Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso"

Transcript

1 Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso ad ogni pivot richiede l aggiornamento dell intero tableau Y (m+1) (n+1) Principalmente questo serve per trovare la colonna su cui fare il pivoting (calcolo costi ridotti) c* 0 0 c' F T costi ridotti (basta trovarne uno < 0) B 1 d I B 1 F soluzione (serve) di questa parte serve solo la colonna su cui si fa il pivot Pmat.Rev.2

2 1. Algoritmo del Simplesso Rivisto Prevede l aggiornamento esplicito di una matrice (m+1) (m+1), che chiamiamo K K (0) matrice iniziale, K (i) matrice all iterazione i I costi ridotti e le colonne aggiornate su cui si fa il pivot vengono generate solo se e quando necessario tempo per iterazione O(m 2 ) << O(nm) Pmat.Rev.3 Informazioni del Tableau Il tableau corrente è quello iniziale moltiplicato per l inversa della base corrente 0 c B T c F T c* 0 0 c' F T d B F B 1 d I B 1 F Pmat.Rev.4

3 Informazioni del Tableau (2) Se il tableau iniziale contiene una matrice identità con costi ridotti 0, nelle iterazioni successive in quella parte del tableau c è B c F T c* 0 c BT B 1 c' F T d I F B 1 d B 1 B 1 F K (0) K (i) Conoscere K (i) è sufficiente per il pivoting Pmat.Rev.5 Pivoting rivisto Dato il tableau originale Y = (A, c, d ) ed K (i) : 1. Generazione dei costi ridotti (pricing) si calcolano una colonna per volta finchè non se ne trova uno negativo (s) o si termina senza trovarne c j = c j c B B 1 A j = c j c B K (i) A j 2. Generazione della colonna (column generation) A j = B 1 A j = K (i) A j 3. Determinazione dell elemento pivot (riga r) 4. Aggiornamento di K (i+1) per la prossima iterazione Pmat.Rev.6

4 Vantaggi Nel pricing ci si può fermare alla prima colonna a costo negativo (Es. regola di Bland) Per la column generation oltre a K (i) basta la matrice A originale se A è sparsa la column generation se ne avvantaggia ed è molto veloce La matrice K (i) può essere memorizzata in forma prodotto (molto più compatta) K (i) = P i P 1 K (0) = P i P 1 dove ogni P i è un vettore Pmat.Rev.7 2. Problema in forma di massimo L algoritmo del simplesso fa riferimento alla forma standard (f.ob. di minimo) Se la funzione obiettivo è di massimo: 1. la si trasforma in forma di minimo 2. si usa la condizione di ottimalità modificata per la funzione obiettivo di massimo: la base corrente è ottima se tutte le variabili non in base hanno costo ridotto non positivo ( 0) Pmat.Rev.8

5 3. Variabili con upper bound E molto frequente che le variabili oltre ai lower bound (x j 0) abbiano anche upper bound (x j h j ) Il problema risultante min c T x Ax = d x 0 x h Può essere trattato ponendo gli upper bound in forma standard x j + x ja = h j si aggiungono fino ad n vincoli e variabili slack! Pmat.Rev.9 Variabili con upper bound (2) Gli upper bound si possono trattare in modo implicito (come i lower bound) Soluzione Base Ammissibile Estesa (SBAE): le n m variabili fuori base possono essere al lower bound (x j =0) all upper bound (x j = h j ) Ai fini dell ottimalità i ruoli delle variabili fuori base sono diversi: se al l. b. può solo aumentare e conviene se c j <0 se all u. b. può solo diminuire e conviene se c j >0 Pmat.Rev.10

6 Criterio di ottimalità estesa Per un problema di minimo una SBAE è ottima se il costo ridotto di ogni variabile fuori base è: c j 0 se la variabile è al lower bound (x j =0) c j 0 se la variabile è all upper bound (x j = h j ) Il metodo del simplesso visto fin qui si estende facilmente per trattare implicitamente le SBAE Pmat.Rev.11 Forma canonica estesa Supponiamo di definire due variabili non negative: x j+ = x j (l.b.) e x j = h j x j (u.b.) In questo caso il test di ottimalità è sempre c j 0 per entrambe In una data iterazione il simplesso usa una sola delle due variabili x j+ = x j e x j = h j x j Si usa un vettore di flag e j ={+, } per sapere quale Il tableau rappresenta quindi le equazioni: n j= 1 y ij x e j j = y i0 i = 1, K, m Pmat.Rev.12

7 Pivoting esteso Determina una variabile x j fuori base con c j < 0 determina θ je = min{α j, θ j, γ j } con: α j = h j θ j = min { y i0 /y ij con y ij > 0} γ j = min {(y i0 h β(i) )/y ij con y ij < 0} 1. Se θ je = α j la variabile x j va al bound opposto a) sottrai h j volte la colonna j dalla colonna 0 b) moltiplica la colonna j per 1 (cambia anche e j ) c) la base non cambia Pmat.Rev.13 Pivoting esteso (2) 2. Se θ je = θ j = min { y i0 /y ij con y ij > 0} (su riga k) a) la variabile x β(k) attualmente in base esce dalla base al suo vecchio bound (e β(k) non cambia) b) esegui il pivot sull elemento y kj 3. Se θ je = γ j = min {(y i0 h β(i) )/y ij con y ij < 0} (su riga k) a) la variabile x β(k) attualmente in base esce dalla base al bound opposto (e β(k) cambia) b) sottrai h β(k) da y k0, cambia il segno di y kβ(k) ed e β(k) c) esegui il pivot sull elemento y kj Pmat.Rev.14

8 Esempio min 2x 1 +x 2 +3x 3 2x 4 +10x 5 s.t. x 1 +x 3 x 4 +2x 5 = 5 x 2 +2x 5 +2x 4 + x 5 = 9 0 x 1 7, 0 x 2 10, 0 x 3 1, 0 x 4 5, 0 x 5 3 x 1 x 2 x 3 x 4 x 5 z x x e Pmat.Rev.15 Esempio (2) x 1 x 2 x 3 x 4 x 5 z x x e pivot su colonna x 4 : α j = h j = 5 θ j = min { y i0 /y ij con y ij > 0} = 9/2 γ j = min {(y i0 h β(i) )/y ij con y ij < 0} = 2 Pmat.Rev.16

9 Esempio (3) Caso 3. Se θ je = min {(y i0 h β(i) )/y ij con y ij < 0} (su riga k =1) a) la variabile x β(1) = x 1 esce dalla base al bound opposto (e β(k) cambia) b) sottrai h β(1) = 7da y 10, cambia il segno di y 11 ed e 1 c) esegui il pivot sull elemento y 14 x 1 x 2 x 3 x 4 x 5 z x x e Pmat.Rev.17 Esempio (4) x 1 x 2 x 3 x 4 x 5 z x x e pivot su colonna x 3 : α j = h j = 1 θ j = min { y i0 /y ij con y ij > 0} = 5/4 γ j = min {(y i0 h β(i) )/y ij con y ij < 0} = 3 Pmat.Rev.18

10 Esempio (5) Caso 1. Se θ je = α j, x 3 va al bound opposto a) sottrai h 3 =1 volte la colonna 3 dalla colonna 0 b) moltiplica la colonna 3 per 1 (cambia anche e 3 ) c) la base non cambia x 1 x 2 x 3 x 4 x 5 z x x e Stop! x 1 = 7, x 2 = 1, x 3 = 1, x 4 = 3, x 5 = 0 Pmat.Rev.19 Generazione di colonne In molti casi A e c di un problema PL o PLI sono definiti implicitamente da una regola di costruzione ed hanno un numero di elementi n >>1 Il numero di elementi di A e c in base è m << n A e c servono solo per calcolare i costi ridotti ed individuare le variabili da far entrare in base Se è possibile valutare i costi ridotti sulla base della regola implicita non è necessario costruire esplicitamente tutto il problema ma solo le colonne che via via entrano in base Pmat.Rev.20

11 Esempio: Bin Packing Problem m tipi di oggetti, per ogni tipo (i =1,,m) w i dimensione di un oggetto di tipo i b i quantitativo richiesto n numero totale di oggetti = Σ i=1,,m b i n contenitori (bin), ciascuno di capacità K impaccare tutti gli oggetti nel minor numero possibile di contenitori in modo che la somma delle dimensioni degli oggetti inseriti in ogni contenitore non superi la capacità K Modelli PLI con numero polinomiale di variabili Pmat.Rev.21 Modello di Gilmore Gomory Primo esempio di generazione di colonne (1963) Pattern di caricamento: vettore di m elementi che specifica il numero di oggetti di ciascun tipo inseriti in un bin (in modo ammissibile) Es. m=5, w=(2,3,4,5,7), b=(20,10,30,15,20), K=10 a 1 =(5,0,0,0,0), a 2 =(0,2,1,0,0), a ij = oggetti di tipo i nel pattern j J = insieme di tutti i pattern ammissibili J enorme (cresce esponenzialmente con m ed n) Pmat.Rev.22

12 Modello di Gilmore Gomory (2) x j = numero di volte in cui il pattern j è usato (GG) min Σ j J x j Σ j J a ij x j b i (i = 1,, m) x j 0 intero (j J) Il vincolo potrebbe essere anche = ma non serve Consideriamo il rilassamento continuo (accettabile se all ottimo le x>0 sono abbastanza grandi) Pmat.Rev.23 Modello di Gilmore Gomory (3) Supponiamo di conoscere J J con J << J tale che le colonne di J contengano una soluzione ammissibile (= base) di (GG) Ad es. J ricavato da una soluzione euristica Risolviamo il problema rispetto a J : x soluzione primale (x j =0 j J\J ), u soluzione duale la soluzione x è ottima se i costi ridotti c j 0, j J Pricing: trova una colonna da inserire in base (la migliore) ossia trova un pattern J con costo ridotto minimo min c' j J j j J j j ( ua ) = 1 ua = min 1 max j J Pmat.Rev.24

13 Modello di Gilmore Gomory (4) Pricing: trova un pattern ammissibile con il minimo costo ridotto (se negativo va inserito in J altrimenti stop: base ottima) a i = numero di oggetti di tipo i nel pattern z = max Σ i=1,...,m u i a i Σ i=1,...,m w i a i K a i 0 intero (i=1,...,m) è un Knapsack intero! se z 0 la soluzione è ottima! Pmat.Rev.25 Esempio m=5, w=(2,3,4,5,7), b=(20,10,30,15,20), K=10 soluzione/base iniziale: deve usare tutti i tipi a 1 =(1,1,1,0,0), a 2 =(0,0,0,2,0), a 3 =(0,0,0,0,1) mancano due colonne: slack di alcuni vincoli Per soddisfare b 3 =30 bisogna usare a 1 30 volte, quindi 1 e 2 sono prodotti in eccesso e si possono usare a 1a =( 1,0,0,0,0) ed a 2a =(0, 1,0,0,0) Pmat.Rev.26

14 Esempio (2) Risoluzione rilassamento iniziale: si ricava la soluzione x=(30,15/2,20,0,0), che si arrotonda in x=(30,8,20,0,0) che richiede 58 bin, la soluzione duale è u=(0,0,1,1/2,1) Il pricing genera la colonna a 4 =(0,0,2,0,0) e z = 2 Pivot sulla nuova colonna: base=(a 1,a 2,a 3,a 4,a 2a ) si ottiene x=(20,15/2,20,5,10), arrotondata in x=(20,8,20,5,10) che richiede 53 bin ed u=(1/2,0,1/2,1/2,1) Pmat.Rev.27 Esempio (3) Il pricing genera la colonna a 5 =(5,0,0,0,0) e z = 5/2 Pivot sulla nuova colonna: base=(a 1,a 2,a 3,a 4,a 5 ) (nessuno slack sui vincoli) si ottiene x=(10,15/2,20,10,2), arrotondata in x=(10,8,20,10,2) che richiede 50 bin ed u=(1/5,3/10,1/2,1/2,1) Il pricing genera la colonna a 6 =(0,1,0,0,1) e z = 13/10 Pivot sulla nuova colonna: base=(a 6,a 2,a 3,a 4,a 5 ) si ottiene x=(10,15/2,10,15,4), arrotondata in x=(10,8,10,15,4) che richiede 47 bin ed u=(1/5,0,1/2,1/2,1) Pmat.Rev.28

15 Esempio (4) Il pricing genera la colonna a 7 =(1,0,0,0,1) e z = 6/5 Pivot sulla nuova colonna: base=(a 6,a 2,a 7,a 4,a 5 ) si ottiene x=(10,15/2,10,15,2), arrotondata in x=(10,8,10,15,2) che richiede 45 bin ed u=(1/5,1/5,1/2,1/2,4/5) Il pricing genera la colonna a 8 =(1,0,2,0,0) e z = 6/5 Pivot sulla nuova colonna: base=(a 6,a 2,a 3,a 4,a 8 ) si ottiene x=(10,15/2,10,5,10), arrotondata in x=(10,8,10,5,10) che richiede 43 bin ed u=(0,0,1/2,1/2,1) Pmat.Rev.29 Esempio (5) Il pricing genera nuovamente la colonna a 3 =(0,0,0,0,1) e z = 1 La colonna fuori base a costo ridotto minimo ha costo ridotto nullo: la base corrente è ottima! La soluzione ottima frazionaria è: base=(a 6,a 2,a 3,a 4,a 8 ), x=(10,15/2,10,5,10), e usa 42,5 bin La soluzione intera arrotondata è: base=(a 6,a 2,a 3,a 4,a 8 ), x=(10,8,10,5,10), e 43= 42,5 bin soluzione ottima per il problema intero! Pmat.Rev.30

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne L. De Giovanni G. Zambelli 1 Un problema di taglio di tondini di ferro Un azienda metallurgica produce tondini

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

x 1 x x 1 2 x 2 6 x 2 5 Indici di base Vettore Ammissibile Degenere (si/no) (si/no)

x 1 x x 1 2 x 2 6 x 2 5 Indici di base Vettore Ammissibile Degenere (si/no) (si/no) Esercitazione di Ricerca Operativa Esercizio. Completare la seguente tabella: max x x x x x x x x x x Indici di base Vettore Ammissibile Degenere, x =, y = Esercizio. Effettuare due iterazioni dell algoritmo

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Esercizi svolti di Programmazione Lineare a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Formulazione matematica e risoluzione grafica Esercizio Una pasticceria

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano Rilassamento Lagrangiano AA 2009/10 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il

Dettagli

Esercizi per il corso di ricerca operativa 1

Esercizi per il corso di ricerca operativa 1 Esercizi per il corso di ricerca operativa Ultimo aggiornamento: 8 gennaio 004 Indice I Esercizi 5 Programmazione lineare 7 Dualita 3 3 Analisi di sensitivita 7 4 Programmazione intera 5 Introduzione

Dettagli

Risoluzione di problemi di programmazione lineare tramite generazione di colonne

Risoluzione di problemi di programmazione lineare tramite generazione di colonne Risoluzione di problemi di programmazione lineare tramite generazione di colonne A. Agnetis 1 Introduzione In alcune applicazioni, un problema può essere formulato in termini di programmazione lineare,

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Il modello duale. Capitolo settimo. Introduzione

Il modello duale. Capitolo settimo. Introduzione Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata

Dettagli

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/ Contenuto e scopo presentazione Contenuto: viene presentato un altro metodo di soluzione di problemi di ILP o di MILP. Modelli Lineari Interi/Misti Piani di taglio Versione /8/. Scopo: fornire le capacità

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Il metodo del simplesso. Il metodo del simplesso p. 1/12

Il metodo del simplesso. Il metodo del simplesso p. 1/12 Il metodo del simplesso Il metodo del simplesso p. 1/12 I problemi di PL in forma standard I problemi di PL in forma standard hanno la seguente formulazione: max cx a i x = b i x 0 i = 1,...,m o, equivalentemente,

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di

Dettagli

Problemi di flusso a costo minimo

Problemi di flusso a costo minimo p. 1/7 Problemi di flusso a costo minimo È data una rete (grafo orientato e connesso) G = (V,A). (i,j) A c ij, costo di trasporto unitario lungo l arco (i, j). i V b i interi e tali che i V b i = 0. p.

Dettagli

Metodi generali per la soluzione di problemi di PLI

Metodi generali per la soluzione di problemi di PLI 10 Metodi generali per la soluzione di problemi di PLI Per la soluzione di problemi di PLI non esistono metodi universalmente efficienti. Molto spesso è necessario utilizzare algoritmi ad hoc che siano

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Esercizi soluzione grafica e Branch and Bound. Daniele Vigo

Esercizi soluzione grafica e Branch and Bound. Daniele Vigo Esercizi soluzione grafica e Branch and Bound Daniele Vigo daniele.vigo@unibo.it Mix Mangimi Il gestore di un allevamento desidera determinare il mix ottimale di mangimi da aggiungere al riso per la dieta

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Indice. 1 Introduzione... 1

Indice. 1 Introduzione... 1 Indice 1 Introduzione............................................... 1 2 Esempi di modelli......................................... 7 2.1 Problema della dieta.................................... 7 2.2

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Rappresentazione dell Informazione

Rappresentazione dell Informazione Rappresentazione dell Informazione Rappresentazione delle informazioni in codice binario Caratteri Naturali e Reali positivi Interi Razionali Rappresentazione del testo Una stringa di bit per ogni simbolo

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

Matrici elementari e fattorizzazioni

Matrici elementari e fattorizzazioni Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per

Dettagli

IL METODO DEL SIMPLESSO

IL METODO DEL SIMPLESSO IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno

Dettagli

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche Indice Prefazione 1 1 Modelli di ottimizzazione 3 1.1 Modelli matematici per le decisioni.................... 4 1.1.1 Fasi di sviluppo di un modello................... 7 1.2 Esempi di problemi di ottimizzazione...................

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI

MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI CORSO DI PROGETTAZIONE DEI SISTEMI DI TRASPORTO - I MODELLI DI ASSEGNAZIONE L ASSEGNAZIONE DELLA DOMANDA AD UNA RETE DI TRASPORTO CONSISTE NEL CALCOLARE I FLUSSI

Dettagli

Cercare il percorso minimo Ant Colony Optimization

Cercare il percorso minimo Ant Colony Optimization Cercare il percorso minimo Ant Colony Optimization Author: Luca Albergante 1 Dipartimento di Matematica, Università degli Studi di Milano 4 Aprile 2011 L. Albergante (Univ. of Milan) PSO 4 Aprile 2011

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.11)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.11) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 2015-16, lez.11) 1 La complessità

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

I.4 Rappresentazione dell informazione

I.4 Rappresentazione dell informazione I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

LA PROGRAMMAZIONE MATEMATICA (p.m.)

LA PROGRAMMAZIONE MATEMATICA (p.m.) LA PROGRAMMAZIONE MATEMATICA (p.m.) Un problema di programmazione matematica è un problema di ottimizzazione riconducibile alla seguente espressione generale: ricercare i valori delle variabili x 1, x

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione ANALISI NUMERICA - Primo Parziale - TEMA A PARTE I. Si chiede allo studente di trattare i seguenti argomenti nel modo più completo possibile. 1. Propagazione degli errori nel caso di operazioni elementari

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Raffaele Pesenti, Dario Bauso March 29, 2006 Domande Introduzione 1. Cos e la Ricerca Operativa? 2. Quali problemi affronta un ricercatore operativo? Fare un esempio indicando

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Numeri frazionari. sistema posizionale. due modi: virgola fissa virgola mobile. posizionale, decimale

Numeri frazionari. sistema posizionale. due modi: virgola fissa virgola mobile. posizionale, decimale Numeri frazionari sistema posizionale due modi: virgola fissa virgola mobile posizionale, decimale 0,341=tre decimi più quattro centesimi più un millesimo cifre dopo la virgola: decimi centesimi millesimi

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

2. Algoritmi e Programmi

2. Algoritmi e Programmi 12 2. Algoritmi e Programmi Dato un problema, per arrivare ad un programma che lo risolva dobbiamo: individuare di cosa dispongo: gli input; definire cosa voglio ottenere: gli output; trovare un metodo

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

AA Appello del 27 Novembre 2009 Compito A

AA Appello del 27 Novembre 2009 Compito A Metodi e Modelli di Ottimizzazione Discreta, I parte; Appello del 27 Novembre 2009 Compito A 1). Scrivere una formulazione per il seguente problema. Una ditta di spedizioni deve spedire via nave dei grossi

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero).

Inversa di una matrice quadrata. L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). Inversa di una matrice quadrata L operatore inv() inverte una matrice quadrata non singolare (cioè in cui il determinate è diverso da zero). richiami di algebra lineare TRASPOSIZIONE DI MATRICE Il calcolo

Dettagli

Esercitazione di Matematica su matrici e sistemi lineari

Esercitazione di Matematica su matrici e sistemi lineari Esercitazione di Matematica su matrici e sistemi lineari Notazioni: deta, A T =trasposta di A, A 1 =inversa di A. 1. Si considerino le matrici A, B, C, D denite da 1 0 5 1 A = 0, B = 0 0, C = 0 1 0 6 1

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo La Programmazione Matematica classica, lineare (PL) o intera (PLI), tratta problemi caratterizzati da una unica e ben definita funzione obiettivo.

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7) Docente: Marco Gaviano (e-mail:gaviano@nica.it) Corso di Larea in Infomatica Corso di Larea in Matematica Matematica Comptazionale(6cf) Ottimizzazione(8cf) (a.a. -4, lez.7) Matematica Comptazionale, Ottimizzazione,

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

Scopo del laboratorio

Scopo del laboratorio p. 1/1 Scopo del laboratorio Imparare ad usare programmi che implementino metodi di ottimizzazione: simplesso, branch and bound ecc. utilizzarli per risolvere un problema proposto Modellatori Solver p.

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Array in Fortran 90. Ing. Luca De Santis. Anno accademico 2006/2007. DIS - Dipartimento di informatica e sistemistica

Array in Fortran 90. Ing. Luca De Santis. Anno accademico 2006/2007. DIS - Dipartimento di informatica e sistemistica Array in Fortran 90 Ing. Luca De Santis DIS - Dipartimento di informatica e sistemistica Anno accademico 2006/2007 Fortran 90: array DIS - Dipartimento di informatica e sistemistica 1 / 25 Cosa vedremo

Dettagli

Interpretazione economica della dualità

Interpretazione economica della dualità Interpretazione economica della dualità Interpretazione economica delle variabili duali Interpretazione economica del problema duale nei problemi di allocazione risorse e miscelazione Applicazioni della

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Algebra di Boole: minimizzazione di funzioni booleane

Algebra di Boole: minimizzazione di funzioni booleane Corso di Calcolatori Elettronici I A.A. 200-20 Algebra di Boole: minimizzazione di funzioni booleane Lezione 8 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Forme Ridotte p Vantaggi

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: analisi di sensitività

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: analisi di sensitività Ricerca Operativa A.A. 2007/2008 14. Esercitazione di laboratorio: analisi di sensitività Luigi De Giovanni - Ricerca Operativa - 14. Laboratorio: analisi di sensitività 14.1 Problema di mix della produzione

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

A = Quindi > b=a(:) b =

A = Quindi > b=a(:) b = Una breve digressione. Se si vuole uscire da Matlab, occorre digitare ( come già riferito)il comando >> quit Se si vogliono utilizzare le variabili create per una successiva sessione di lavoro, prima di

Dettagli