18 = 1 81 Se i fuochi si trovano sull asse delle y abbiamo: e = 1 3 c b = 1 3 c = b 1 3 c = b 3 c = b a b 9 = b b = 16 b = L ellisse ha equazione + y 16 = 1 9x 16 + y = 1 9 Prof. Giuseppe Frassanito pag. 13

14 Esempio 5 Determina l equazione dell ellisse passante per i punti P(1; ) e Q( 3 ; 3 ). Imponiamo il passaggio per P e Q dell ellisse sostituendo le rispettive coordinate nell equazione canonica dell ellisse 1 a + 4 b = 1 3 4a + 9 b = 1 Per risolvere in un modo più semplice il sistema poniamo Otteniamo 1 a = m e 1 b = n m + 4n = m + 9 n = 1 m = 1 4n 3m + 18n = 4 m = 1 4n 3(1 4n) + 18n = 4 m = 1 4n 3 1n + 18n = 4 m = 1 4n 6n = 1 Equazione ellisse m = 1 3 n = a = b = y 6 = 1 a = 3 b = 6 Prof. Giuseppe Frassanito pag. 14

15 Esempio 6 Data l equazione y k k = 1 Determinare i valori da dare al parametro k affinché rappresenti un ellisse con i fuochi sull asse delle x. L equazione data è l equazione canonica di un ellisse con i fuochi sull asse delle x se Risolviamo il sistema a = k + > 0 b = 3 k > 0 k + > 3 k Costituito dalle tre disequazioni k + < 0 3 k > 0 k + > 3 k k < k < 3 k > 1 1 < k < 3 L ellisse traslata Se trasliamo l ellisse di un vettore v (x 0 ; y 0 ) otteniamo ancora un ellisse ma con una equazione diversa Esaminando il grafico sopra riportato, possiamo vedere che le coordinate di un generico punto P nei due sistemi di riferimento Oxy ed O XY sono legate tra loro dalle seguenti equazioni di trasformazione: x = X + x 0 y = Y + y 0 X = x x 0 Y = y y 0 Prof. Giuseppe Frassanito pag. 15

16 Nel sistema di riferimento traslato O XY avente l origine in O, l equazione dell ellisse è evidentemente: X a + Y = 1 b Sostituendo X con (x x 0) ed Y con (y y 0) nell equazione dell ellisse, possiamo scrivere l equazione dell ellisse nel sistema di riferimento Oxy: (x x 0 ) a + (y y 0) b = 1 (1) dove a e b sono le misure dei semiassi. Se a > b i fuochi F 1 e F, appartenenti alla retta di equazione y = y 0, hanno coordinate F 1 (x 0 c; y 0 ) F (x 0 + c; y 0 ) Se invece a < b i fuochi F 1 e F appartengono alla retta di equazione x = x 0 ed hanno coordinate F 1 (x 0 ; y 0 c) F (x 0 ; y 0 + c) Svolgendo i calcoli della (1) abbiamo x 0 x + x 0 a + y y 0 y + y 0 b = 1 b ( x 0 x + x 0 ) + a (y y 0 y + y 0 ) = a b b b x 0 x + b x 0 + a y a y 0 y + a y 0 = a b Posto b b x 0 x + b x 0 + a y a y 0 y + a y 0 a b = 0 m = b, n = a, p = b x 0, q = a y 0, r = b x 0 + a y 0 a b L equazione diventa m + ny + px + qy + r = 0 Prof. Giuseppe Frassanito pag. 16

17 Nel caso in cui m = n l equazione diventa quella di una circonferenza. La circonferenza è un caso particolare di ellisse e precisamente è una ellisse con eccentricità uguale a zero. Dalle seguenti relazioni si possono ricavare le coordinate del centro dell ellisse (x 0 ; y 0 ) e le equazioni degli assi di simmetria m = b, n = a, p = b x 0, q = a y 0 x 0 = p m, y 0 = q n Coordinate del centro dell ellisse O ( p m, q n ) Con assi di simmetria di equazioni x = p m, y = q n Esempio Rappresentare l ellisse di equazione + 4y 6x 8y 3 = 0 Le coordinate del centro dell ellisse e degli assi di simmetria sono x 0 = 3, y 0 = 1 coordinate centro di simmetria x = 3, y = 1 equazioni assi di simmetria Prof. Giuseppe Frassanito pag. 17

18 Calcoliamo le coordinate dei vertici A e A x + 4y 6x 8y 3 = 0 y = 1 x 1 = 1 y = 1 = 7 y = 1 A(7; 1), A ( 1; 1) Calcoliamo le coordinate dei vertici B e B x + 4y 6x 8y 3 = 0 x = 3 y 1 = 1 x = 3 y = 3 x = 3 B(3; 1), B (3; 3) Tali coordinate si sarebbero potute ricavare ricavando l equazione canonica dell ellisse + y 6x 8y 3 = 0 x = X + 3 τ y = Y + 1 (X + 3) + 4(Y + 1) 6(X + 3) 8(Y + 1) 3 = 0 x X+3 y Y+1 X + 6X Y + 8Y + 4 6X 18 8Y 8 3 = 0 X + 4Y = 16 Prof. Giuseppe Frassanito pag. 18

19 X 16 + Y 4 = 1 A ( 4; 0) A(4; 0) B ( ; 0) B(; 0) Applicando le formule x = X + x 0 x = X + 3 y = Y + y 0 y = Y + 1 otteniamo A ( 1; 1) A(7; 1) B (3; 3) B(3; 1) Le coordinate del fuoco sono F 1 (x 0 c; y 0 ) F (x 0 + c; y 0 ) F 1 (3 3; 1) F (3 + 3; 1) Prof. Giuseppe Frassanito pag. 19

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012 ESERCIZI PER LE VACANZE CLASSE ^A anno scolastico 011-01 PROBLEMI SULLA RETTA: 1. Scrivi l equazione della retta passante per i punti A(-;-) e B(6;10). Determina la distanza del punto C(-1;) da tale retta.

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

L iperbole: problemi ed equazioni. Bruna Cavallaro, Treccani Scuola

L iperbole: problemi ed equazioni. Bruna Cavallaro, Treccani Scuola L iperbole: problemi ed equazioni 1 Bruna Cavallaro, Treccani Scuola Tutto quello che sappiamo sull equazione cartesiana dell iperbole con centro O e fuochi sull asse x Asintoti c > a a, b, c sono legati

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI DOCENTE PROF. CLASSE MATEMATICA SANDRO CADDEO V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 OBIETTIVI. Gli obiettivi generali ed

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

I.T.G. <> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE

I.T.G. <<G.C.Gloriosi>> Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO RELAZIONE I.T.G. Battipaglia (SA) PROGRAMMAZIONE DI MATEMATICA CORSO SERALE SIRIO Prof. Lucia D Aniello, CLASSI 3 A, 4 A, 5 A GEOMETRI- SIRIO RELAZIONE Premesse La programmazione è stata redatta

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015. Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s. 2014-2015. Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: MATEMATICA Classe: 3M Contratto formativo 1. Analisi della classe Una prova d ingresso svolta all inizio

Dettagli

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998 Anno Accademico 1997/1998 MATEMATICA anno 1997 1998 n. 69 L'espressione (4 + 2x 12y) / 2 si può ridurre a: A) 2 + 2 (x + 6y) B) 4 + y + 6x C) 2 + x + 6y D) 4 + x + 6y E) 2 + 2x + 6y MATEMATICA anno 1997

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Funzioni a 2 variabili

Funzioni a 2 variabili Funzioni a 2 variabili z = f(x, y) Relazione che associa ad ogni coppia di valori x,y (variabili indipendenti) uno ed un solo valore di z (variabile dipendente). Esempi: z = x 2y + 4 z = x 2 y 2 2x z =

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

, 2 e si vede che ci sono coppie di punti che danno lo stesso valore, a causa della radice quadrata.

, 2 e si vede che ci sono coppie di punti che danno lo stesso valore, a causa della radice quadrata. 2 LEZIONE 2 Esercizio 2.1. Stabilire se le sequenti funzioni sono iniettive (a) 1+4x x 2. Cercando di ottenere l inversa si ha che y =1+4x x 2 da cui x = 4 ± 16 4(y 1), 2 e si vede che ci sono coppie di

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI Indice 1 La Geometria analitica: la retta 1.1 Introduzione......................................... 1. Il piano cartesiano.....................................

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI. IV SEZ. B T.S.R.(Sala) ANNO SCOLASTICO 2013/2014

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI. IV SEZ. B T.S.R.(Sala) ANNO SCOLASTICO 2013/2014 I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI MATEMATICA DOCENTE PROF. SANDRO CADDEO CLASSE IV SEZ. B T.S.R.(Sala) ANNO SCOLASTICO 2013/2014 Competenze Il C.d.C. ha programmato

Dettagli

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA Una Geometria non può essere più vera di un altra; può essere solamente più comoda. Ora la Geometria Euclidea è e resterà più comoda H. Poincaré

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 004 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano

Dettagli

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Simulazione di prova d Esame di Stato

Simulazione di prova d Esame di Stato 1 Simulazione di prova d Esame di Stato Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario Nome Cognome Classe Data / / Problema 1 Sia y = f(x) una funzione reale di variabile

Dettagli

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

Raccolta Temi d'esame - Corso di Ordinamento

Raccolta Temi d'esame - Corso di Ordinamento ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinaria Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Programmazione del dipartimento di MATEMATICA per il quinquennio

Programmazione del dipartimento di MATEMATICA per il quinquennio IPIA C. CORRENTI Programmazione del dipartimento di MATEMATICA per il quinquennio FINALITA DELL INSEGNAMENTO DELLA MATEMATICA Promuovere le facoltà intuitive e logiche Educare ai processi di astrazione

Dettagli

LICEO SCIENTIFICO STATALE G. Galilei a. s. 2014/15 PROGRAMMA SVOLTO DI FISICA

LICEO SCIENTIFICO STATALE G. Galilei a. s. 2014/15 PROGRAMMA SVOLTO DI FISICA FISICA Classi: I B, I C, I E LA MISURA E GLI ERRORI Proporzioni. Percentuali. Formule e formule inverse. La Fisica e le leggi della natura. Il metodo sperimentale. Le grandezze fisiche. Misure dirette

Dettagli

L'EQUILIBRIO DEI FLUIDI

L'EQUILIBRIO DEI FLUIDI Anno scolastico 2013/2014 Prof.ssa PACINI PAOLA Classi 2B-2E Programma di FISICA (2 PAGINE) L'EQUILIBRIO DEI FLUIDI Introduzione alla statica dei fluidi: definizione e proprietà dei fluidi. Definizione

Dettagli

Corso di. Matematica Generale. - Schema delle lezioni -

Corso di. Matematica Generale. - Schema delle lezioni - Corso di Matematica Generale - Schema delle lezioni - Università degli Studi di Udine - Sede di Pordenone Facoltà di Economia Appunti del corso di Matematica Generale Luciano Battaia Versione del febbraio

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli