PROGRAMMAZIONE LINEARE:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROGRAMMAZIONE LINEARE:"

Transcript

1 PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo prestabilito, in condizioni di certezza. Tipi di problemi risolubili con le tecniche della programmazione lineare (P.L.): problemi economici, problemi di distribuzione delle risorse, problemi di trasporto e di assegnazione, ecc. Modello matematico: { Tutte le funzioni presenti nel modello sono lineari. Ottimizzare funzione obiettivo (f(x), x vettore) Vincoli di segno Vincoli tecnici: eguaglianze o diseguaglianze deboli Metodi risolutivi: a) Metodo grafico b) Metodo algebrico c) Metodo del simplesso Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un'azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali alcune sono di un tipo A e le altre di un tipo B. Il turno di lavoro non può superare le 8 ore giornaliere; una lavatrice di tipo A richiede 2 ore di lavoro, mentre una di tipo B ne richiede una. Se una lavatrice di tipo A costa 600 euro una di tipo B 400 euro, quante lavatrici di ciascun tipo devono essere prodotte giornalmente affinché l'azienda realizzi il massimo guadagno? Nell'enunciato ci sono molte informazioni ed è un po' difficile tenerle tutte a mente e intravedere rapidamente un procedimento per risolvere il problema. È però importante rilevare che, una volta trovata la soluzione, l'azienda sarà in grado di programmare la produzione del reparto. Percorso risolutivo Analizziamo il testo e schematizziamolo Risorse A B Disponibilità Algebra Impieghi x y giornaliera per ogni risorsa N lavatrici prodotte al giorno 1 n. 1 n. 6 n. 2x + y 8 Ore di lavoro giornaliero 2 h 1 h 8 h 2x + y 8 profitto lordo unitario 600,00 400,00 (prezzo di vendita) Rendere massimo il profitto totale z = 600x + 400y x = numero di lavatrici di tipo A y = numero di lavatrici di tipo B Si hanno le seguenti restrizioni: il numero di ciascuna lavatrice non può essere negativo il numero complessivo delle lavatrici non può essere superiore a 6 la durata massima del lavoro non può superare le 8 ore giornaliere. L'obiettivo dell'azienda è decidere quante lavatrici (di ciascun tipo) produrre giornalmente affinché venga realizzato il massimo profitto. La funzione che esprime il guadagno dell'azienda in euro viene chiamata funzione obiettivo ed è: z = 600x + 400y Il problema consiste perciò nel trovare i valori di x e y che rendano la funzione obiettivo più grande possibile, sotto le condizioni espresse dalle disequazioni lineari viste prima che, dovendo valere simultaneamente, costituiscono il seguente sistema: x + y 6 2x + y 8 x y Di questi problemi, in cui intervengono quantità di variabili da "ottimizzare" sotto determinate condizioni, si occupa una parte applicativa della matematica che viene chiamata programmazione lineare. Il nostro problema è volutamente semplice, ma la programmazione lineare risolve problemi ben più complessi che si presentano nell'ambito dell'economia aziendale, della produzione industriale, dell'alimentazione, dello sfruttamento ottimale delle risorse e dei servizi in generale, in tutti quei settori nei quali occorre esaminare varie alternative al fine di realizzare un certo obiettivo alle condizioni più vantaggiose. In talune questioni

2 intervengono decine di variabili; in questi casi vengono utilizzate tecniche diverse e le soluzioni sono ottenute mediante l'impiego di un computer. Noi ci limiteremo a risolvere problemi abbastanza semplici. 1) CONCETTO DI PROGRAMMAZIONE LINEARE Si parla di PROGRAMMAZIONE LINEARE quando si è in presenza di: a) una FUNZIONE LINEARE A 2 O PIU' VARIABILI INDIPENDENTI che si deve MASSIMIZZARE(se si tratta di FUNZIONE RICAVO o PROFITTO) oppure MINIMIZZARE(se si tratta di FUNZIONE COSTI); b) un INSIEME DI VINCOLI nelle suddette VARIABILI INDIPENDENTI date da EQUAZIONI o DISEQUAZIONI LINEARI A 2 O PIU' VARIABILI; c) un INSIEME DI VINCOLI DI SEGNO,di norma POSITIVO,che esprimono la NON-NEGATIVITA' delle VARIABILI presenti essendo esse GRANDEZZE ECONOMICHE. Se la FUNZIONE LINEARE è a 2 VARIABILI INDIPENDENTI allora e' conveniente utilizzare il METODO GRAFICO e lo stesso metodo è consigliabile quando la FUNZIONE LINEARE ha più di 2 VARIABILI,ma si può ridurre a 2 VARIABILI se nell'insieme DEI VINCOLI vi è qualche equazione che riduce (il numero delle VARIABILI. Se la FUNZIONE LINEARE e' a 3 o più VARIABILI INDIPENDENTI conviene usare il METODO ALGEBRICO o il METODO DEL SIMPLESSO. Modello matematico del problema di P. L. in due variabili, da massimizzare: z = c 1 x 1 + c 2 x 2 soggetta ai vincoli: a 1,1 x 1 + a 1,2 x 2 <= b 1 a 2,1 x 1 + a 2,2 x2 <= b 2. a m,1 x 1 + a m,2 x 2 <= b m x 1, x 2 >= 0 2) METODO GRAFICO Si devono ricercare i MASSIMI E MINIMI DI UNA FUNZIONE ECONOMICA A 2 VARIABILI CON VINCOLI DATI DA DISEQUAZIONI LINEARI. Conviene seguire attentamente i seguenti passaggi: a) si determina il DOMINIO DEI VINCOLI (o REGIONE DEL PIANO x 1 Ox 2 DELLE SOLUZIONI AMMISSIBILI) b) se il DOMINIO DEI VINCOLI e' un POLIGONO si calcolano i VALORI DELLA FUNZIONE DATA NEI VERTICI del POLIGONO e si tra essi il VALORE MASSIMO se la FUNZIONE DATA si deve MASSIMIZZARE, oppure il VALORE MINIMO se la FUNZIONE DATA si deve MINIMIZZARE. c) se il DOMINIO DEI VINCOLI e' ILLIMITATO si esaminano alcune LINEE DI LIVELLO nell'interno del DOMINIO DEI VINCOLI per capire se esiste un punto che ottimizza la FUNZIONE ECONOMICA DATA. N.B) Da quanto detto prima il METODO GRAFICO si può utilizzare se la FUNZIONE e' a 2 VARIABILI,ma possiamo usare tale metodo anche se la FUNZIONE e' a 3 VARIABILI e nei vincoli vie' una equazione. Infatti da tale equazione possiamo calcolare il valore di una VARIABILE rispetto le altre e quindi sostituito tale valore nella FUNZIONE data e negli altri VINCOLI DISEQUAZIONALI ritroveremo una FUNZIONE a 2 VARIABILI con VINCOLI a 2 VARIABILI. In generale si può utilizzare il METODO GRAFICO se la FUNZIONE e' ad n VARIABILI e vi sono m equazioni vincolari e risulta n-m=2. Quindi, per risolvere in via geometrica un problema di programmazione lineare dobbiamo costruire un grafico. In questo grafico dobbiamo disegnare la regione ammissibile che è ricavata disegnando tutti i vincoli del nostro problema. Se l'insieme non è vuoto, tale area può essere rappresentata da un poligono, o da una poligonale illimitata, che possono eventualmente ridursi ad una semiretta, ad un segmento o ad un punto.

3 Nell problema 1 l'insieme delle soluzioni è la regione OABD ossia l'intersezione dei semipiani corrispondenti alle quattro disequazioni del sistema. Poiché in queste ultime compaiono i segni e tutti i punti che si trovano sul contorno della regione, cioè i punti dei segmenti OB, AB, AD, DO appartengono all'insieme soluzione. Fra gli infiniti punti della regione, dobbiamo cercare quelli per i quali x N e y N (n. lavatrici variabili discrete); nel nostro caso alcune soluzioni accettabili corrispondono ai punti: O (0; 0), D (4; 0), A (2; 4), B (0; 6), P (2; 1), Q (3; 2) Per ottenere la soluzione che assicuri il massimo guadagno, cioè la soluzione ottimale, dobbiamo cercare i punti le cui coordinate rendano massimo il valore della funzione obiettivo. Quali punti cercare? Teorema 1. Si può dimostrare in modo del tutto generale che le soluzioni ottimali di un problema di programmazione lineare sono i punti situati sul contorno, e in particolare nei vertici dell'insieme di soluzione. In un problema di programmazione lineare se l'insieme delle soluzioni ammissibili è un poligono chiuso, allora è un poligono chiuso convesso. Teorema (Weierstrass + teo. fondamentale progr. lin.) Se l'insieme delle soluzioni ammissibili è un poligono convesso, il massimo e il minimo esistono e si trovano in un vertice del poligono. Per determinare i punti estremi basta calcolare i valori della funzione obiettivo nei vertici del dominio, se questo è un poligono chiuso. Se il dominio dei vincoli è illimitato si esamina invece l'andamento delle curve di livello per determinare, se esiste, un punto che ottimizza la funzione obiettivo. Se in due vertici consecutivi la funzione obiettivo assume lo stesso valore, essa assume quello stesso valore in tutti i punti del segmento che li unisce. Nel nostro caso, alcuni di tali punti sono i punti O, A, D, B. Possiamo formare la seguente tabella: Punti sul contorno x y Guadagno z = 600x + 400y O(0; 0) 0 0 Z = 0 D(4; 0) 4 0 Z = 2400 C(0; 6) 0 6 Z = 2400 B(2; 4) 2 4 Z = = 2800 La soluzione ottimale è data da x = 2 e y = 4. Perciò, producendo giornalmente 2 lavatrici di tipo A e 4 di tipo l'azienda realizza il massimo guadagno di 2800 euro. Osservazione In generale se la regione di accettabilità è limitata, la funzione obiettivo raggiunge il massimo e il minimo per i valori delle coordinate di uno o più vertici della regione ammissibile e in quella parte di piano individuata dai vincoli. Questo insieme è convesso. La soluzione del nostro problema è un punto (ma può essere anche un insieme di punti) che massimizzi o minimizzi la funzione obiettivo. Se il problema ha soluzione questa la si trova in uno dei vertici della regione ammissibile, se invece il problema ha più soluzioni almeno uno di essi si trova in un vertice del poligono (regione ammissibile) Il valore massimo o minimo sono unici, però ci potrebbero essere più punti che danno una soluzione ottimale. Quindi il massimo o il minimo viene generalmente dato dalle coordinate dei vertici della regione di accettabilità, per il quale passa la retta della funzione obiettivo. Se la retta è parallela ad un lato della regione di accettabilità, la scelta di x e y non sarebbe più unica, ma ogni punto di quel lato darebbe una soluzione ottimale del problema. Nei seguenti diagrammi vengono illustrati questi casi:

4 Per i massimi Per i minimi Problema: Un impresa produce due prodotti A e B disponendo giornalmente di 200 ore operaio e 96 ore macchina. Il processo produttivo è caratterizzato da questi dati: ogni unità del prodotto A richiede 20 minuti di lavoro-operaio e 6 minuti di lavoro-macchina ogni unità del prodotto B richiede 45 minuti di lavoro-operaio e 25 minuti di lavoro-macchina Le condizioni del mercato sono: il profitto lordo derivante dalla vendita di ogni unità di A è 60 e il profitto lordo derivante dalla vendita di ogni unità di B è 200. Determinare la quantità che occorre produrre di ciascun prodotto affinché il profitto lordo complessivo sia massimo. Percorso risolutivo Analizziamo il testo e schematizziamolo Risorse A B Tempo disponibile Algebra x y per ogni risorsa Impieghi lavoro operaio unitario 20 m 45 m m 20x + 45y lavoro macchina unitario 6 m 25 m 5760 m 6x + 25y profitto lordo unitario 60,00 200,00 Rendere massimo il profitto totale z = 60x + 200y Nota bene: Abbiamo convertito il tempo disponibile per ogni risorsa da ore in minuti, ovvero nel testo leggiamo: l'impresa dispone giornalmente di 200 ore operaio e 96 ore macchina che vuol dire tradotto in minuti: 200 ore = min = min 96 ore = min = 5760 min. Si tratta quindi di risolvere un problema di programmazione lineare: Determinare il massimo della funzione z = 60x + 200y (funzione obiettivo da massimizzare) soggetta ai seguenti vincoli tecnici più gli ovvi vincoli di segno: 20x + 45y x + 25y 5760 vincoli tecnici + vincoli di segno x y Risolviamo il sistema di disequazioni: 1. Individuiamo i semipiani soluzione di ciascuna disequazione. 2. Determiniamo la regione di intersezione delle soluzioni. Punto 1 Alla prima disequazione associamo la corrispondente equazione 20x + 45y = (semplifichiamo i coefficienti numerici per 5) 4x + 9y = 2400 esplicitando la variabile y

5 y = x + = x y (retta a) Alla seconda disequazione associamo la corrispondente equazione 6x + 25y = = x y = x + (retta b) 25 5 Tracciamo le rette nel piano cartesiano: y (semplifichiamo il termine noto per 5) Le ultime due disequazioni escludono il secondo, terzo e quarto quadrante. Il semipiano che è soluzione della prima disequazione è quello non evidenziato in arancione; il semipiano che è soluzione della seconda disequazione è quello non evidenziato in celeste/verde dove si sovrappone celeste con arancione): La Regione Ammissibile: insieme di punti del piano cartesiano le cui coordinate sono soluzione del sistema di disequazioni è quella bianca. Quindi troviamo che il dominio dei vincoli è soddisfatto da tutti i punti che stanno nella regione evidenziata in bianco nella figura sopra. Quindi il campo di scelta è costituito dai vertici del quadrilatero OCAB. Le coordinate di tali vertici sono O(0;0); B(0; 230,4); C(600; 0) e A (punto di intersezione tra le rette a e b) y = x y = x x + = x = 100x = 54x = 46x = 8160 = x = 177,39 y = 187,83 A (177,39; 187,83) Troviamo quindi : z(0;0)= 0 z(0; 230,4)= 200*230,4= z(177,39; 187,83) = 60*177, *187,83= z(600; 0) = E si conclude che subordinatamente ai vincoli esistenti, conviene produrre la quantità x = 177,39 di A e y = 187,83 di B, affinché il profitto sia massimo con z = Riassumendo: Risoluzione di un problema di programmazione lineare 1. Costruisci un modello matematico per il problema: a) determina le incognite e scrivi la funzione obiettivo;

6 b) scrivi i vincoli in forma di disequazioni lineari. 2. Rappresenta la regione di accettabilità nel piano cartesiano e determina le coordinate dei vertici. 3. Calcola il valore della funzione obiettivo in ogni vertice e stabilisci la soluzione ottimale. 4. Rappresenta la funzione obiettivo graficamente per stabilire il valore massimo o minimo cercato, lavorando con le rette parallele a quella passante per l'origine. Problema Un dietologo deve fornire una dieta a base di due alimenti A1 e A2 in modo che abbia almeno 2500 calorie e 3500 unità di vitamina B12. Sapendo che un chilogrammo di A1 ha 1400 calorie e 1000 unità di vitamina e che un chilogrammo di A2 ha 800 calorie e 2000 unità di vitamina, si vuol conoscere come deve essere costituita la dieta per essere la più economica possibile, se un chilogrammo di A1 costa 20 euro e un chilogrammo di A2 15 euro. Schematizziamo i dati del problema mediante una tabella: Calorie per Kg Vitamina per Kg Costo al Kg A1 A2 minimo consentito Siano x e y rispettivamente i chilogrammi di prodotto A1 e A2 da prescrivere; il costo complessivo della dieta si potrà rappresentare mediante l'espressione: È ovvio che non tutte le coppie (x; y) rappresentano soluzioni possibili per il problema proposto. Il numero di calorie minimo espresso dalla coppia (x; y) è:... Il numero di unità di vitamina espresso dalla coppia (x; y) è:... Le due quantità in peso devono essere positive: Dunque per risolvere il problema posto, dovremmo determinare le soluzioni del sistema che racchiude tutte le condizioni da rispettare (vincoli): 1400 x + 800y x y 3500 x y E successivamente, calcolare nell insieme di tali soluzioni il più piccolo valore di z z =20x + 15y Analizziamo la risoluzione del problema: Risolviamo il sistema di disequazioni: 3. Individuiamo i semipiani soluzione di ciascuna disequazione. 4. Determiniamo la regione di intersezione delle soluzioni. Quindi troviamo che il dominio dei vincoli è soddisfatto da tutti i punti che stanno nella regione evidenziata in bianco nel grafico a fianco. Si tratta di un poliedro aperto. Dopo aver individuato la regione ammissibile, successivamente bisogna disegnare le curve di livello. L andamento delle curve di livello ci fa capire quale punto all interno della regione ammissibile minimizza la funzione obiettivo. Per trovare il punto di ottimo dobbiamo disegnare il fascio di rette (20x + 15y = k fascio di rette parallelo) che definiscono l insieme delle curve di livello. Fatto questo vediamo l andamento di queste rette tratteggiate e scopriamo qual è il punto in cui si minimizza la funzione obiettivo (la prima retta che interseca il poliedro aperto). Quindi il minimo e dato dalle coordinate del vertice A del poliedro aperto (regione di ammissibilità), per il quale passa la retta della funzione obiettivo. E il costo minimo è: z = Coordinate del punto A: 1400 x + 800y = x y = 3500

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati

PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati prof. Guida PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati sono quei problemi nei quali gli effetti della scelta sono noti e immediati ESERCIZIO

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Le funzioni di due variabili

Le funzioni di due variabili Le funzioni di due variabili 1)DEFINIZIONE Se consideriamo una coppia di numeri reali X,Y e ad essi facciamo corrispondere un altro numero reale Z, allora abbiamo determinato una funzione reale di due

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

PROGRAMMA CLASSE V I. T. C.

PROGRAMMA CLASSE V I. T. C. PROGRAMMA CLASSE V I. T. C. A.S 2009/10 Disciplina: Matematica Generale ed Applicata Titolo modulo Contenuti (suddivisi in unità didattiche) 1 Geometria analitica U.D.1 Equazione retta in forma esplicita

Dettagli

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1 Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

Studio di una funzione ad una variabile

Studio di una funzione ad una variabile Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA La ricerca operativa può essere considerata: L applicazione del metodo scientifico da parte di gruppi interdisciplinari a problemi che implicano il controllo

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Angela GHIRALDINI. Formulata dalla OPERTIONS RESEARCH SOCIETY of AMERICA. Questa definizione fa riferimento a due concetti in particolare :

Angela GHIRALDINI. Formulata dalla OPERTIONS RESEARCH SOCIETY of AMERICA. Questa definizione fa riferimento a due concetti in particolare : Angela GHIRALDINI RICERCA OPERATIVA DEFINIZIONE Procedimento della scienza moderna di fronte ai complessi problemi di scelta che sorgono nella direzione dei grandi sistemi di uomini, macchine, materiale

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano ESAMI DI STATO SESSIONE ORDINARIA 2014/2015 CLASSE V SEZIONE E PROGRAMMA di MATEMATICA APPLICATA Prof. ONORATI Mariano Libro/i di testo in adozione: Matematica.rosso vol.5 Autori: Bergamini Trifone - Barozzi

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Definizione DEFINIZIONE

Definizione DEFINIZIONE Definizione Funzione reale di due variabili reali Indichiamo con R 2 l insieme di tutti i vettori bidimensionali. Dato un sottoinsiemed R 2, una funzione f: D R è una legge che assegna a ogni punto (x,

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Modelli di Programmazione Lineare

Modelli di Programmazione Lineare Capitolo 2 Modelli di Programmazione Lineare 2.1 Modelli di allocazione ottima di risorse Esercizio 2.1.1 Un industria manifatturiera può fabbricare 5 tipi di prodotti che indichiamo genericamente con

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli