Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss"

Transcript

1 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da una massa sfeica omogenea è identico a quello che si avebbe se tutta la massa fosse concentata nel cento. A tale scopo dimosteemo il teoema di Gauss (in una sua vesione elementae). Definiamo anzitutto in R 2 il concetto di segmento oientato l = ln dove n è il vettoe nomale (uno dei due) al segmento e l è la misua della lunghezza del segmento. Si definisce flusso di un vettoe v attaveso il segmento oientato l la quantità φ = v l. (1) Una popietà impotante del flusso è la lineaità ispetto alla somma di vettoi: il flusso di una somma di vettoi è uguale alla somma dei flussi (lo si dimosti pe esecizio utilizzando la distibutività del podotto scalae ispetto alle somme). Consideiamo oa il campo di vettoi (campo di Gauss in R 2 ) definito da v = (2) 2 e calcoliamo il suo flusso attaveso il geneico segmento oientato φ = l 2 n. (3)

2 2 Definito ϕ l angolo ta il vesoe nomale e il aggio si ha pe il teoema sul podotto scalae φ = l cos ϕ Notiamo che la gandezza l cos ϕ coincide con la lunghezza della poiezione del segmento sulla tangente al cechio di aggio. Quando inolte l è molto piccolo (l << ) essa coincide con l aco l e petanto pe definizione di angolo oientato α φ = l cos ϕ = l (4) = α. (5) α appesenta cioè l angolo (oientato) sotto cui il segmento oientato è visto dall oigine degli assi. Se oa vogliamo calcolae il flusso del vettoe indicato attaveso una cuva chiusa (con nomale estena) e senza autointesezioni C che abbaccia l oigine degli assi sommeemo su tutti gli infinitesimi segmenti oientati in cui la cuva (liscia) può essee appossimata Φ C = i α i = 2π (6) se invece la cuva non abbaccia l oigine degli assi alloa Φ C = i α i = 0. (7) Pocediamo oa in modo del tutto simile in R 3. In questo caso definiamo supeficie (piatta) oientata la quantià S = Sn dove n è il vettoe nomale (uno dei due) alla supeficie e S è la sua misua. In te dimensioni il campo di vettoi che consideiamo è v = (8) 3 e il calcolo del flusso poge φ = 1 S. (9) 3

3 3 Come in due dimensioni si ottiene φ = S cos ϕ 2 (10) Notiamo che quando la supeficie è contenuta dento un quadato molto piccolo (S << 2 ) la gandezza S cos ϕ coincide con la misua della sua poiezione sulla sfea S e petanto pe definizione di angolo solido oientato φ = S cos ϕ = S = Ω (11) 2 2 Se oa vogliamo calcolae il flusso del vettoe indicato attaveso una supeficie chiusa (con nomale estena) e senza autointesezioni S che acchiude l oigine degli assi sommeemo su tutte le infinitesime supefici oientate in cui la supeficie (liscia) può essee appossimata Ω i = 4π (12) se invece essa non acchiude l oigine degli assi alloa Ω i = 0. (13) Possiamo oa passae alla dimostazione che il campo gavitazionale di una sfea omogenea coincide con quello che saebbe geneato se tutta la massa fosse concentata nel suo cento. A tale scopo osseviamo che la legge di gavitazione univesale si espime come un campo g = G m. (14) 3 Il flusso del campo gavitazionale attaveso una supeficie chiusa S che contiene una massa puntifome m isulta petanto essee Φ S = 4πGm, (15)

4 4 Se invece di una sola massa puntifome ce ne sono molte il flusso totale saà dato dalla somma dei flussi (pe la lineaità del flusso) che isulta essee 4πGM dove M indica la massa totale intena alla supeficie. Consideiamo oa una massa M distibuita in modo omogeneo in una sfea e calcoliamone, senza fae uso del isultato sopa dimostato il flusso attaveso una supeficie sfeica concentica alla sfea data ed estena ad essa. Pe agioni di simmetia avemo che g = g() (16) e il suo flusso attaveso la supeficie sfeica data saà, dalla definizione stessa di flusso, g i S i = g() i S i = g()4π 3, (17) dove si è usato che n = Dal isultato (15) otteniamo quindi g = G M 3, (18) c.v.d. Esecizi 1. Mostae che il campo gavitazionale all inteno di una sfea omogena è popozionale alla distanza dal cento. 2. Mostae che il campo gavitazionale geneato da una distibuzione ettilinea di massa di densità costante descesce come l inveso della distanza dalla etta massiva.

5 5 3. Mostae che il campo gavitazionale geneato da una distibuzione piana di massa di densità omogena non dipende dalla distanza dal piano massivo. 4. Mostae che il campo gavitazionale all inteno di una supeficie sfeica massiva omogenea è nullo. 5. Mostae nel caso in R 2 che se la cuva fa un ceto numeo k di gii intono all oigine il lavoe del flusso è 2kπ. Analogamente mostae che nel caso di R 3 una supeficie chiusa che si avvolge k volte intono all oigine ha un flusso pai a 4kπ.

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 016-017 Gavitazione 3 oza Mediatoe Gavitazione Intensità elativa Andaento asintotico Raggio d'azione Inteazione fote gluone 10 38 0 10-15 Inteazione elettoagnetica Inteazione debole fotone 10

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni Uano Nettuno Plutone atuno Giove istea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano lettomagnetismo Pof. Fancesco agsa Univesità degli Stdi di Milano Lezione n. 6 4..5 Applicazioni della legge di Gass Anno Accademico 5/6 Campo di n gscio sfeico cavo Abbiamo già calcolato mediante n calcolo

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

Elettrostatica m. Il nucleo è a sua volta composto da altri

Elettrostatica m. Il nucleo è a sua volta composto da altri Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e uella di gavitazione univesale deivano dalla popietà delle masse di attiae alte masse. Tutte

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneia Meccanica Roma Te AA/- APPUNTI PER IL CORSO (Ripesi integalmente e da me assemblati dai testi di bibliogafia) Robeto Renzetti Bibliogafia: Paul J. Tiple, Gene Mosca

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche Lezione 7 - Tosione nelle sezioni cicolai ed ellittiche ü [A.a. 11-1 : ultima evisione 7 agosto 11] In questa lezione si applicano i isultati della lezione pecedente allo studio di alcune sezione di foma

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 PRV RDINMENT 009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni ano Nettuno Plutone Satuno iove Sistea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

Elettrostatica. di Daniele Gasparri

Elettrostatica. di Daniele Gasparri lettostatica di Daniele Gaspai Indice: - Legge di Coulomb - Sistema di caiche puntifomi 5 - Distibuzioni continue di caiche 7 - Il campo elettico - Flusso del campo elettico e legge di Gauss - Potenziale

Dettagli

I.14. Le forze conservative e l'energia potenziale

I.14. Le forze conservative e l'energia potenziale I.14. Le foze consevative e l'enegia potenziale Ripendiamo la definizione di lavoo Il lavoo di alcune foze speciali Le foze consevative e la enegia potenziale L enegia potenziale pe le foze costanti, elastica

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia. Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

1. Interazioni elettrostatiche

1. Interazioni elettrostatiche FISICA Elettostatica 9. Inteazioni elettostatiche. Alcuni fatti speimentali Pime definizioni di caica elettica L amba è una sostanza, che, stofinata con un pezzo di stoffa, acquista la popietà di attae

Dettagli

Cuscinetti orientabili a sfere

Cuscinetti orientabili a sfere Cuscinetti oientabili a sfee 1. Costuzione e catteistiche La supeficie della pista dell anello esteno dei cuscinetti oientabili a sfee è di foma sfeica; il cento della sfe coincide con l incocio degli

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

1 IL CAMPO ELETTROSTATICO

1 IL CAMPO ELETTROSTATICO IL CAMPO ELETTROTATICO. Popietà delle caiche elettiche La capacità di alcuni mateiali come l amba una esina natuale o il veto uando stofinati sulla lana di attae piccoli pezzi di cata ea nota sin dall

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

Note del corso di Geometria

Note del corso di Geometria Giuseppe ccascina Valeio Monti Note del coso di Geometia ppendice nno ccademico 2008-2009 ii apitolo 1 Richiami di geometia del piano 1.1 Intoduzione Richiamiamo alcuni agomenti di geometia euclidea del

Dettagli

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8 isultati esame scitto Fisica 7//4 oali: 4 alle oe. pesso aula G8 gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale; Nuovo odinamento voto AMATO MATTIA CASLLA ALSSANDO

Dettagli

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A.

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A. Insiemistica Se consideiamo un ceto numeo di pesone, cose, animali, piante, mineali, ecc., noi possiamo attibuie loo alcune caatteistiche, che definiamo con il temine di popietà. Le singole entità che

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche unità ostuzioni geometiche ostuzioni di ase nti geometici fondamentali efinizioni Punto nte geometico pivo di dimensioni; è definiile come isultato dell intesezione di due elementi lineai ettilinei o cuvilinei

Dettagli

LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI

LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI Iniziamo il paagafo con il fissae la nosta attenzione sul ben noto concetto di segmento oientato. Un segmento oientato, di pimo estemo

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1 La caica elettica 8 H.C. Oested connessione ta eletticità e magnetismo M. Faday speimentale puo, non scive fomule 85 J.C. Maxwell fomalia le idee di Faaday I geci avevano ossevato che l amba (elekton)

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Applicazioni del calcolo di erenziale: problemi di massimo e minimo

Applicazioni del calcolo di erenziale: problemi di massimo e minimo Alicazioni del calcolo di eenziale: oblemi di massimo e minimo Maco Bamanti Decembe 1, 015 Abstact Vediamo alcuni esemi di come il calcolo di eenziale consenta di fomalizzae e isolvee oblemi geometici

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO d.ing. Albeto Sacchi Sviluppo Pogetti Avanzati sl- R&D Dept. ing.sacchi@alice.it SINTESI (Abstact) La misua della Intensità di Campo (Induzione magnetica) ento

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Rotazioni in Astrofisica

Rotazioni in Astrofisica Rotazioni in Astofisica Paolo de Benadis Dipatimento di Fisica, La Sapienza 25/11/2011 Le leggi che avete visto in azione in laboatoio Funzionano anche nello spazio, ed in galassie lontanissime, nello

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi Capitolo 7 Costi e minimizzazione dei costi Soluzioni dei Poblemi 7.1 a) 500 b) 30% di 500, ossia 150 c) Senza idue il pezzo e posto che l impesa non possa vendee alte stampanti, il meglio che essa può

Dettagli

CONDUTTORI A STATO SOLIDO

CONDUTTORI A STATO SOLIDO CONDUTTORI A STATO SOLIDO Abbiamo visto nelle lezioni pecedenti che i mateiali si possono dividee in isolanti e conduttoi. In uesto ciclo di lezioni avemo poca possibilità di tattae i mateiali liuidi e

Dettagli

Applicazioni della trigonometria alla geometria

Applicazioni della trigonometria alla geometria unti di matematica licazioni della tigonometia alla geometia. ea di un tiangolo, note le misue di due lati e quella dell'angolo da essi comeso. TEOREM L'aea di un qualsiasi tiangolo è eguale al semiodotto

Dettagli

GEOMETRIA 3D MODELLO PINHOLE

GEOMETRIA 3D MODELLO PINHOLE http://imagelab.ing.unimo.it Dispense del coso di Elaboazione di Immagini e Audio Digitali GEOMETRIA 3D MODELLO PINHOLE Pof. Robeto Vezzani Calibazione della telecamea: a cosa seve? Obiettivo: pote calcolae

Dettagli

Gilda Flaccavento Romano. Geometria e misura. R ealtà e RCS LIBRI EDUCATION SPA. modelli. corso di matematica per la scuola secondaria di primo grado

Gilda Flaccavento Romano. Geometria e misura. R ealtà e RCS LIBRI EDUCATION SPA. modelli. corso di matematica per la scuola secondaria di primo grado Gilda Flaccavento Romano 3b Geometia e misua R ealtà e modelli coso di matematica pe la scuola secondaia di pimo gado RS LIRI EUTIN SP oodinamento editoiale: Giancalo Quadi oodinamento edazionale: Maia

Dettagli

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi.

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi. 9 Gavitazione (3 poblemi difficoltà 7 soglia 159) Fomulaio Legge di Newton F = G m 1 m 3 (G = 667. 10 11 N m /kg ) Campo gavitazionale H = G m 3 Leggi di Kepleo I. Le obite dei pianeti sono ellissi dei

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

CAPITOLO 4: energie di Gibbs e Helmholtz

CAPITOLO 4: energie di Gibbs e Helmholtz Intoduzione alla Temodinamica Esecizi svolti CAITOLO 4: enegie di Gibbs e Helmholtz Con la pima legge della temodinamica ci si occupa dei bilanci di enegia, mente con la seconda legge della temodinamica

Dettagli

Applicazioni della similitudine Unità 2

Applicazioni della similitudine Unità 2 OBIETTIVI INTERMEDI DI APPRENDIMENTO (I numei e le lettee indicate a fianco contassegnano le conoscenze, le abilità finali specifiche e quelle tasvesali coelate) Una volta completata l unità, gli allievi

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti Misua de estensione supeficiae L aea è a misua de estensione supeficiae di una figua ispetto a unità di misua fissata. Indiciamo aea con a ettea. Esempio: R MPP 8 u 1 è aea de ettangoo R secondo unità

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

Angoli orientati orientato sem re i tt ttta origine

Angoli orientati orientato sem re i tt ttta origine DEFINIZIONE DI ANGOLO Si definisce angolo ciascuna delle due pati in cui un piano è diviso da due semiette aventi la stessa oigine (uscenti da uno stesso punto); b a un angolo si dice convesso se non contiene

Dettagli

Massa del neutrino e massa mancante dell universo

Massa del neutrino e massa mancante dell universo assa del neutino e massa mancante dell univeso Figua Andamento della velocità di otazione dei copi della via Lattea in funzione della distanza dal cento della galassia (linea continua). 1 kpc = 3 10 10

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare Indice 2 Unità di appendimento 1 IRNFERENZ E ERHI 3 ttività pe iniziae veso le competenze fondamentali 4 1 La ciconfeenza e il cechio Posizioni di un punto ispetto a una ciconfeenza, 5 Posizioni di una

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2.

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2. GAVITAZIONE Esecizi svolti e discussi dal pof. Gianluigi Tivia scitto con Lyx - www.lyx.og. Legge di gavitazione Esecizio. Tovae la distanza che sepaa due copi puntifomi, con masse 5. kg e.4 kg, anché

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

I.15. Il teorema di conservazione dell'energia nella meccanica classica

I.15. Il teorema di conservazione dell'energia nella meccanica classica L enegia meccanica: consevazione e non consevazione Consevazione dell enegia nel caso di foze costanti Consevazione dell enegia nel caso di sistemi obitanti I diagammi della enegia potenziale Quesiti di

Dettagli