Unità di misura. Grandezza Unità Simbolo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Unità di misura. Grandezza Unità Simbolo"

Transcript

1 Grandezze Fisiche Sono grandezze in base alle quali descriviamo i fenomeni fisici; ad esempio la velocità, la temperatura, la pressione, la resistenza elettrica, etc. Per le grandezze fisiche è possibile definire: una unità di misura un criterio di confronto fra la grandezza e l unità di misura Esempio: lunghezza di un segmento: una volta noto un segmento unità di misura, la lunghezza del segmento è misurata dal numero di volte che esso contiene l unità. grandezze di una stessa classe: è possibile definire operativamente il confronto fra due di esse; per esse si può definire una serie di operazioni quali somma, sottrazione, ecc. Grandezze che appartengono alla stessa classe si dicono omogenee. somma e differenza possono avvenire solo tra grandezze omogenee. Per alcune osservabili, quali ad esempio il tempo o la temperatura, bisogna definire uno zero e quindi il tempo e la temperatura diventano intervalli di tempo o salti di temperatura. Tra le grandezze fisiche se ne scelgono alcune che vengono chiamate fondamentali e tutte le altre vengono derivate da queste. Le grandezze fondamentali sono il numero minimo di grandezze necessarie per descrivere i fenomeni a noi noti.

2 Unità di misura Per misurare le grandezze fisiche è necessario definire le unità di misura. Nel 1971 alla Conferenza Generale dei Pesi e delle Misure sono state selezionate 7 grandezze fondamentali del Sistema Internazionale di Unità (SI). Tra queste la lunghezza [L], la massa [M], e il tempo [T] sono quelle che utilizzeremo nella prima parte del corso. Nel SI le unità di misura sono Grandezza Unità Simbolo lunghezza metro m massa kilogrammo kg tempo secondo s intensità di corrente elettrica ampere A temperatura grado Kelvin K quantità di materia mole mol intensità luminosa candela cd I campioni delle unità di misura devono rimanere inalterati nel tempo e accessibili. Il metro, storicamente, è definito come la decimillionesima parte della distanza tra polo e equatore lungo la linea meridiana passante per Parigi. Il campione di lunghezza è una sbarra di platino iridio (materiale poco deformabile) tenuta a 0 o C e sostenuta meccanicamente in modo da non subire deformazioni. Più di recente per avere un unità di lunghezza molto più precisa, si è definito il metro come la distanza percorsa dalla luce nel vuoto in un intervallo di tempo pari a 1/ secondi.

3 Il campione SI di massa è un cilindro di platino-iridio, conservato presso l Ufficio Internazionale di pesi e misure, al quale è stata assegnata per convenzione internazionale la massa di 1kg. Qualsiasi fenomeno periodico può essere usato per definire una unità di misura del tempo: ad esempio le oscillazioni sincrone di un pendolo o di un cristallo di quarzo, ma anche il moto di rotazione della terra. Fino al 1956, si è usato il giorno solare medio per definire l unità di misura del tempo, prendendo: 1 s = 1 giorno solare medio Oggi si usa un unità di tempo molto più stabile così definita: un secondo è il tempo necessario alla luce (di una specifica lunghezza d onda) emessa da un atomo di cesio-133 per effettuare oscillazioni. Le unità di misura vanno scelte in maniera opportuna a seconda di quali grandezze si vogliono misurare. Ad esempio per misurare distanze astronomiche non è sensato usare il metro e si sceglie l anno-luce (pari alla distanza che la luce percorre in un anno)= m. Analogamente per distanze atomiche è conveniente usare l angstrom = m. Per esprimere numeri molto grandi o molto piccoli si usa la notazione scientifica che utilizza le potenze del 10. Inoltre si utilizzano prefissi per le unità di misura per moltiplicare per il relativo fattore. Esempio: m = m = 3.56Gm I prefissi più comunemente usati sono:

4 fattore prefisso Simbolo tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 3 milli m 10 6 micro µ 10 9 nano n pico p Grandezze scalari: si tratta di grandezze fisiche che sono completamente specificate da un numero reale espresso in opportune unità. Esempi di grandezze scalari sono la temperatura, la massa, il tempo, l energia. Per manipolare le grandezze scalari si adoperano le regole dell algebra ordinaria. Grandezze vettoriali: si tratta di grandezze fisiche che possono essere rappresentate da vettori. Un vettore è un ente geometrico individuato da un ampiezza o modulo (lunghezza del segmento che rappresenta il vettore), una direzione, cioè la retta a cui appartiene il segmento, e un verso, cioè una delle due orientazioni del segmento sulla retta. Esempi di grandezze vettoriali sono lo spostamento, la velocità, la forza. a a b Convenzionalmente il modulo del vettore a si indica con a, oppure a. In figura i vettori a sono lo stesso vettore (stesso modulo, direzione e verso).

5 I vettori e le loro componenti Dato un sistema di assi cartesiano, un vettore può essere individuato mediante le sue componenti, cioè le sue proiezioni sui tre assi coordinati. Sia R un vettore qualsiasi che supponiamo di aver trasportato parallelamente in modo che il suo punto di applicazione coincida con l origine del riferimento (per semplicità consideriamo il caso bidimensionale). Tracciando le perpendicolari dall estremo di R agli assi coordinati otteniamo le quantità R x e R y, dette componenti del vettore rispetto al riferimento scelto. Se θ è l angolo che il vettore forma con l asse x si trova R x = R cos θ R y = R sin θ Quindi la direzione θ è individuata da Il modulo del vettore è R = tan θ = R y R x R 2 x + R 2 y che si generalizza al caso tridimensionale con riferimento di assi cartesiano xyz R = Rx 2 + Ry 2 + Rz 2 dove R z è la componente di R lungo l asse z.

6 Operazioni con i vettori Somma fra vettori La somma vettoriale di due vettori a e b si può effettuare graficamente: si traccia il vettore a (con il modulo dato in una scala opportuna), dalla punta di a si disegna il vettore b (sempre nella stessa scala), la somma è data dal vettore disegnato dall inizio di a alla punta di b Una regola equivalente è nota come regola del parallelogramma. La somma di vettori ha queste proprietà: a + b = b + a prop. commutativa ( a + b) + c = a + ( b + c) prop. associativa Moltiplicazione di un vettore a per un numero m: il risultato è un vettore m a il cui modulo è pari a m volte il modulo di a, ha stessa direzione e stesso verso di a se m è positivo, mentre ha verso opposto se m è negativo Moltiplicare un vettore per 1 vuol dire cambiarne il verso.

7 La regola del parallelogramma è intuitiva se pensiamo che un vettore può rappresentare ad esempio una forza. f 1 f 2 F = f 1 + f 2 Supponiamo che un pacco sia tirato da due funi che esercitano su di esso le forze f 1 e f 2 come in figura il pacco si muove nella direzione di F che è la somma delle due forze applicate. Se i vettori a e b sono paralleli la loro somma c è un vettore che la stessa direzione e per modulo la somma dei moduli a b c = a + b Differenza di due vettori Dati i vettori a e b si costruisce il vettore b. Il vettore a b è la diagonale OE del parallelogrammo AODE. Dalla figura si vede che OE è uguale AB. Quindi la somma a + b è la diagonale OC e la differenza a b è la diagonale AB del parallelogramma OACB.

8 Versore Un vettore unitario, detto anche versore, è un vettore di lunghezza unitaria (modulo=1) disposto in una particolare direzione. È privo di dimensioni e anche di unità di misura. Il suo unico scopo è quello di indicare la direzione â = a a In generale utilizzeremo i simboli î, ĵ e ˆk per indicare i versori tracciati nelle direzioni degli assi x, y e z e con verso positivo dato dalla mano destra. Utilizzando le operazioni definite prima, ogni vettore può essere scomposto nella somma di vettori diretti lungo gli assi coordinati. Se R x, R y e R z sono le componenti del vettore R lungo gli assi coordinati R = R x + R y + R z con Rx = R x î, R y = R y ĵ e Rz = R zˆk R = R x î + R y ĵ + R zˆk Addizione di vettori per mezzo delle loro componenti Dati due vettori a = a x î + a y ĵ + a zˆk b = bx î + b y ĵ + b zˆk la somma è a + b = (a x + b x )î + (a y + b y )ĵ + (a z + b z )ˆk la differenza a b = (a x b x )î + (a y b y )ĵ + (a z b z )ˆk

9 la moltiplicazione per un numero m m a = m a x î + m a y ĵ + m a zˆk Esempio: a = 4î ĵ b = 3î + 2ĵ a + b = î + ĵ a b = 7î 3ĵ Prodotto di due vettori: Si definiscono due tipi di prodotto tra due vettori: il prodotto scalare e il prodotto vettoriale. Il prodotto scalare dà come risultato un numero (scalare), il prodotto vettoriale dà come risultato un vettore. Prodotto scalare: a b = ab cos φ dove a e b sono il modulo del vettore a e b rispettivamente e φ è l angolo compreso fra le due semirette equiverse su cui giacciono i due vettori Se due vettori sono ortogonali (φ = 90 o ) il prodotto scalare è zero: a b = 0. Se due vettori sono paralleli (φ = 0 o ) il prodotto scalare è massimo e pari al prodotto dei moduli: a b = ab. Prodotto scalare tra i versori di base: î î = ĵ ĵ = ˆk ˆk = 1 î ĵ = ĵ ˆk = ˆk î = 0 Possiamo ora esprimere il prodotto scalare di due vettori in termini delle componenti a = a x î + a y ĵ + a zˆk b = bx î + b y ĵ + b zˆk a b = a x b x + a y b y + a z b z

10 Prodotto vettore: a b è un vettore di modulo pari a ab sin φ, direzione perpendicolare al piano individuato da a e b e verso ottenuto con la regola della mano destra: pollice su a, indice su b il medio individua il verso del prodotto. Se due vettori sono paralleli (φ = 0 o ) il prodotto vettoriale è zero: a b = 0. Se due vettori sono ortogonali (φ = 90 o ) il prodotto vettoriale è massimo e ha modulo pari al prodotto dei moduli: a b = ab. Prodotto vettoriale tra i versori di base: î î = ĵ ĵ = ˆk ˆk = 0 î ĵ = ˆk ĵ ˆk = î ˆk î = ĵ Possiamo ora esprimere il prodotto vettoriale di due vettori in termini delle componenti a = a x î + a y ĵ + a zˆk b = bx î + b y ĵ + b zˆk a b = (a y b z a z b y )î + (a z b x a x b z )ĵ + (a x b y a y b x )ˆk N.B.: a b = b a ma a b b a pensando alla regola della mano destra si vede che cambia il verso del vettore risultato a b = b a

11 Coordinate polari piane In alcuni casi, invece di considerare le componenti cartesiane del vettore posizione R = xî + yĵ, conviene usare le coordinate polari. Ad esempio se il punto si muove su una circonferenza, la sua posizione può essere individuata da R (raggio) che non cambia in modulo e dall angolo θ. Le relazione tra x, y, R e θ sono: x = R cos θ y = R sin θ R = x 2 + y 2 tan θ = y x In coordinate polari si introducono i versori û R e û θ il versore û R è diretto radialmente, mentre û θ è tangente alla circonferenza punto per punto û R = cos θî + sin θĵ û θ = sin θî + cos θĵ R = RûR N.B.: û R û θ = 0 I due versori û θ e û R hanno direzione che cambia da punto a punto, mentre î e ĵ hanno direzione fissa. A volte, invece di û θ e û R si usa la notazione ˆt (versore tangente) e ˆn (versore normale).

12 1. (Serway prob. 1.34) Siano A e B due vettori di modulo 3 m. A forma un angolo di 30 o con l asse x. B è parallelo all asse y. Trovare graficamente: a) A + B, A B, B A, A 2 B. b) Esprimere gli stessi vettori in componenti cartesiane. c) Calcolare il modulo dei vettori ottenuti. 2. (Serway Es. 1.9) Un escursionista inizia una gita camminando prima per 25.0 km esattamente in direzione sud-est dalla sua macchina. Si ferma e monta la sua tenda per la notte. Al secondo giorno, cammina per 40.0 km in una direzione a 60.0 o nord-est e trova una torre della guardia forestale. a) Determinare le componenti degli spostamenti dell escursionista il primo e il secondo giorno; b) determinare le componenti dello spostamento complessivo dell escursionista; c) determinare il modulo, la direzione e il verso dello spostamento totale. 3. (Serway prob. 1.42) Un vettore A ha le componenti x e y di 8.7 cm e 15.0 cm, rispettivamente. Il vettore B ha le componenti x e y di 13.2 cm e 6.6 cm, rispettivamente. Se A B + 3 C = 0, quali sono le componenti di C? 4. (Serway prob. 6.10) Dati i tre vettori A = 3î+ĵ ˆk, B = î+2ĵ+5ˆk, C = 2ĵ 3ˆk, determinare C ( A B) 5. (Serway prob. 6.9) Utilizzare la definizione di prodotto scalare per determinare l angolo tra i vettori A = î 2ĵ + 2ˆk e B = 3ĵ + 4ˆk.

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne LA MISURA DELLE GRANDEZZE FISICHE Prof Giovanni Ianne Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag. I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno

Dettagli

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,...

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

INTRODUZIONE GRANDEZZE FISICHE GRANDEZZE FISICHE

INTRODUZIONE GRANDEZZE FISICHE GRANDEZZE FISICHE INTRODUZIONE Scopo della Fisica è quello di fornire una descrizione quantitativa di tutti i fenomeni naturali, individuandone le proprietà significative (grandezze fisiche) ed analizzandone la loro interdipendenza

Dettagli

1 - GRANDEZZE E MISURE

1 - GRANDEZZE E MISURE 1 - GRANDEZZE E MISURE INDICE Grandezze fisiche e loro misure: 2 Notazione: 3 Prefissi: 4 Grandezze fondamentali e unità di misura: 5 Grandezze derivate: 9 Valori ed errori, incertezza di misura: 12 Come

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Corso di FISICA. Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci

Corso di FISICA. Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci Anno accademico 2003/2004 Corso di Laurea in Biologia Cellulare e Molecolare Corso di FISICA Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci LEZIONI martedi ore 9-11

Dettagli

RICHIAMI DI CONCETTI FONDAMENTALI

RICHIAMI DI CONCETTI FONDAMENTALI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti RICHIAMI DI CONCETTI FONDAMENTALI 1.1 GENERALITÀ La Scienza della Fisica si propone essenzialmente lo scopo di raggiungere

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

GRANDEZZE FISICHE - UNITÀ DI MISURA

GRANDEZZE FISICHE - UNITÀ DI MISURA GRANDEZZE FISICHE - UNITÀ DI MISURA DOWNLOAD Il pdf di questa lezione (0227b.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 27/02/2012 2 3 4 UNITÀ DI MISURA Ogni buona unità di misura

Dettagli

Esperienze di Fisica

Esperienze di Fisica Esperienze di Fisica Dr. Alen Khanbekyan Tel.: 057734665 E-mail: khanbekyan@unisi.it Relazioni. Per ogni prova pratica deve essere preparata una relazione scritta strutturata nel modo seguente:. Introduzione

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Problemi di Fisica I Vettori

Problemi di Fisica I Vettori Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Grandezze misurabili fondamentali: lunghezza, tempo, massa

CdL Professioni Sanitarie A.A. 2012/2013. Grandezze misurabili fondamentali: lunghezza, tempo, massa L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Introduzione Unità 1 Grandezze Fisiche e Unità di Misura Grandezze misurabili fondamentali: lunghezza,

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

How to compute the sun vector for path planning

How to compute the sun vector for path planning How to compute the sun vector for path planning 1 Calcolo dell illuminazione delle celle solari Si consideri la Fig. 1. Il rover si sposta sulla mappa, variando nel tempo la sua posizione p = ( x y z )

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Richiami di matematica per lo studio delle discipline scientifiche

Richiami di matematica per lo studio delle discipline scientifiche Richiami di matematica per lo studio delle discipline scientifiche La misura in chimica : Misurare significa confrontare una grandezza in rapporto con un altra ad essa omogenea, scelta come campione.i

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

Posizioni Atomiche nelle Celle Unitarie Cubiche

Posizioni Atomiche nelle Celle Unitarie Cubiche Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y

Dettagli

LE GRANDEZZE FISICHE. Sono proprietà dei corpi per le quali è possibile eseguire operazioni di misura

LE GRANDEZZE FISICHE. Sono proprietà dei corpi per le quali è possibile eseguire operazioni di misura La misura LE GRANDEZZE FISICHE Sono proprietà dei corpi per le quali è possibile eseguire operazioni di misura n sono grandezze fisiche : la massa, il tempo, la lunghezza, l altezza ecc. La misura n Misurare

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Fisica con elementi di Matematica (O-Z)

Fisica con elementi di Matematica (O-Z) Fisica con elementi di Matematica (O-Z) alessandra.pastore@ba.infn.it ricevimento: Martedi 12:30 14:30 (previ accordi via mail) Dip. Interateneo di Fisica M. Merlin piano 1, stanza 118 web-page contenente

Dettagli

APPUNTI delle lezioni prof. Celino PARTE 1

APPUNTI delle lezioni prof. Celino PARTE 1 APPUNTI delle lezioni prof. Celino PARTE 1 PREREQUISITI MATEMATICI per lo studio della fisica e della chimica... 2 NOTAZIONE SCIENTIFICA... 2 APPROSSIMAZIONE DEI NUMERI DECIMALI... 2 MULTIPLI e SOTTOMULTIPLI...

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali Contare, misurare. q Quanti denti ha un cane? Da adulto 42, se cucciolo 28 q Quanto è lunga la coda di una marmotta? Circa 20 cm q Quanto liquido contiene un cucchiaio da minestra? Circa 15 ml q Quanto

Dettagli

1 Misurare una grandezza

1 Misurare una grandezza 1 Misurare una grandezza DEFINIZIONE. Misurare una grandezza significa confrontarla con una grandezza dello stesso tipo, assunta come unità di misura, per stabilire quante volte quest ultima è contenuta

Dettagli

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU)

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Docente: Daniele Chiriu Ricevimento: Mar e Mer 14:30-16:30 email: daniele.chiriu@dsf.unica.it Stanza MC5 Dipartimento di Fisica

Dettagli

Elettronica Grandezze elettriche e unità di misura

Elettronica Grandezze elettriche e unità di misura Elettronica Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Grandezze elettriche e unità di misura

Dettagli

ALCUNI RICHIAMI GENERALI

ALCUNI RICHIAMI GENERALI ALCUNI RICHIAMI GENERALI 0.1 SUL CONCETTO DI VETTORE La direzione Data una linea retta, è possibile muoversi su questa in due versi opposti: si possono distinguere assegnando a ciascuno di essi un segno

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO DOCENTE: Galizia Rocco MATERIA: Fisica CONTENUTI Teoria CLASSE 1 BL3 Anno scolastico 2015-2016 INTRODUZIONE

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

Chimica e Fisica generale per Biotecnologie Modulo di Fisica

Chimica e Fisica generale per Biotecnologie Modulo di Fisica Chimica e Fisica generale per Biotecnologie Modulo di Fisica Docente: Paolo Giannozzi Stanza L1-1-BE ai Rizzi, Tel.: 0432-558216 e-mail: paolo.giannozzi@uniud.it Ricevimento ufficiale Martedì 14:30-16:30

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, "Invito alla Fisica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, Invito alla Fisica, volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 Dinamica III.A. Tipler, "Invito alla isica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 A.A. 2003-2004 isica dei Materiali 71 Equilibrio statico di un corpo esteso La statica è quella parte della dinamica

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Prof. Angelo Angeletti I VETTORI

Prof. Angelo Angeletti I VETTORI I VETTORI Si consideri la seguente situazione: in un prato due ragazzi stano giocando e uno dice all altro spostati di 5 passi. È chiaro che il comando non è completo in quanto non viene detto in quale

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Operazioni sui vettori

Operazioni sui vettori Operazioni sui vettori Vettore Un vettore v è un insieme ordinato di elementi. Per esempio, il seguente è un vettore di 3 elementi: Gli elementi di un vettore si indicano solitamente con i seguenti simboli:

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Corso di Fisica CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it

Dettagli

Le Grandezze Fisiche e la loro Misura

Le Grandezze Fisiche e la loro Misura FISICA: Le Grandezze Fisiche e la loro Misura Giancarlo Zancanella (2009) 1 1 Le Grandezze Fisiche Si chiamano grandezze fisiche le proprietà dei corpi che possono essere misurate La forma, la bellezza

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

FISICA (dal greco physis = natura )

FISICA (dal greco physis = natura ) FISICA (dal greco physis = natura ) scopo della fisica è lo studio dei fenomeni naturali E' una scienza che si propone di osservare e spiegare i fenomeni naturali. Le parti della fisica Nome Argomenti

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Misure e Unità di Misura

Misure e Unità di Misura 2. La Mole Misure e Unità di Misura L Incertezza delle Misure - come utilizzare le cifre significative nel calcolo Le Quantità Chimiche - la MOLE - la MASSA MOLARE - la misura dei composti La Determinazione

Dettagli

Richiamo trigonometria

Richiamo trigonometria ESERCIZI Richiamo trigonometria 2 sin Sin, Cos, Tan a y R P α s R R a y P P (x P,y P ) s x P cos a x R P tan a y x P P Richiamo trigonometria 3 c a 2 b 2 a c cosa b b c a sina tana b a sina cosa tana cos

Dettagli

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE Lavoro svolto da Laura Bianchettin - Flavio Ciprani Premessa Il campo magnetico terrestre è rappresentato da un vettore generalmente

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE. UdM 1

UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE. UdM 1 UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE UdM 1 Lo studio dei fenomeni naturali si basa sulle osservazioni sperimentali e richiede la misura di certe grandezze fisiche. Ai fini della misurazione

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

2 Vettori applicati. 2.1 Nozione di vettore applicato

2 Vettori applicati. 2.1 Nozione di vettore applicato 2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

La Misura. Le attività del metodo sperimentale

La Misura. Le attività del metodo sperimentale La Misura Le attività del metodo sperimentale Le attività del metodo sperimentale si possono individuare nei seguenti punti Osservazione fenomeno Scelta delle grandezze Formulazione delle ipotesi Esperimento

Dettagli

Sistemi di unità di misura

Sistemi di unità di misura Sistemi di unità di misura L Assemblea Nazionale Francese avvia nel 1790 l adozione di un sistema di unità di misura, che possa essere comune per tutto il genere umano. Prima di questa data ( e anche dopo

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Corso di Fisica Sperimentale 1. (Laurea in Scienza dei Materiali)

Corso di Fisica Sperimentale 1. (Laurea in Scienza dei Materiali) Corso di Fisica Sperimentale 1 (Laurea in Scienza dei Materiali) La Fisica: una scienza semplice La combinazione delle varie esperienze quotidiane forma nell uomo l intuito, possiamo quindi dire che la

Dettagli