Appunti su Indipendenza Lineare di Vettori

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti su Indipendenza Lineare di Vettori"

Transcript

1 Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo studente e non devono essere considerate come esaustive sull argomento. In esse vengono presentate alcune nozioni di base sull indipendenza lineare di vettori e viene descritto un metodo, derivante dall algoritmo di eliminazione di Gauss, per riconoscere se un insieme di vettori è costituito da elementi linearmente indipendenti. La teoria esposta è illustrata da esempi e, nell ultimo paragrafo, vengono proposti alcuni esercizi (non svolti). Notazioni Nel seguito verranno utilizzate le seguenti notazioni. Si indicano con le lettere dell alfabeto in bold i vettori e con le lettere dell alfabeto greco i numeri reali (detti scalari). Se v è un vettore (colonna) di R n, v i denota la sua i-esima componente e v t denota il vettore (riga) trasposto di v. denota il vettore (colonna) formato da tutte componenti nulle. Indipendenza lineare Si richiamano due operazioni fondamentali sui vettori.. Dati uno scalare α e un vettore v R n, il vettore t = αv appartiene a R n ed è tale che t i = αv i, i =..., n.. Dati due vettori v e w appartenenti a R n, la somma t = v +w appartiene a R n ed è tale che t i = v i + w i, i =..., n. Utilizzando le precedenti operazioni vettoriali è possibile introdurre il concetto di combinazione linare. Definizione. Dati i vettori v,..., v k di R n e gli scalari α,..., α k, il vettore t è detto combinazione lineare di v,..., v k con coefficienti α,..., α k, se k t = α i v i i=

2 Esempio. Combinazione lineare. La combinazione lineare dei seguenti vettori di R v = v = v = con coefficienti α =, α = e α = genera il vettore α v + α v + α v = + + = Si noti che, se t è combinazione lineare di v,..., v k, esiste una relazione che lega i vettori dell insieme {t, v,..., v k, e quindi tali elementi possono essere considerati dipendenti gli uni dagli altri. Viceversa, dato un insieme V di vettori, se nessuno tra questi può essere espresso come combinazione lineare dei rimanenti, allora si può concludere che gli elementi di V non sono legati tra loro, cioè sono indipendenti. Questo concetto viene formalizzato nella seguente definizione. Definizione. I vettori v,..., v k appartenenti a R n si dicono linearmente indipendenti se la condizione k α i v i =, con α i R, i =..., k () i= implica che α i =, per ogni i =..., k. Altrimenti i vettori v,..., v k si dicono linearmente dipendenti. Dalla definizione precedente segue che se i vettori v,..., v k sono linearmente dipendenti allora esiste almeno una k-upla di coefficienti α... α k non tutti nulli per i quali vale la condizione (). Supponiamo, senza perdita di generalità, che, in caso di k vettori dipendenti, si abbia α. Dalla relazione () si ottiene allora che α v = k α i v i da cui v = i= k i= α i α v i Il risultato precedente evidenzia che il vettore v può essere espresso come combinazione lineare dei vettori v,..., v k, cioè dipende da tali vettori. Esempio. Vettori dipendenti e indipendenti I seguenti vettori di R 4 v = v = 4 v = / /

3 sono dipendenti in quanto si verifica facilmente che v + v v =. Vivecersa, i seguenti vettori di R w = [ ] [ w = sono indipendenti. Infatti, scelti due generici coefficienti β e β si ha che [ ] β β w + β v = β e quindi l unica scelta possibile dei coefficienti affinché la combinazione lineare coincida con è β = β =. È possibile esprimere la combinazione lineare dei vettori v,..., v k con coefficienti α,..., α k in forma matriciale, sfruttando il prodotto matrice per vettore. Indicando con V la matrice n k la cui j-esima colonna è costituita dal vettore v j, cioè V = [v,..., v k ], e con α il vettore la cui i-esima componente è il coefficiente α i, è facile verificare che la condizione () equivale a ] V α = () I coefficienti della combinazione lineare sono quindi soluzione di un sistema (in generale non quadrato) con matrice dei coefficienti V e termine noto nullo. Si osservi che tale sistema ammette sempre una soluzione, in quanto la scelta α =... = α k = soddisfa le equazioni (). Dalla definizione di indipendenza lineare segue che i vettori sono indipendenti se il sistema () ammette la sola soluzione nulla e sono dipendenti se ammette anche soluzioni con componenti diverse da zero. Esempio. Combinazione lineare come matrice per vettore. Dati i vettori v, v e v dell Esempio., la loro combinazione lineare nulla v + v v = può essere espressa come il prodotto V α =, dove la matrice V e il vettore di coefficienti α sono definiti come segue: V = 4 4 α = Un metodo per verificare l indipendenza lineare di un insieme di vettori consiste quindi nell analizzare il numero di soluzioni del sistema (), come descritto nel seguente paragrafo.

4 Riconoscimento dell indipendenza lineare Il metodo descritto in questo paragrafo permette di riconoscere se un insieme di vettori è formato da elementi linearmente indipendenti, analizzando il numero di soluzioni del sistema () nel modo seguente.. Dati i vettori v,..., v k di R n, n k, si costruisce la matrice V, n k, la cui j-esima colonna è costituita dal vettore v j, cioè V = [v,..., v k ].. Si trasforma il sistema V α = nel sistema equivalente (cioè con le stesse soluzioni) Ûα =, dove Û è una matrice del tipo Û = [ U ] k righe n k righe con U matrice triangolare k k Poiché le ultime n k equazioni del sistema Ûα = sono della forma =, esse possono essere trascurate al fine di calcolare la soluzione α. Le soluzioni del sistema () coincidono quindi con quelle del sistema Uα = di k equazioni in k incognite.. Si valuta il numero di soluzioni di Uα = (e quindi di V α = ) calcolando il determinante della matrice U, dato dal prodotto dei suoi elementi diagonali. È ben noto che se det U il sistema U α = ammette un unica soluzione. In tal caso poiché il sistema ha termine noto nullo l unica soluzione ammissibile è quella nulla, cioè α i =, i =,..., k. Viceversa, se det U =, allora il sistema ammette infinite soluzioni. Non si può verificare il caso in cui il sistema non ammetta soluzioni in quanto il vettore è soluzione del sistema in ogni caso. Si può quindi concludere che: se det U allora α = è l unica possibile scelta dei coefficienti dei vettori v,..., v k per ottenere la combinazione lineare nulla e quindi i vettori sono indipendenti; viceversa, se det U = allora il sistema Uα = ha infinite soluzioni (ovviamente anche non nulle) e quindi esistono coefficienti non tutti nulli dei vettori v,..., v k per ottenere la combinazione lineare nulla: in tal caso i vettori sono dipendenti. Si noti che, in tal caso, i coefficienti che permettono di esprimere un vettore dell insieme come combinazione lineare dei rimanenti possono essere ricavati risolvendo il sistema V α =. Osservazione. La trasformazione del sistema V α = nel sistema equivalente Ûα = può essere calcolata effettuando una triangolarizzazione analoga a 4

5 quella del metodo di Gauss []. Infatti la fase di triangolarizzazione del metodo di Gauss non sfrutta il fatto di operare su matrici quadrate, ma utilizza combinazioni lineari di righe per annullare gli elementi al di sotto della diagonale principale di ogni colonna della matrice dei coefficienti. Lo stesso procedimento può essere quindi applicato anche alla matrice Û il cui numero di righe è maggiore del numero di colonne, con la sola differenza che la matrice finale non ha struttura triangolare. Più precisamente, se la matrice iniziale ha n righe e k colonne, con n k, la matrice finale ottenuta mediante il processo di triangolarizzazione è tale che le prime k righe formano una matrice triangolare e le rimanenti n k sono nulle, come mostrato nella formula (). Ovviamente quando si trasforma la matrice dei coefficienti di un sistema lineare per ottenerne uno equivalente, è necessario elaborare anche il vettore dei termini noti. Tuttavia, poiché il temine noto del sistema () è il vettore nullo, esso non subisce trasformazioni durante la fase di triangolarizzazione della, in quanto si dovrebbero solo effettuare somme di coordinate nulle. Per tale motivo, il metodo precedentemente descritto non rielabora il termine noto. Esempio. Il metodo nel caso di vettori indipendenti Verificare se i seguenti tre vettori di R 4 sono linearmente dipendenti o indipendenti: v = 4 v = v = Innanzi tutto si deve triangolarizzare la matrice le cui colonne sono i vettori v, v e v analogamente a quanto avviene nel metodo di Gauss per risolvere sistemi lineari: da cui si ottiene II : II + I III : III 4 I IV : IV I IV : IV 9 III U = 9 III : III + II IV : IV + 4 II Poiché il det U = 9 i vettori v, v e v sono linearmente indipendenti.

6 Esempio. Il metodo nel caso di vettori dipendenti Verificare se i seguenti tre vettori di R 4 sono linearmente dipendenti o indipendenti: v = 4 v = v = Innanzi tutto si deve triangolarizzare la matrice le cui colonne sono i vettori v, v e v analogamente a quanto avviene nel metodo di Gauss per risolvere sistemi lineari: II : II + I III : III 4 I IV : IV I da cui si ottiene U = III : III + II IV : IV + 4 II Poiché il det U = i vettori v, v e v sono linearmente dipendenti. Risolvendo il sistema Uα =, che ha infinite soluzioni, si ottengono i coefficienti della combinazione lineare che lega i tre vettori. Utilizzando il metodo di sostituzione all indietro si ha che il valore di α è libero; inoltre α = α e α = α. Fissato, ad esempio α = si ottengono α = e α = da cui v + v + v =, cioè v = v v. Teorema di Rouché-Capelli In questo paragrafo viene presentato (ma non dimostrato) il teorema di Rouché- Capelli, che permette di verificare l esistenza e il numero di soluzioni di un sistema lineare, sfruttando il concetto di vettori linearmente indipendenti. Per enunciare il teorema di Rouché Capelli è necessario introdurre il concetto di rango di una matrice. Definizione. Data una matrice A di dimensione n k, si definisce rango (o caratteristica) di A il numero di colonne linearmente indipendenti di A, viste come k vettori di R n. Il rango di A viene denotato con ρ(a). Poiché si puó dimostrare che il numero delle colonne linearmente indipendenti di una matrice coincide con il numero delle sue righe linearmente indipendenti, è possibile riformulare la definizione precedente considerando le righe della matrice A.

7 Teorema. Rouché-Capelli Siano A una matrice n k e b un vettore appartenente a R n. Il sistema Ax = b ammette soluzioni se e solo se ρ(a) = ρ([a b]), dove [A b]è la matrice ottenuta aggiungendo ad A il vettore b come ultima colonna. Inoltre se il sistema Ax = b ammette soluzioni, si ha che: se ρ(a) = min{n, k allora la soluzione è unica; se ρ(a) < min{n, k allora esistono infinite soluzioni. Poiché in tal caso ci sono (min{n, k ρ(a)) gradi di libertà nella scelta della soluzione, si dice che ci sono (min{n,k ρ(a)) soluzioni. Osservazione. Nel caso di matrici quadrate, cioè se n = k, il teorema di Rouché-Capelli stabilisce che la soluzione del sistema Ax = b esiste unica se e solo se ρ(a) = n. Ma è ben noto che, nel caso di matrici quadrate, la soluzione del sistema Ax = b esiste unica se e solo se det A. Questo suggerisce l equivalenza tra le due condizioni. Si lascia al lettore (come esercizio teorico non banale) da dimostrare che, se A è una matrice n n, allora la condizione ρ(a) = equivale a det A. 4 Esercizi proposti Esempio 4. Verificare se i seguenti insiemi V... V 4 sono costituiti da vettori linearmente dipendenti o indipendenti. Inoltre, nel caso di vettori dipendenti trovare una combinazione lineare degli stessi che, con coefficienti non tutti nulli, generi il vettore nullo.. V = { v, v, v con v = v = v =. V = { v, v, v con v =. V = { v, v, v con v = v = v = v = v =

8 4. V 4 = { v, v, v, v 4 con v = 9 v = 4 v = v 4 = Esempio 4. Trovare il valore del parametro k affinché i vettori dell insieme V = { v, v, v siano linearmente dipendenti, dove v = v = v = Per il valore di k calcolato, esprimere il vettore v come combinazione lineare di v e v. Se k = i vettori sono indipendenti? References [] D. Bini, M. Capovani, O. Menchi: Metodi Numerici per l Algebra Lineare. Bologna: Zanichelli 9 9 k

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali? Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

LEZIONE 3. Typeset by AMS-TEX

LEZIONE 3. Typeset by AMS-TEX LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

III-4 Sistemi di equazioni lineari

III-4 Sistemi di equazioni lineari SISTEMI DI EQUAZIONI LINEARI III-4 Sistemi di equazioni lineari Indice Sistemi di equazioni lineari 2 Alcuni risultati generali 2 2 Il teorema di Rouché Capelli 3 22 Il teorema e la regola di Cramer 3

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Richiami di algebra delle matrici

Richiami di algebra delle matrici Richiami di algebra delle matrici (S. Terzi) 1. SPAZI VETTORIALI I. ALCUNE DEFINIZIONI 1) Definizione di spazio vettoriale Sia S un insieme di vettori di ordine n. S è detto spazio lineare se e' un insieme

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Algoritmi per operazioni con le matrici

Algoritmi per operazioni con le matrici Algoritmi per operazioni con le matrici 1 Sommario Definizioni Alcune operazioni principali sulle matrici Somma di due matrici Trasposta di una matrice Prodotto di matrici: algoritmo classico Prodotto

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Matrici elementari e fattorizzazioni

Matrici elementari e fattorizzazioni Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per

Dettagli

MATRICI Vol.1. Pag. 1/24

MATRICI Vol.1. Pag. 1/24 MATRICI Vol.1 Sommario ALGEBRA DELLE MATRICI... 3 Matrici nulla, diagonale e unità... 3 Matrice simmetrica e matrice trasposta... 3 Combinazioni lineari e differenza tra matrici. Matrice emisimmetrica...

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

1 Sistemi di equazioni lineari 1. 2 Alcuni risultati generali Il teorema di Rouché Capelli Il teorema e la regola di Cramer...

1 Sistemi di equazioni lineari 1. 2 Alcuni risultati generali Il teorema di Rouché Capelli Il teorema e la regola di Cramer... SISTEMI DI EQUAZIONI LINEARI Sistemi di equazioni lineari Indice Sistemi di equazioni lineari 2 Alcuni risultati generali 2 2 Il teorema di Rouché Capelli 2 22 Il teorema e la regola di Cramer 3 3 Il calcolo

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici Parte 1. Sistemi lineari, algoritmo di Gauss, matrici A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Brevi richiami sugli insiemi, 1 Insiemi numerici, 3 3 L insieme R n, 4 4 Equazioni

Dettagli

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R. 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia,

Dettagli

Metodo di Gauss-Jordan 1

Metodo di Gauss-Jordan 1 Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi

Dettagli

Sistemi lineari. 1. Generalità. a 1 x 1 + a 2 x 2 + a 3 x a n x n = k (matrice completa)

Sistemi lineari. 1. Generalità. a 1 x 1 + a 2 x 2 + a 3 x a n x n = k (matrice completa) Sistemi lineari. Generalità La teoria dei sistemi di equaioni lineari costituisce uno dei capitoli molto importanti della matematica pura e applicata. Infatti molte questioni teoriche o tecniche si traducono

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

e così via per tutte le colonne. Una prima proprietà importante ci dice quello che accade quando si fanno delle permutazioni di colonne di A.

e così via per tutte le colonne. Una prima proprietà importante ci dice quello che accade quando si fanno delle permutazioni di colonne di A. Capitolo 3 DETERMINANTE Il problema di stabilire se un insieme di vettori è linearmente indipendente (ad esempio se lo sono le colonne di una matrice quadrata, e quindi se la matrice è invertibile) non

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Marta Cardin Paola Ferretti Stefania Funari Introduzione soft alla matematica per l economia e la finanza: I SISTEMI LINEARI

Dettagli

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Esercitazione di Matematica su matrici e sistemi lineari

Esercitazione di Matematica su matrici e sistemi lineari Esercitazione di Matematica su matrici e sistemi lineari Notazioni: deta, A T =trasposta di A, A 1 =inversa di A. 1. Si considerino le matrici A, B, C, D denite da 1 0 5 1 A = 0, B = 0 0, C = 0 1 0 6 1

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici Matrici R. Notari 1 1. Proprietà della somma di matrici 1. (A + B) + C = A + (B + C) qualunque siano le matrici A, B, C Mat(m, n; K). 2. A + B = B + A qualunque siano le matrici A, B Mat(m, n; K). 3. Sia

Dettagli

IV-2 Forme quadratiche

IV-2 Forme quadratiche 1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli