Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O."

Transcript

1 Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1

2 Circonferenza goniometrica Trigonometria - Corso di matematica - Alessia Ceccato

3 Circonferenza goniometrica Trigonometria - Corso di matematica - Alessia Ceccato 3

4 Il Il radiante Definizione: Il rapporto tra la lunghezza dell arco rettificato e il raggio è un numero puro, in quanto rapporto di due lunghezze. Quando l arco rettificato è lungo quanto il raggio (come l arco AB in figura), diremo che misura un radiante. Anche l angolo AOB misura un radiante. Trigonometria - Corso di matematica - Alessia Ceccato 4

5 Corrispondenza gradi-radianti Trigonometria - Corso di matematica - Alessia Ceccato 5

6 Corrispondenza gradi-radianti Trigonometria - Corso di matematica - Alessia Ceccato 6

7 Trigonometria - Corso di matematica - Alessia Ceccato 7

8 Angoli positivi e negativi Un angolo si dice orientato quando è stabilito quale dei due lati deve considerarsi come primo lato. Un angolo orientato si dice positivo quando è descritto dal lato origine mediante una rotazione antioraria, negativo in caso contrario. Si chiama misura di un angolo orientato la sua misura assoluta presa con il segno + o con il segno a seconda che l'angolo sia positivo o negativo. Trigonometria - Corso di matematica - Alessia Ceccato 8

9 Trigonometria - Corso di matematica - Alessia Ceccato 9

10 Seno e coseno Trigonometria - Corso di matematica - Alessia Ceccato 10

11 Seno e coseno Trigonometria - Corso di matematica - Alessia Ceccato 11

12 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 1

13 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 13

14 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 14

15 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 15

16 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 16 NON E' INVERTIBILE

17 La La funzione ARCOSENO Trigonometria - Corso di matematica - Alessia Ceccato 17

18 La La funzione SENO Trigonometria - Corso di matematica - Alessia Ceccato 18

19 La La funzione ARCOSENO Trigonometria - Corso di matematica - Alessia Ceccato 19

20 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 0

21 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 1

22 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato

23 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 3

24 La La funzione COSENO NON E' INVERTIBILE Trigonometria - Corso di matematica - Alessia Ceccato 4

25 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 5

26 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 6

27 La La funzione COSENO Trigonometria - Corso di matematica - Alessia Ceccato 7

28 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 8

29 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 9

30 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 30

31 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 31

32 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 3

33 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 33

34 La La funzione TANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 34

35 La La funzione ARCOTANGENTE Trigonometria - Corso di matematica - Alessia Ceccato 35

36 Relazioni Trigonometria - Corso di matematica - Alessia Ceccato 36

37 Relazioni Esempi: cos (x) = ½ sin( x) sin( x) = cos( x) = 1 1/ 1 x [0, π/] 4 = = 3 = x π [, π Trigonometria - Corso di matematica - Alessia Ceccato 37 ]

38 Relazioni sin (x) + cos (x) = tan ( x ) = cos ( x) 1 cos ( x) = 1+ tan ( x) cos( 1 x) = ± 1+ tan ( x ) Trigonometria - Corso di matematica - Alessia Ceccato 38

39 Angoli complementari La cui somma è π/: sin(π/ α) = cos(α) cos(π/ α) = sin(α) tan(π/ α) = cot(α) cot(π/ α) = tan(α) y x Trigonometria - Corso di matematica - Alessia Ceccato 39

40 Angoli anti-complementari sin(π/+α) = cos(α) cos(π/+α) = - sin(α) tan(π/+α) = - cot(α) cot(π/+α) = - tan(α) y x Trigonometria - Corso di matematica - Alessia Ceccato 40

41 Angoli supplementari La cui somma è π: sin(π α) = sin(α) cos(π α) = - cos(α) tan(π α) = - tan(α) cot(π α) = - cot(α) y x Trigonometria - Corso di matematica - Alessia Ceccato 41

42 Angoli anti-supplementari sin(π+α) = - sin(α) cos(π+α) = - cos(α) tan(π+α) = tan(α) cot(π+α) = cot(α) y x Trigonometria - Corso di matematica - Alessia Ceccato 4

43 Angoli esplementari ed ed opposti sin(π α) =sin( α)= - sin(α) cos(π α) =cos( α)= cos(α) tan(π α) =tan( α)= - tan(α) cot(π α) =cot(-α)= - cot(α) y x Trigonometria - Corso di matematica - Alessia Ceccato 43

44 Addizione e sottrazione cos (α ± β) = cos α cos β + sen α sen β sen (α ± β ) = sen α cos β ± cos α sen β tg α ± tg β tg (α ± β ) = 1 + tg α tg β sinα=cos( π/-α) Trigonometria - Corso di matematica - Alessia Ceccato 44

45 Duplicazione sen α = sen α cos α cos α = cos α - sen α = 1 - sen = cos 1 tg α = tg α 1 - tg α Trigonometria - Corso di matematica - Alessia Ceccato 45

46 Bisezione Queste formule di ricavano da quella di duplicazione del coseno sostituendo α / ad α sen α / = ± 1 cos α cos α / = ± 1 + cos α sen α 1 cos α tg α / = = 1 + cos α sen α Trigonometria - Corso di matematica - Alessia Ceccato 46

47 Formule di di prostaferesi sen p + sen q = sen sen p - sen q = cos cos p + cos q = cos cos p - cos q = - sen p + q p - q cos p + q p - q sen p + q p - q cos p + q p - q sen Trigonometria - Corso di matematica - Alessia Ceccato 47

48 Identità goniometriche Si chiama identità goniometrica ogni uguaglianza tra espressioni, contenenti funzioni goniometriche di uno o più angoli che è verificata qualsiasi siano i valori attribuiti alle misure degli angoli. Eccettuati gli eventuali valori per i quali almeno una delle due espressioni perde di significato. Es cos(p+q)=cos(p)cos(q)-sen(p)sen(q) Trigonometria - Corso di matematica - Alessia Ceccato 48

49 Trigonometria - Corso di matematica - Alessia Ceccato 49 Esercizi α α α α α cos 1 cos = + + tg sen tg α α α α α α α α α α α α α α α α α α α α α cos 1 cos 1 cos 1 cos cos cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 = = + = + = + + = + + sen sen sen sen sen sen

50 trigonometria Per risolvere un triangolo rettangolo bisogna determinare le misure dei lati e degli angoli che lo compongono. Studiamo, quindi le relazioni che intercorrono tra le misure lineari e circolari di un triangolo rettangolo Trigonometria - Corso di matematica - Alessia Ceccato 50

51 Risoluzione dei triangoli rettangoli Utilizzando la similitudine dei triangoli riusciamo a risolvere facilmente i triangoli retttangoli Trigonometria - Corso di matematica - Alessia Ceccato 51

52 Teorema 1 In un triangolo rettangolo la misura di un cateto è uguale a quella dell ipotenusa moltiplicata per il seno dell angolo opposto al cateto o per il coseno dell angolo adiacente al cateto a = c sen α = c cos β b = c sen β = c cos α Trigonometria - Corso di matematica - Alessia Ceccato 5

53 Teorema dei dei seni In un triangolo qualunque le misure dei lati sono proporzionali ai seni degli angoli opposti. a senα = b senβ = c senγ Trigonometria - Corso di matematica - Alessia Ceccato 53

54 Equazioni trigonometriche Trigonometria - Corso di matematica - Alessia Ceccato 54

55 Equazioni trigonometriche Trigonometria - Corso di matematica - Alessia Ceccato 55

56 Equazioni trigonometriche Trigonometria - Corso di matematica - Alessia Ceccato 56

57 Equazioni trigonometriche Trigonometria - Corso di matematica - Alessia Ceccato 57

Appunti di Trigonometria

Appunti di Trigonometria Appunti di Trigonometria Paolo Ciampanelli 9 agosto 005 Copyright Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1

Dettagli

Funzioni trascendenti

Funzioni trascendenti Funzioni trascendenti Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 17 novembre 007 Sommario Esponiamo la teoria fondamentale delle funzioni

Dettagli

Trigonometria. Trigonometria del Triangolo Rettangolo

Trigonometria. Trigonometria del Triangolo Rettangolo Trigonometria Trigonometria del Triangolo Rettangolo Quando si tratta di triangoli rettangoli, tutto diventa speciale : ci sono teoremi che li caratterizzano e particolarità che li rendono assai comodi

Dettagli

Trigonometria 30 = 3. l angolo inferiore ad un angolo retto per un trentesimo di quadrante è ampio un quadrante meno un trentesimo e cioè 87.

Trigonometria 30 = 3. l angolo inferiore ad un angolo retto per un trentesimo di quadrante è ampio un quadrante meno un trentesimo e cioè 87. Trigonometria Introduzione storica La trigonometria nasce dal problema pratico di calcolare a partire dalla misura di tre elementi di un triangolo (di cui almeno un lato) le misure dei tre elementi mancanti.

Dettagli

Anno 4 I Triangoli qualsiasi

Anno 4 I Triangoli qualsiasi Anno 4 I Triangoli qualsiasi 1 Introduzione In questa lezione descriveremo i triangoli qualunque. Enunceremo i teoremi su questi triangoli e illustreremo le loro applicazioni. Al termine della lezione

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

PROGRAMMAZIONE DISCIPLINARE

PROGRAMMAZIONE DISCIPLINARE LICEO GINNASIO JACOPO STELLINI Piazza I Maggio, 26-33100 Udine Tel. 0432 504577 Fax. 0432 511490 Codice fiscale 80023240304 e-mail: info@liceostellini.it - Indirizzo Internet: www.stelliniudine.it - PEC:

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

y = f(x), u = g(r), v(t) = at + v 0, f(π) = 1 f(0) = b...

y = f(x), u = g(r), v(t) = at + v 0, f(π) = 1 f(0) = b... 40 Funzioni Dato un insieme D in R, chiamato dominio, insieme degli argomenti e una applicazione univoca di D in un insieme C in R, chiamato codominio, insieme delle immagini, immagine, la rappresentazione

Dettagli

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi

Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi Corso di preparazione agli Esami di abilitazione alla libera professione di Geometra Sessione 009 TOPOGRAFIA Docente Ing. Aldo Piantoni Come misuriamo

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2010/11 Docente: Antonio Gottardo Materia: Matematica Classe: 4BSo Liceo delle Scienze Sociali 1. Nel primo consiglio di classe sono stati definiti gli obiettivi

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

INDICAZIONI PER LO STUDIO ESTIVO CLASSE 4 A. Allievi con debito formativo.

INDICAZIONI PER LO STUDIO ESTIVO CLASSE 4 A. Allievi con debito formativo. INDICAZIONI PER LO STUDIO ESTIVO CLASSE A. Allievi con debito formativo. Svolgere gli esercizi n. 2 5 7-9 20 28 2 8 dalla scheda dei compiti assegnati al resto della classe. Svolgere i seguenti esercizi

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

FUNZIONI GONIOMETRICHE INVERSE ed applicazione alla risoluzione di equazioni goniometriche ~~~~~~~~~~~~~

FUNZIONI GONIOMETRICHE INVERSE ed applicazione alla risoluzione di equazioni goniometriche ~~~~~~~~~~~~~ FUNZIONI GONIOMETRICHE INVERSE ed applicazione alla risoluzione di equazioni goniometriche ~~~~~~~~~~~~~. LE EQUAZIONI "sen = a" E "cos = a" È noto che, fissato un qualsiasi numero reale a compreso tra

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Un tentativo di introdurre alla matematica qualche non matematico-parte seconda: pi greco e la trigonometria. Luigi Corgnier e Paolo Valabrega

Un tentativo di introdurre alla matematica qualche non matematico-parte seconda: pi greco e la trigonometria. Luigi Corgnier e Paolo Valabrega Un tentativo di introdurre alla matematica qualche non matematico-parte seconda: pi greco e la trigonometria Luigi Corgnier e Paolo Valabrega Indice Trigonometria: perché riparlarne Aree 5. Aree e derivate.................................

Dettagli

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 SCUOLE TECNICHE MATEMATICHE ELEMENTARI Primo Anno Aritmetica Sistema volgare di numerazione orale e scritta Le quattro

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

L unità immaginaria si indica con la lettera i oppure con la lettera j

L unità immaginaria si indica con la lettera i oppure con la lettera j I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d-06154 PERUGIA Tel. 075/5838322 Fax 075/32371

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9

Dettagli

Elenco Ordinato per Materia Chimica

Elenco Ordinato per Materia Chimica ( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

Elementi di trigonometria

Elementi di trigonometria Prof. Raffaele SANTORO Elementi di trigonometria y = cosx y = sinx Scuola Europea di Lussemburgo - Anno Scolastico 99-9 99 - Tutti i diritti riservati Riproduzione vietata con ogni mezzo R. SANTORO:Elementi

Dettagli

PIANO DI LAVORO PERSONALE

PIANO DI LAVORO PERSONALE ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico

Dettagli

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6).

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6). Macchine semplici Premessa Lo studio delle macchine semplici si può considerare come una fase propedeutica allo studio delle macchine composte, poiché il comportamento di molti degli organi che compongono

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Le nozioni fondamentali

Le nozioni fondamentali Le nozioni fondamentali Il concetto di funzione che abbiamo introdotto nel capitolo 5 di Algebra si è molto arricchito. Lavorando nel piano cartesiano, abbiamo familiarizzato con il passaggio dalla scrittura

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA

FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA MOD01P-ERGrev5 PROGRAMMAZIONE DISCIPLINARE A.S. 2013/014 Pag 1 di 8 Docente Classe Sezione Indirizzo Disciplina FRACCOLA DOMENICO IV A SCIENTIFICO MATEMATICA Composizione della classe Alunni ripetenti

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2015/2016 Prof. MATTEO FOCARDI Settore inquadramento MAT/05 - ANALISI MATEMATICA REGISTRO Scuola Scienze della Salute Umana NON CHIUSO Dipartimento Matematica

Dettagli

ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri. rel. 0.1. Esercizi di Topografia distribuzione gratuita 1/6

ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri. rel. 0.1. Esercizi di Topografia distribuzione gratuita 1/6 ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri rel. 0.1 Esercizi di Topografia distribuzione gratuita 1/6 Indice generale ANNO 3...3 1.1 - Esercizi pratica calcolatrice...3 1.2 - Esercizi

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

MATEMATICHE. Corso I. Aritmetica ordinaria ed aritmetica generale

MATEMATICHE. Corso I. Aritmetica ordinaria ed aritmetica generale Programmi d insegnamento per gli istituti tecnici emanati con circolare n. 151 del 26/10/1877 (MNSTERO D AGRCOLTURA, NDUSTRA E COMMERCO, L ordinamento e i programmi di studio negli stituti Tecnici, 1876-1877,

Dettagli

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1

MATEMATICA LEGGERA. Matematica leggera Richiami di Matematica. A. Scribano 10-06. pag.1 MATEMATICA LEGGERA 1. Equazioni 2. Proporzioni 3. Potenze 4. Notazione scientifica 5. Superfici e volumi 6. Percentuale 7. Funzioni 8. Sistemi di riferimento 9. Esponenziale e logaritmo 10. Gaussiana 11.

Dettagli

Argomenti. Analisi Determnazione del dominio e segno di una funzione. Esercizi.

Argomenti. Analisi Determnazione del dominio e segno di una funzione. Esercizi. Argomenti Classe: 4ª D SCIENT Stampato il: 8/6/2015, 09:23 Materia: Matematica Anno scolastico: 2014/2015 Periodo dal: 15/09/2014 al: 10/06/2015 da: Mancini Legenda: assegnazioni note riservate Data Ora

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria LICEO SCIENTIFICO STATALE CAVOUR Via delle Carine 1 - ROMA Commissione Orientamento in Uscita Comunicazione n. 2013/006 Data: 29-11-2013 OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Formule di duplicazione e dilatazioni del piano. Daniela Valenti, Treccani scuola

Formule di duplicazione e dilatazioni del piano. Daniela Valenti, Treccani scuola Formule di duplicazione e dilatazioni del piano Daniela Valenti, Treccani scuola 1 Espressioni con funzioni trigonometriche e dilatazioni del piano cartesiano Ecco un animazione per riflettere: una cosinusoide

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Elementi di topografia parte II

Elementi di topografia parte II Corso di Topografia Istituto Agrario S. Michele Elementi di topografia parte II prof. Maines Fernando Giugno 2010 Elementi di meccanica agraria pag. 164 Maines Fernando Sommario 1 Gli errori e il loro

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

LEZIONI DI TOPOGRAFIA

LEZIONI DI TOPOGRAFIA Prof. Ing. Paolo Saija LEZIONI DI TOPOGRAFIA (Appunti per l esame di abilitazione alla professione di Geometra) Anno 2006 II a Edizione 1 SOMMARIO LA TOPOGRAFIA Grandezze geometriche e unità di misura

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Definizione geometrica di seno e coseno e tangente

Definizione geometrica di seno e coseno e tangente Trigonometria Iniziamo con una domanda innocente: dato un bastone di lunghezza 1 inclinato di un angolo α rispetto al piano orizzontale, quanto è lunga la sua ombra quando il sole lo illumina verticalmente?

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO ISTRUZIONE SUPERIORE Via Silvestri, 301 00164 ROMA - Via Silvestri, 301 Tel. 06/121127660 Fax

Dettagli

Funzioni inverse e disequazioni

Funzioni inverse e disequazioni Funzioni inverse e disequazioni Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Febbraio 006. H Il disegno di copertina rappresenta un particolare dell insieme di Mandelbrot centrato in (.897006, 0.43530057)

Dettagli

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO Pagina 6 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE Esistono metodi er determinare le formule di addizione e sottrazione: il metodo vettoriale e quello algebrico, er semlicità ci limiteremo a determinare

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire Operazioni tra funzioni Siano f e g due funzioni, allora D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire f() ± g(), f() g(), f () g() se g() 0 Es. f() = 4, g() = 3 + D f

Dettagli

DIPARTIMENTO DI MATEMATICA

DIPARTIMENTO DI MATEMATICA ISTITUTO STATALE D ISTRUZIONE SUPERIORE Francesco De Sarlo Via Sant Antuono 192-0973/21034 - C.F. 83000510764 PZIS001007 85042 - LAGONEGRO PZ PZPM00101P IST. MAG. LAGONEGRO - PZPS00101N LIC. SC. LAGONEGRO

Dettagli

ATTIVITÀ DEL SINGOLO DOCENTE

ATTIVITÀ DEL SINGOLO DOCENTE PIANO DI LAVORO DOCENTE Carmela Calò MATERIA Matematica DESTINATARI 4Cl ANNO SCOLASTICO 2013-14 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE Si veda la programmazione comune del CdC COMPETENZE CONCORDATE

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO "G. ASPRONI E. FERMI" PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO G. ASPRONI E. FERMI PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016 ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORI MINERARIO "G. ASPRONI E. FERMI" PROGRAMMAZIONE DIDATTICA ANNUALE a.s. 2015-2016 Docente: Carla Ada Piu Disciplina: Matematica e Complementi di matematica CLASSE

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

MEDICINA E CHIRURGIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998

MEDICINA E CHIRURGIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998 Anno Accademico 1997/1998 MATEMATICA anno 1997 1998 n. 76 La derivata della funzione f(x) = 5x + lnx (con ln logaritmo in base e) è: A) 5 + x B) / x C) 5 + ( / x) ln x D) 5 + /x E) nessuna di quelle delle

Dettagli

TEMATICA 1 - FUNZIONI ED EQUAZIONI

TEMATICA 1 - FUNZIONI ED EQUAZIONI Docente Materia Classe Cristina Frescura Matematica 4B Programmazione Preventiva Anno Scolastico 2012-2013 Data 28 novembre 2012 Obiettivi Cognitivi Nota bene: gli obiettivi minimi sono sottolineati U.D.

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

SOLUZIONI ESERCIZI TEST OFA

SOLUZIONI ESERCIZI TEST OFA SOLUZIONI ESERCIZI TEST OFA Alberto Carraro e Samuel Rota Bulò 4 Settembre 201 1 Test OFA 2010 Domanda 1. Sapendo che 7 =, 5, 9 = 4, 5 e che 8 < 10 =,... l unica 2 2 opzione possibile rimane la B. Per

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

PROGRAMMA DELLE PROVE DEI CONCORSI, PUBBLICO E INTERNO, PER L AMMISSIONE DI ALLIEVI AL PRIMO ANNO DI CORSO DELL ACCADEMIA MILITARE

PROGRAMMA DELLE PROVE DEI CONCORSI, PUBBLICO E INTERNO, PER L AMMISSIONE DI ALLIEVI AL PRIMO ANNO DI CORSO DELL ACCADEMIA MILITARE Allegato D PROGRAMMA DELLE PROVE DEI CONCORSI, PUBBLICO E INTERNO, PER L AMMISSIONE DI ALLIEVI AL PRIMO ANNO DI CORSO DELL ACCADEMIA MILITARE 1. PROVA SCRITTA DI PRESELEZIONE (artt. 23 e 39 del bando)

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

SIMULAZIONE TEST. Matematica di base

SIMULAZIONE TEST. Matematica di base onferenza Nazionale Permanente dei Presidi delle Facoltà di Scienze e Tecnologie Piano Nazionale Lauree Scientifiche SIMULZIONE TEST Matematica di base. Quanto vale log 3 9? 2 2 2 Non esiste 2. Quanto

Dettagli

Formule goniometriche

Formule goniometriche Formule goniometriche Deduzione delle principali identità goniometriche Lorenzo Roi Copyright 006 www.lorenzoroi.net Premessa Questo notebook presenta le deduzioni delle principali identità goniometriche

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Inserimento di distanze e di angoli nella carta di Gauss

Inserimento di distanze e di angoli nella carta di Gauss Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio

Dettagli

Test di ammissione ai Corsi di Laurea triennale delle Facoltà di Ingegneria a.a. 2012 13

Test di ammissione ai Corsi di Laurea triennale delle Facoltà di Ingegneria a.a. 2012 13 Test di ammissione ai Corsi di Laurea triennale delle Facoltà di Ingegneria a.a. 2012 13 Per iscriversi al primo anno dei corsi di Laurea triennale delle Facoltà di Ingegneria del Politecnico di Bari è

Dettagli