Trasformazioni Logaritmiche

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trasformazioni Logaritmiche"

Transcript

1 Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log α (f(x)) = log α (f(α log α(x) )) Y = log α (f(α X )). Se log α (f(α X )) è più semplice di f(x)!!!

2 Trasformazioni Logaritmiche Data la funzione potenza f(x) = K x b, si ha log α (f(α X )) = log α (K) + log α (α Xb ) = log α (K) + bx funzione lineare!!

3 Trasformazioni Logaritmiche Data la funzione potenza y = K x b, passando ai logaritmi decimali e utilizzando le proprietà dei logaritmi, si ottiene log 0 y = log 0 (K x b ) log 0 y = log 0 K + b log 0 x Ponendo X = log 0 x e Y = log 0 y, si ha Y = log 0 K + b X, che è l equazione di una retta y = mx + q con coefficiente angolare m = b e intercetta q = log 0 K.

4 Trasformazioni Semi-Logaritmiche Una funzione y = f(x) può essere rappresentata in scala semi-logaritmica ponendo Questa volta y = f(x) diventa X = x, Y = log α y. Y = log α (y) = log α (f(x)) = log α (f(x)).

5 Trasformazioni Semi-Logaritmiche Se f(x) = Ka x si ha log α (f(x)) = log α (K) + X log α (a)

6 Trasformazioni SemiLogaritmiche Data la funzione esponenziale y = K a x, passando ai logaritmi decimali e utilizzando le proprietà dei logaritmi, si ottiene log 0 y = log 0 (K a x ) log 0 y = log 0 K + x log 0 a Ponendo X = x e Y = log 0 y, si ha Y = log 0 K + X log 0 a, che è l equazione di una retta y = mx + q con coefficiente angolare m = log 0 a e intercetta q = log 0 K.

7 Esempio Non è semplice capire quale delle due funzioni sia polinomiale e quale esponenziale.

8 Fattibile sapendo che f (x) = e 0.2x, f 2 (x) = x 2

9 Esempio Ecco come appare lo stesso grafico in scala semi-logaritmica!! Si riconosce chiaramente che una funzione è lineare e l altra no!

10 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di ascissa 0, 0 2, 0 3,... nella direzione negativa si rappresentano, a distanze uguali fra di loro, i punti di ascissa 0, 0 2, 0 3,... i valori intermedi tra una potenza di 0 e la successiva (ad esempio, 2, 3,..., 9) sono posizionati in corrispondenza dei valori dei rispettivi logaritmi decimali Applicazioni: rappresentare misure positive con ordini di grandezza molto diversi fra loro linearizzare funzioni esponenziali y = K a x (scale semilogaritmiche) linearizzare funzioni potenza y = A x b (scale logaritmiche)

11 Carta Logaritmica Carta Logaritmica: scala logaritmica sull asse delle ascisse X e scala logaritmica sull asse delle ordinate Y Trasformazione di variabili: X = log 0 x Y = log 0 y

12 Carta Semilogaritmica Carta Semilogaritmica: scala lineare sull asse delle ascisse X e scala logaritmica sull asse delle ordinate Y (o viceversa) Trasformazione di variabili: X = x Y = log 0 y

13 Carta Logaritmica Esempio 00 y = x 2 y = x y = x

14 Carta SemiLogaritmica Esempio ( x y = ) ( log y = log(0.000) + x log 2) Y = 4 X log log

15 Esercizi Esercizio. (a) In un grafico con scala semilogaritmica è rappresentata la retta di equazione Y = log (log 0 3)X. Trovare il legame funzionale tra x e y, dove X = x e Y = log 0 y. (b) Trovare il ( coefficiente ) angolare della retta che rappresenta, su tale scala, la x funzione y =. Dire se tale coefficiente angolare è positivo o negativo. 3 Soluzione: (a) (b) Sostituendo le relazioni X = x e Y = log 0 y nell equazione della retta, si ha: log 0 y = log x log 0 3 = log 0 3 x log 0 2 = log 0 3 x da cui y = 3x 2. Prendendo i logaritmi di entrambi i membri si ha: ( x log 0 y = log 0 = x log 0, da cui Y = 3) 3 quindi m = log 0 3 < 0. [ log 0 ( 3 2 )] x

16 Esercizi Esercizio 2. In un grafico con scala logaritmica (scala logaritmica sia sull asse delle ascisse che sull asse delle ordinate) (a) è rappresentata la retta di equazione Y = 3X+5. Trovare il legame funzionale tra x e y, dove X = log 0 x e Y = log 0 y ; (b) scrivere l equazione della retta che rappresenta su tale scala la funzione y = ( 2x) 3. Soluzione: (a) Sostituiamo le relazioni X = log 0 x e Y = log 0 y nell equazione della retta. Otteniamo log 0 y = 3 log 0 x + 5, da cui y = 0 3 log x+5 0 = 0 5 (0 log x 0 ) 3 = , cioè y =. x3 x 3 (b) Prendendo i logaritmi di entrambi i membri si ha: log 0 y = log 0 (2x) 3 2 = 3 2 log 0 2x, quindi la retta è Y = 3 2 X log 0 2.

17 Esercizi Esercizio 3. (a) In un grafico in scala semilogaritmica è rappresentata la retta di equazione Y = log (log 0 3)X, dove X = x e Y = log 0 y. Trovare il corrispondente legame funzionale tra x e y. (b) Rispondere alla stessa domanda nel caso che sia assegnata su carta logaritmica la retta di equazione Y = log X, dove X = log 0 x e Y = log 0 y. Soluzione: (a) log 0 y = log x log 0 3 = log 0 (2 3 x ), da cui y = 2 3 x. (b) log 0 y = log log 0 x = log 0 x 2 5, da cui y = x2 5.

Scale Logaritmiche SCALA LOGARITMICA:

Scale Logaritmiche SCALA LOGARITMICA: Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad es. asse x) si rappresenta il punto di ascissa 1 = 10 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Correzione secondo compitino, testo B

Correzione secondo compitino, testo B Correzione secondo compitino, testo B 7 aprile 2010 1 Parte 1 Esercizio 1.1. Tra le funzioni del vostro bestiario, le funzioni che più hanno un comportamento simile a quello cercato sono le funzioni esponenziali

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO Logaritmo C. Enrico F. Bonaldi LOGARITMO Premessa Consideriamo che si sappia risolvere il problema: dati due numeri reali a > 0 e n qualunque (intero, razionale, reale e > = < 0), trovare il numero reale

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

EQUAZIONI CON PARAMETRO

EQUAZIONI CON PARAMETRO Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 4

Laboratorio di Matematica Computazionale A.A Lab. 4 Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 4 Complementi di Grafica 2D: Sottofinestre In Matlab si possono disegnare più grafici nella stessa finestra, suddividendola in sottofinestre

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

Microeconomia - Problem set 4 - soluzione

Microeconomia - Problem set 4 - soluzione Microeconomia - Problem set 4 - soluzione (Prof Paolo Giordani - TA: Pierluigi Murro) 2 Maggio 2015 Esercizio 1 Calcolare i prodotti marginali di ciascun fattore produttivo (P M 1, P M 2 ) e il saggio

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI 1. LE EQUAZIONI DI UNA TRASFORMAZIONE GEOMETRICA DEFINIZIONE Una trasformazione geometrica

Dettagli

a rappresenta l intercetta o termine noto della retta, ossia il valore della y quando x = 0.

a rappresenta l intercetta o termine noto della retta, ossia il valore della y quando x = 0. Esercitazioni sulla prima parte delle lezioni di Micro Richiamo di Analisi Matematica La forma funzionale più semplice è la retta, la quale può essere genericamente descritta dalla seguente relazione:

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA Conoscenze (tutti)

ELEMENTI DI GEOMETRIA ANALITICA Conoscenze (tutti) ELEMENTI DI GEMETRIA ANALITICA Conoscenze (tutti) 1. Completa. a. La formula matematica che mette in relazione il valore della x con il corrispondente valore della y si chiama... b. Le equazioni di primo

Dettagli

Compito A

Compito A Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente).

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Risolvere SOLO gli esercizi relativi agli argomenti svolti per OGNI sezione controllare sul PROPRIO programma.

Risolvere SOLO gli esercizi relativi agli argomenti svolti per OGNI sezione controllare sul PROPRIO programma. ESERCIZI di matematica da eseguire durante le vacanze Classe III per i consigliati: eseguire parte o tutti gli esercizi a seconda delle proprie esigenze di ripasso senza obbligo di consegna per chi è obbligato:

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Una funzione (numerica) é una applicazione definita su un insieme numerico a valori in un insieme numerico. Ovvero, la differenza tra il termine

Dettagli

Istituto L. Einaudi Montebelluna Elaborato di Fisica dicembre 2010. Grafico della retta e rappresentazione di fenomeni

Istituto L. Einaudi Montebelluna Elaborato di Fisica dicembre 2010. Grafico della retta e rappresentazione di fenomeni Grafico della retta e rappresentazione di fenomeni Soluzioni degli esercizi di dicembre 00 Nota. In ogni esercizio: rappresentare graficamente i fenomeni individuati; eseguire tutti i passaggi matematici

Dettagli

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

la velocità degli uccelli è di circa (264:60= 4.4) m/s) QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

Funzionamento degli Strumenti di Misura

Funzionamento degli Strumenti di Misura Strumenti di Misura Le misure in fisica si ottengono attraverso gli strumenti di misura, dispositivi che possono essere sia molto semplici (come un righello) sia molto complessi come i rivelatori attualmente

Dettagli

4.11 Massimi e minimi relativi per funzioni di più variabili

4.11 Massimi e minimi relativi per funzioni di più variabili 5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

Elementi di analisi matematica

Elementi di analisi matematica Elementi di analisi matematica Microeconomia Vincenzo Merella Corso di Laurea in Economia e Gestione Aziendale Microeconomia (EGA) Vincenzo Merella Elementi analisi matematica 1 / 21 La retta: de nizione

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Premessa allo studio dell equazione di una retta del piano

Premessa allo studio dell equazione di una retta del piano Premessa allo studio dell equazione di una retta del piano Angolo di pendenza di una retta Sia fissato un riferimento monometrico ortogonale nel piano e con esso un verso di rotazione. Allora angolo di

Dettagli

Laboratorio 2 Grafici di funzione in Scilab Metodo di Bisezione

Laboratorio 2 Grafici di funzione in Scilab Metodo di Bisezione Laboratorio Grafici di funzione in Scilab Metodo di Bisezione Introduciamo i grafici di funzione in Scilab, attraverso un semplice esercizio. Esercizio Grafico di funzioni.. Definire le seguenti variabili

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate)

FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) Copyright SDA Bocconi, Milano La retta Una retta può essere espressa secondo due formulazioni: a. Forma esplicita b. Forma

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014 SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 214 1. Per determinare f() e f(k), applichiamo il teorema fondamentale del calcolo integrale, che si può applicare essendo f continua per ipotesi: g() = f(t)dt

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI)

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) D1 E' dato il fascio 2x+4y +k(8x+5y 6)=0 trovare le coordinate del centro... Risposta. Le rette base del fascio sono r1 : 2x+4y-=0 r2 : 8x+5y-6=0

Dettagli

Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo

Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 PROBLEMA 1

CALENDARIO BOREALE 1 EUROPA 2015 PROBLEMA 1 www.matefilia.it Indirizzi: LI2, EA2 SCIENTIFICO; LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 1 EUROPA 21 PROBLEMA 1 Sei il responsabile del controllo della navigazione della nave indicata

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Esercizi Matematica 3

Esercizi Matematica 3 Esercizi Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [1/13] Introduzione Gli esercizi presentati in questo volume, seguono la stessa struttura capitolo, sezione,

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli