misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x"

Transcript

1 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto un punto, che chiamiamo l origine. Scegliamo poi tre rette perpendicolari che si incontrano in : due rette orizzontali come assi delle e delle, e la terza verticale come asse delle. Fissiamo su di esse un verso edun unità di misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali, che indicano rispettivamente le proiezioni di P sugli assi delle, e. P Fig.. Il punto P = ( nello spazio R 3. Le coordinate, e 3 individuano il punto P in modo unico. Si possono identificare quindi i punti P dello spazio con le terne : P =. Ad esempio, i punti sull asse delle sono quelli che soddisfano = =, i punti sull asse delle quelli che soddisfano = = e i punti sull asse delle quelli che soddisfano = =. L origine è il punto. L insieme delle terne ordinate si chiama spazio cartesiano e si indica con R 3 : R 3 = { :,, R}. Nello spazio R 3, insieme agli assi coordinati, si considerano anche i piani coordinati: sono i tre piani ortogonali che si intersecano nell origine, ognuno dei quali contiene due dei 3 assi coordinati. Essi sono: il piano (, i cui punti soddisfano =, il piano (, i cui punti soddisfano = ed il piano (, i cui punti soddisfano =.

2 = = = Fig.2. I piani coordinati in R 3 Come nel caso del piano, indicheremo in seguito con estremo il punto. anche il vettore uscente dall origine e di Fig.3. Il vettore = (. Il vettore = di lunghezza zero, si chiama vettore nullo. Per semplicità di notazione, scriveremo spesso sottointendendo = ; similmente scriveremo y per y y 2, etc... y 3 2

3 Definizione. Siano e y due vettori in R 3. Allora la somma + y di e y è il vettore dato da + y = + y + y 2 + y 3 Il vettore opposto del vettore è il vettore = La differenza y dei vettori e y è il vettore y = y y 2 y 3 Definizione. Sia λ R. Il prodotto di per λ è il vettore dato da λ = λ λ λ Come nel piano, anche nello spazio la somma tra vettori ha un interpretazione geometrica. Osserviamo che due vettori qualunque e y in R 3 sono contenuti in un piano π passante per, e y. Il vettore somma + y si trova applicando la regola del parallelogramma ai vettori e y sul piano π. Per costruzione, + y è contenuto nel piano π. Resta solo da verificare che le coordinate di + y così ottenute sono effettivamente + y + y 2 + y 3 Anche in R 3, il vettore differenza y è paralello alla retta passante per e y; la lunghezza di y è uguale alla distanza fra e y. y +y -y Fig.4. La somma + y, la differenza y. Osservazione. La costruzione appena discussa è utile perché riconduce la somma di vettori nello spazio ad una somma di vettori sul piano. Ci permette inoltre di definire l angolo ϑ fra due vettori e y dello spazio, 3

4 come l angolo da essi formato nel piano π che li contiene. Nel caso in cui e y sono uno multiplo dell altro, il piano π non è unico ed i vettori, y, + y, y stanno tutti sulla stessa retta. In questo caso, l angolo fra e y è ϑ =. y θ Fig.5 L angolo ϑ fra e y. La somma fra vettori gode delle seguenti proprietà: Proposizione 4.. (i (Proprietà associativa della somma Per ogni, y, z R 3 ( + y + z = + (y + z; (ii (Proprietà commutativa Per ogni, y R 3 + y = y + ; (iii (Proprietà associativa del prodotto Per ogni R 3 e λ, µ R λ(µ = (λµ; (iv (Proprietà distributiva Per ogni, y R 3 e λ, µ R λ( + y = λ + λy, (λ + µ = λ + µ. Dimostrazione. Anche in questo caso, le proprietà (i, (ii, (iii e (iv sono semplici conseguenze delle analoghe proprietà dei numeri reali. Definizione. (Prodotto scalare. Dati due vettori e y in R 3 il prodotto scalare y è il numero reale dato da y = y + y 2 + y 3. Il prodotto scalare gode delle seguenti proprietà 4

5 Proposizione 4.2. (i (Proprietà commutativa Per ogni, y R 3 y = y ; (ii (Proprietà distributiva Per ogni, y, z R 3 (y + z = y + z; (iii (Omogeneità Per ogni, y R 3 ed ogni λ R λ( y = (λ y = (λy; (iv (Positività Per ogni R 3, = se e soltanto se =. Dimostrazione. La dimostrazione è molto simile a quella della Prop..2 ed è lasciata al lettore. Definizione. La norma di un vettore R 3 è definita da = = Per il Teorema di Pitagora, la norma del vettore è uguale alla lunghezza del segmento congiungente e. Equivalentemente, la norma di è la distanza del punto dall origine Fig.6. Il Teorema di Pitagora in R 3. Analogamente, dalla Fig.4 vediamo che y è la distanza fra i punti e y y 2. Usando la norma, y 3 diamo un interpretazione geometrica del prodotto scalare. Proposizione 4.3. Siano e y due vettori in R 3. (i Allora y = y cos ϕ dove ϕ è l angolo fra i vettori e y. (ii I vettori e y sono perpendicolari se e soltanto se y =. 5

6 Dimostrazione. Sia π un piano che passa per, e y. Consideriamo in π il triangolo di vertici i punti, e y. Dalla Fig.4, vediamo che i lati del triangolo hanno lunghezze, y e y. Applicando la regola del coseno troviamo y 2 = 2 + y 2 2 y cos ϕ. Dalla definizione stessa della norma abbiamo e quindi ( y 2 + ( y ( y 3 2 = y 2 + y y y cos ϕ 2 y 2 y 2 2 y 3 = 2 y cos ϕ come richiesto. Per la parte (ii, osserviamo che cos ϕ = se e soltanto se ϕ = ±π/2, cioè se e soltanto se ϕ è un angolo retto. Corollario 4.4. (Disuguaglianza di Cauchy-Schwarz. Siano e y vettori in R 3. Allora y y. Dimostrazione. Questo segue dal fatto che cos ϕ. (Vedi l Eserc..B. Proposizione 4.5. Siano e y vettori in R 3. Allora (i (Disugualianza triangolare + y + y ; (ii Per ogni λ R λ = λ. Dimostrazione. (i Sia π un piano che passa per, e y. In π c è il triangolo di vertici, e + y. Poiché i lati hanno lunghezze, y e + y, la disuguaglianza triangolare in R 3 segue dalla disuguaglianza triangolare nel piano. Una seconda dimostrazione dello stesso fatto si può ottenere anche usando la disuguaglianza di Cauchy-Schwarz del Cor.4.4: + y 2 = ( + y 2 + ( + y ( + y 3 2 = y 2 + y y ( y + y 2 + y 3 = 2 + y y, 2 + y y = ( + y 2. Poiché + y e + y sono numeri non negativi, possiamo estrarne le radici quadrate ottenendo la disuguaglianza cercata. (ii Direttamente dalla definizione della norma troviamo λ 2 = (λ 2 + (λ 2 + (λ 2 = λ 2 ( = λ 2 2. Estraendo le radici quadrate, otteniamo come richiesto. λ = λ Come applicazione del prodotto scalare, calcoliamo le proiezioni ortogonali di un vettore R 3 su una retta l o su un piano β, passanti per l origine. Proposizione 4.6. Sia un vettore in R 3. (i La proiezione ortogonale π( di sulla retta l passante per l origine e parallela al vettore y è data da π( = cy, ove c = y y 2 ; 6

7 (ii La proiezione ortogonale π( di sul piano β passante per l origine di equazione n = è data da π( = λn, ove λ = n n n. Dimostrazione. (i La dimostrazione è del tutto simile a quella della Proposizione.6 ed è lasciata al lettore. (ii Sia π( la proiezione ortogonale di sul piano β. Allora π( è un vettore perpendicolare a β e dunque soddisfa π( = λn per un opportuno scalare λ. Poiché π( appartiene a β vale n π( =, da cui si ricava λn n = n e quindi λ = n n n come richiesto. π β ( β Fig.7. La proiezione ortogonale del vettore sul piano β. Introduciamo adesso il prodotto vettoriale in R 3 : si noti che il prodotto vettoriale non è definito nel piano R 2, né in R n per n > 3. È una nozione che esiste solo in R3. Il prodotto vettoriale è un applicazione che ad una coppia di vettori, y R 3 associa un terzo vettore y R 3. Definizione. Siano, y R 3. Il prodotto vettoriale y di e y è il vettore di R 3 definito da y = 2y 3 y 2 y y 3 y 2 y Proposizione 4.7. Siano, y R 3. Il prodotto vettoriale y gode delle seguenti proprietà: (i y = y; (ii Il vettore y è perpendicolare sia ad che a y: ( y =, y ( y = ; (iii La norma di y soddisfa dove ϕ è l angolo fra e y. y = y sen ϕ, 7

8 Dimostrazione. (i Direttamente dalla definizione, abbiamo Per dimostrare (ii, calcoliamo y = y 2 y 3 y 3 y = y. y y 2 ( y = 2y 3 y 2 y y 3 y 2 y Similmente troviamo y ( y =. Per la parte (iii abbiamo 2 y 2 sen 2 ϕ = 2 y 2 ( cos 2 ϕ = ( y 3 y 2 + ( y y 3 + ( y 2 y =. = 2 y 2 ( y 2 = ( (y 2 + y y 2 3 ( y + y 2 + y 3 2 = y y y 2 + 2y y 2 + 3y y y 2 2 y y 3 2 y 2 y 3 = ( y 2 y 2 + ( y 3 y 2 + ( y 3 y 2 2 = y 2. Estraendo le radici quadrate, troviamo l uguaglianza cercata. Questo conclude la dimostrazione della proposizione. Proposizione 4.8. Il parallelepipedo di spigoli i vettori, y e z ha volume V dato da V = y 2 z 3 + y z 2 + z y 3 z 2 y 3 y z 3 z y 2 = det y z y 2 z 2 y 3 z 3. Dimostrazione. Il volume V del parallelepipedo di spigoli, y e z è uguale all area del parallelogramma di vertici,, y e + y moltiplicata per l altezza. L altezza è uguale alla lunghezza della proiezione del vettore z sulla retta che passa per e y. y θ z y ϕ Fig.8. Il parallelepipedo di spigoli, y e z. 8

9 Per la Prop..7, l area del parallelogramma è uguale a y sen ϕ, ove ϕ è l angolo fra i vettori e y, e la lunghezza della proiezione di z sulla retta per e y è uguale a z cos ϑ, ove ϑ è l angolo fra i vettori z e y. Il volume V è quindi dato da V = y sen ϕ z cos ϑ = y z cos ϑ = z ( y = z ( y 3 y 2 + z 2 ( y y 3 + z 3 ( y 2 y. Osserviamo infine che l espressione z ( y 3 y 2 +z 2 ( y y 3 +z 3 ( y 2 y coincide col determinante della matrice y z y 2 z 2, y 3 z 3 e ciò completa la dimostrazione della Proposizione. Definizione. L orientazione Or(, y, z di tre vettori, y, z R 3 è il segno del determinante det y z y 2 z 2 y 3 z 3 Si dice che, y, z sono orientati positivamente se Or(, y, z >. Per esempio, i vettori e, e 2 e e 3 sono orientati positivamente perchè det = + + =. Scambiare due vettori cambia il segno dell orientazione: Or(y,, z = Or(, y, z. Geometricamente, tre vettori, y e z sono orientati positivamente se possono essere identificati rispettivamente con il medio, il pollice e l indice della mano destra. Altrimenti sono orientati negativamente e possono essere identificati rispettivamente con il medio, il pollice e l indice della mano sinistra. z indice z indice y pollice medio medio y pollice Mano sinistra Mano destra Fig.9. L orientazione. 9

10 Osservazione. I vettori {, y e y} formano una terna di vettori orientata positivamente. Esercizi. (4.A Siano = ( 2 3 e y = ( 2 3 due vettori in R 3. (i Calcolare y, + 3y e 2 + y. (ii Calcolare le lunghezze di questi vettori. (4.B Siano e y i vettori dell Eserc.4.A. (i Calcolare i prodotti scalari y, e anche (5 + 7y. (ii Calcolare il coseno dell angolo fra e y. (iii Calcolare il coseno dell angolo fra e + y. (4.C Sia il vettore dell Eserc.4.A. (i Trovare un vettore v tale che v =. (ii Trovare un vettore w tale che { w =, v w =. (4.D Sia v R 3 un vettore non nullo. Sia λ = v. (i Calcolare la lunghezza di λ v. (ii Trovare un vettore parallelo a v che abbia lunghezza /λ. (4.E Siano e y due vettori in R 3. Sia v = (i Calcolare le distanze y, v e y v. (ii Far vedere che v è il punto medio fra e y. (4.F Siano e y i due vettori dell Eserc.4.A. (i Calcolare y. (ii Calcolare ( y. (iii Calcolare l area del triangolo di vertici, e y. ( ( + y /2 ( + y 2/2. ( + y 3/2 ( ( (4.G Siano = e y = 2. (i Trovare un vettore v perpendicolare sia a che a y. (ii Trovare un vettore come nella parte (i, di lunghezza. (4.H Siano, y e z i vettori (, 2 ( 2, 2 ( 3. (i Calcolare il volume del parallelepipedo che ha come spigoli i vettori, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori 2, y e z. (iii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + y, y e z. (iv Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. (4.I Siano, y e z i vettori in R 3 dati da ( 6 2, 3 ( 2 3, 6 ( (i Calcolare le lunghezze di, y e z e i coseni degli angoli fra, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. ( ( ( (4.J Siano = e y = e z =. 2 3.

11 (i Calcolare i vettori ( y z ed (y z. (ii Calcolare ( y z ed (y z. (4.K Siano, y e z i vettori dell Eserc.4.H. (i Calcolare l orientazione Or(, y, z. (ii Calcolare l orientazione Or(y, z,. (iii Calcolare l orientazione Or(, y, + y. (4.L Siano,,..., 8 R 3 gli otto punti in R 3 dati da ( ( =, =, = 5 = ( 5, 6 = ( 5, 7 = ( 2 ( 2 5 (, 4 = (, 8 =. 5 (i Far vedere che,, e 4 sono i vertici di un parallelogramma. (ii Far vedere che i + 5 = i+4 per ogni i, i 4. (iii Far vedere che,..., 8 formano i vertici di un parallelepipedo. Calcolarne il volume. (4.M Siano, y, z R 3 e supponiamo che Or(, y, z = +. (i Far vedere che i vettori, y e z si possono mettere in ordine in sei modi diversi:, z, y oppure z,, y ecc. (ii Per tutti i sei modi calcolare l orientazione: Or(, z, y, Or(z,, y... ecc. (4.N Siano α, β, γ R numeri non nulli che soddisfano α + β + γ =. Consideriamo i seguenti vettori in R 3 : p = ( αβ βγ, q = γα ( βγ γα, r = αβ ( γα αβ. βγ (i Calcolare gli angoli fra i vettori p, q e r. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori p, q e r.

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI Indice 1 La Geometria analitica: la retta 1.1 Introduzione......................................... 1. Il piano cartesiano.....................................

Dettagli

MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico)

MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) 1. Alcuni obiettivi da far conseguire agli alunni entro la quinta classe della scuola primaria riguardano sostanzialmente un capitolo della

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Moti e sistemi rigidi

Moti e sistemi rigidi Moti e sistemi rigidi Dispense per il corso di Meccanica Razionale 1 di Stefano Siboni 1. Moto rigido di un sistema di punti Sia dato un sistema S di N 2 punti materiali P i, i = 1,..., N. Per configurazione

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

Capitolo 3. Il metodo visto nella geometria dello spazio duale. 3.1 Definizione di spazio duale

Capitolo 3. Il metodo visto nella geometria dello spazio duale. 3.1 Definizione di spazio duale Il metodo visto nella geometria dello spazio duale Nel precedente capitolo e stato esposto in linea generale il metodo a luce debolmente strutturata enfatizzando soprattutto la localizzazione temporale

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime Metodi e strumenti Nelle lezioni in aula si farà uso: [] della lezione dialogata (utilizzata di norma, e che prevede lo sviluppo anche

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali.

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali. 1 I vettori ordinari In questo capitolo approfondiremo innanzitutto lo studio delle proprieta geometriche del piano cartesiano. I concetti e i risultati di cui ci occuperemo saranno quindi generalizzati,

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Vettori Teoria ed Esercizi

Vettori Teoria ed Esercizi Vettori Teoria ed Esercizi Edizioni H ALPHA Lorenzo Roi c Edizioni H ALPHA Marzo 1999 (formato PDF) La figura di facciata costituisce un particolare dell insieme di Mandelbrot ingrandito 44 10 8 volte

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

LEZIONI DI TOPOGRAFIA

LEZIONI DI TOPOGRAFIA Prof. Ing. Paolo Saija LEZIONI DI TOPOGRAFIA (Appunti per l esame di abilitazione alla professione di Geometra) Anno 2006 II a Edizione 1 SOMMARIO LA TOPOGRAFIA Grandezze geometriche e unità di misura

Dettagli

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA LA GEOMETRIA ANALITICA DELLO SPAZIO CONVEGNO MATHESIS Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 Perché Assenza di ogni riferimento alla geometria analitica dello spazio nel quadri di Mondrian La

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A.

C.d.L. Scienze della Formazione Primaria Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A. C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra Modulo di GEOMETRIA A. Gimigliano, A.A. 009/10 Note supplementari per il corso INDICE 0. INTRODUZIONE. 1. LA GEOMETRIA

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

4 Funzioni di due o più variabili reali

4 Funzioni di due o più variabili reali 4 Funzioni di due o più variabili reali Dopo aver studiato in dettaglio le funzioni di una variabile reale, affrontiamo ora alcuni aspetti della teoria delle funzioni di due o più variabili reali. La nostra

Dettagli

AREA LOGICO-MATEMATICA

AREA LOGICO-MATEMATICA SCUOLA DELL INFANZIA AREA LOGICO-MATEMATICA TRAGUARDI SCUOLA DELL INFANZIA 3 ANNI 4 ANNI 5 ANNI NUCLEO: NUMERO E SPAZIO PREREQUISITI -Raggruppare e ordinare secondo criteri diversi, confrontare e valutare

Dettagli

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA Una Geometria non può essere più vera di un altra; può essere solamente più comoda. Ora la Geometria Euclidea è e resterà più comoda H. Poincaré

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

SISSIS. Sezione di Catania Anno 2003-2004 V Ciclo. LA STATICA: Le macchine semplici. Elena La Guidara

SISSIS. Sezione di Catania Anno 2003-2004 V Ciclo. LA STATICA: Le macchine semplici. Elena La Guidara SISSIS Sezione di Catania Anno 2003-2004 V Ciclo LA STATICA: Le macchine semplici di Elena La Guidara Tesina del Corso di Fondamenti della Fisica I Prof. V. Bellini INDICE 1. STATICA DEL PUNTO 1.1 Punto

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

Proiezioni Grafica 3d

Proiezioni Grafica 3d Proiezioni Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli