Tecnica delle Costruzioni Esercitazione 02

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tecnica delle Costruzioni Esercitazione 02"

Transcript

1 TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli sforzi normali trasmessi dalle aste al nodo e le eventuali forze esterne. Si scrivono infine le equazioni di equilibrio per il nodo in esame. Nel caso piano si hanno pertanto a disposizione per ogni nodo solo le rimanenti due equazioni di equilibrio: ΣF x,nodo =0 ΣF y,nodo =0. Si procede scrivendo l equilibrio di un primo nodo e poi, servendosi dei risultati ottenuti, di un secondo e così di seguito. Poiché si hanno a disposizione solo due equazioni di equilibrio per nodo, è necessario disporre di almeno un nodo a cui sono collegate solo due aste, in modo da avere in partenza due sole incognite. Successivamente si procederà utilizzando di volta in volta nodi per i quali si abbiano due sole incognite. 2 a.a

2 Procediamo innanzitutto al calcolo delle reazioni vincolari esterne: R 1x = F R 1y = R 3y = F/2 3 Si consideri quindi ogni nodo sul quale agiscono eventuali forze esterne e le azioni fornite dalle aste che in esso concorrono. Nel caso piano, affinché sia rispettato l equilibrio nel generico nodo k devono essere rispettate le seguenti condizioni: dove si è indicato con k il nodo in esame,con i il generico nodo collegato a k mediante un asta, con α ki il coseno dell angolo che la direzione k i (orientata da k verso i) forma con l asse x, e conβil coseno dell angolo che la direzione k i forma con l asse y. Il sistema di riferimento Oxy è centrato nel nodo k. 4 a.a

3 Le frecce illustrano la direzione delle forze su un asta. Il verso corrisponde ad una forza di trazione nell asta, che per il principio di azione e reazione è in verso uscente dal nodo. Si scrivono quindi le equazioni di equilibrio per il nodo in esame. 5 6 a.a

4 7 8 a.a

5 Dalla figura è chiaro che N 32 =0. Si può quindi procedere a riassumere gli sforzi nelle aste (le frecce indicano gli sforzi nelle aste): 9 METODO DELLE SEZIONI o METODO DI RITTER Una travatura reticolare generata a partire da un triangolo iniziale presenta la proprietà di poter essere tagliata da una sezione ideale, che divida la struttura integralmente in due parti sezionando solo tre aste non concorrenti nello stesso punto. Se preventivamente sono state calcolate le eventuali reazioni scrivendo l equilibrio di tutto il traliccio, restano come incognite solo gli sforzi normali di tutte le aste tagliate. Poiché l equilibrio di questa porzione consente di scrivere solo tre equazioni, il taglio non dovrà evidenziare più di tre incognite. E conveniente effettuare un taglio che consenta di calcolare uno sforzo normale incognito quale che sia il numero di aste tagliate. 10 a.a

6 La sezione taglia 3 aste non concorrenti nello stesso nodo. Lo sforzo in una delle tre aste viene calcolato mediante un equazione di equilibrio dei momenti intorno al polo in cui convergono le altre 2: a.a

7 13 Capriata Fink semplice 14 a.a

8 Calcolo delle reazioni esterne a.a

9 Calcolo dello sforzo N 21 con il metodo delle sezioni di Ritter 17 La sezione di Ritter da considerare taglia le aste B-2, 2-1 e 1-E. Ci si riferisce alla porzione di sinistra della travatura e si scrive l equazione di equilibrio alla rotazione intorno al punto di intersezione delle aste B-2 e 1-E. Si ottiene: 18 a.a

10 19 20 a.a

11 Si ha quindi per il sistema equilibrato : 21 Utilizzando il metodo dei nodi (la travatura essendo equilibrata deve avere allo stesso modo ogni suo nodo equilibrato: deve quindi essere verificata per ciascun nodo la prima equazione cardinale della statica R = 0): 22 a.a

12 Allo stesso modo si poteva procedere tramite il metodo di Ritter (sezioni): a.a

1) METODO DELLE SEZIONI DI RITTER

1) METODO DELLE SEZIONI DI RITTER 1) METODO DELLE SEZIONI DI RITTER Un altro metodo per il calcolo di una travatura reticolare isostatica è quello delle sezioni di Ritter. Prendiamo in esame la stessa struttura dell esercizio precedente

Dettagli

A3.4 Le travature reticolari

A3.4 Le travature reticolari A3.4 Le travature reticolari poliglotta Travatura reticolare GB: Truss F: Poutre à croisillons D: Fachwerkträger richiamo Alcuni esempi di travature reticolari: i tralicci utilizzati per il trasporto dell

Dettagli

TRAVATURE RETICOLARI

TRAVATURE RETICOLARI strutture reticolari.notebook February 17, 2013 TRAVATURE RETICOLARI Si definiscono TRAVATURE RETICOLARI quelle strutture costituite da un insieme di aste collegate fra loro in alcuni punti (detti "nodi")

Dettagli

Esercitazione 3 - Calcolo delle azioni interne

Esercitazione 3 - Calcolo delle azioni interne Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione - alcolo delle azioni interne Esercizio n. La struttura di figura.a è composta da due aste

Dettagli

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q : UIVERSITA DEGLI STUDI ROMA TRE Facolta di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 0/0 Corso di Tecnica delle Costruzioni Prof. Gianmarco de Felice ESERCITAZIOE COSTRUZIOI I ACCIAIO:

Dettagli

STRUTTURE RETICOLARI

STRUTTURE RETICOLARI TRUTTURE RETICOARI i considerino un arco a tre cerniere, costituito da due corpi rigidi rappresentabili come travi collegate da cerniere puntuali. upponiamo che in corrispondenza della cerniera interna

Dettagli

Appunti di Elementi di Meccanica. Azioni interne. v 1.0

Appunti di Elementi di Meccanica. Azioni interne. v 1.0 Appunti di Elementi di Meccanica Azioni interne v 1.0 Figura 1: Forze in equilibrio agenti su un corpo Figura : Azioni interne in un corpo piano 1 Forze scambiate all interno di un solido Un sistema di

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1 4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata

Dettagli

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.

Dettagli

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze 1 ESERIZI SVOLTI 1 Studiare il portale a tre cerniere di figura a soggetto al carico ripartito uniforme orizzontale q kn/m che agisce sul piedritto e tracciare i diagrammi delle sollecitazioni. H R R a

Dettagli

7 Applicazioni ulteriori

7 Applicazioni ulteriori 7 Applicazioni ulteriori 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7.1.1 Analisi cinematica Si consideri la struttura in figura 7.1: i gradi di libertà sono pari a l =3n c v =3 0 3 = 0,

Dettagli

Condizioni di Equilibrio dei corpi

Condizioni di Equilibrio dei corpi Condizioni di Equilibrio dei corpi Un oggetto interagisce con l esterno mediante forze (localizzate, superficie, volume, ) Se l insieme di forze è equilibrato, l oggetto permane in uno stato di equilibrio

Dettagli

ELEMENTI MONODIMENSIONALI : TRAVE

ELEMENTI MONODIMENSIONALI : TRAVE ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A.

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A. PRV SCRITT DI MECCNIC RZINLE (9 gennaio 2015) In un piano verticale, un disco D omogeneo (massa m, raggio r), rotola senza strisciare sull asse ; al suo centro è incernierata un asta omogenea (massa m,

Dettagli

Progetto di un Telaio Piano in C.A.

Progetto di un Telaio Piano in C.A. Seconda Esercitazione Progettuale Progetto di un Telaio Piano in C.A. Analisi delle Sollecitazioni secondo il Metodo di Cross con vincoli ausiliari Seconda Esercitazione Progettuale (EP2) ~ 1 ~ a cura

Dettagli

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 7 Travature reticolari Un sistema reticolare è rappresentato da un insieme di punti, o nodi, nello spazio, che sono individuati dalle loro coordinate rispetto ad un riferimento cartesiano ortonormale,

Dettagli

5 - Sul grado di labilita' ed iperstaticita'

5 - Sul grado di labilita' ed iperstaticita' 5 - Sul grado di labilita' ed iperstaticita' ü [.a. 2011-2012 : ultima revisione 14 ottobre 2012] Una struttura e' labile se presenta una possibilita' di meccanismo rigido, e' isostatica se e' possibile

Dettagli

Elementi di Statica Grafica

Elementi di Statica Grafica Università degli Studi di Messina Facoltà di Ingegneria.. 006/007 Statica e Sismica delle Costruzioni Murarie Docente: Ing. lessandro Palmeri Lezione n. 4: Un corpo rigido è in equilibrio se e solo sono

Dettagli

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE CORSO DI TECICA DELLE COSTRUZIOI ESERCITAZIOE n 5 del 4//05 PARTE : CALCOLO DELLE SOLLECITAZIOI SULLA TRAVE RETICOLARE.) TRAVI RETICOLARI Il generico carico concentrato P è ottenuto moltiplicando il carico

Dettagli

DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE

DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE DETERMINAZIONE DEE REAZIONI VINCOARI E DIAGRAMMI DEE CARATTERISTICHE DEA SOECITAZIONE ESERCIZIO DATI: = cm F = 8 kn p = kn/m E A G A ) ANAISI CINEMATICA E STATICA DE SISTEMA Il sistema è piano e costituito

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

21 - La scrittura diretta delle equazioni di congruenza - Parte II

21 - La scrittura diretta delle equazioni di congruenza - Parte II 21 - a scrittura diretta delle equazioni di congruenza - Parte II ü [.a. 2011-2012 : ultima revisione 15 aprile 2012] Esercizio n.9 Si calcolino le reazioni e si disegni il diagramma delle c.s.i. per il

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello

Dettagli

Esercizi svolti Calcolo reazioni vincolari

Esercizi svolti Calcolo reazioni vincolari Esercizi svolti Calcolo reazioni vincolari prof. Carlucci Vincenzo ITIS Einstein Potenza 1 Esercizio 1 Calcolare le reazioni vincolari della struttura isostatica riportata in figura. Prima di procedere

Dettagli

Equilibrio di un punto materiale (anelli, giunti ecc.)

Equilibrio di un punto materiale (anelli, giunti ecc.) Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Svincolamento statico Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.

Dettagli

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi

Dettagli

Il metodo delle forze

Il metodo delle forze Nel campo delle strutture MONODIMENSIONALI, cioè quelle per le quali la lunghezza lungo un asse è di gran lunga prevalente rispetto alle altre dimensioni, i metodi di risoluzione delle strutture staticamente

Dettagli

Lezione 39 - Le equazioni di congruenza

Lezione 39 - Le equazioni di congruenza Lezione 9 - Le equazioni di congruenza ü [.a. 0-0 : ultima revisione 7 agosto 0] Per definizione, in una trave iperstatica non e' possibile calcolare le reazioni vincolari con sole equazioni di equilibrio.

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. RICCARDO

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

Lezione Analisi Statica di Travi Rigide

Lezione Analisi Statica di Travi Rigide Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 15/02/2016 ME 1 Un pezzetto di plastilina di massa m=100 g cade partendo da fermo da un altezza h= 5.0 m su una lastrina orizzontale di massa M=120 g attaccata

Dettagli

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90

Dettagli

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando b per a/w= 14.6/50= 0.29, si ottiene b Procedendo, si ricava:

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando b per a/w= 14.6/50= 0.29, si ottiene b Procedendo, si ricava: ESERCIZIO 1 Una piastra di larghezza totale 100 mm e spessore 5 mm, con cricca centrale passante (fig. 1), è soggetta ad una forza di trazione P50 kn. 1) Determinare le condizioni di cedimento della piastra.

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA

Dettagli

modulo D L acciaio Le coperture Calcolo della capriata

modulo D L acciaio Le coperture Calcolo della capriata 1 ESERCIZIO SVOLTO Le coperture Calcolare una delle capriate in acciaio S35 relative alla copertura del capannone industriale considerato nell Esercizio svolto 6 del Volume 4 (Modulo D, Unità 4) con la

Dettagli

Calcolo delle aste composte

Calcolo delle aste composte L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Complementi 10 - Le travature reticolari isostatiche

Complementi 10 - Le travature reticolari isostatiche Complementi - Le travature reticolari isostatiche [Ultimarevisione: revisione: febbraio febbraio9] In questa lezione si analizza la prima classe strutturale di interesse, costituita da un assemblaggio

Dettagli

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia

Dettagli

Lezione 6 - Analisi statica

Lezione 6 - Analisi statica ezione 6 - nalisi statica ü [.a. 211-212 : ultima revisione 7 ottobre 212] Si consideri la stessa struttura bidimensionale della lezione precedente, ossia un insieme di travi collegate tra loro ed al suolo

Dettagli

Esercitazioni. Costruzione di Macchine A.A

Esercitazioni. Costruzione di Macchine A.A Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette

Dettagli

LEZIONE N 46 LA TORSIONE ALLO S.L.U.

LEZIONE N 46 LA TORSIONE ALLO S.L.U. LEZIONE N 46 LA ORSIONE ALLO S.L.U. Supponiamo di sottoporre a prova di carico una trave di cemento armato avente sezione rettangolare b x H soggetta a momento torcente uniforme. All interno di ogni sua

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

Calcolo dei calastrelli e delle diagonali

Calcolo dei calastrelli e delle diagonali 1 Calcolo dei calastrelli e delle diagonali La funzione dei calastrelli e delle diagonali è quella di conferire un elevata rigidità all asta composta, con una notevole limitazione della sua inflessione

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda. Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato

Dettagli

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ. Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in

Dettagli

Nome: Cognome: Data: 14/02/2017

Nome: Cognome: Data: 14/02/2017 Esercizio N. 1 Valutazione 4 Un elicottero dal peso P= 6800Kg si trova in condizioni di punto fisso, ovvero in condizione di equilibrio (orizzontale e verticale). La distribuzione delle forze sulle due

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa

Dettagli

Metodo delle Forze nelle strutture a nodi spostabili

Metodo delle Forze nelle strutture a nodi spostabili Metodo delle Forze nelle strutture a nodi spostabili L inserimento delle cerniere nelle strutture a nodi spostabili rende queste labili ma quest operazione si rende necessaria se vogliamo utilizzare i

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

Forza (kn) Asta SLU Neve SLU Vento

Forza (kn) Asta SLU Neve SLU Vento CALCOLO DI UNA TRAVE RETICOLARE TRAMITE FOGLI DI CALCOLO NORMATIVA DI RIFERIMENTO: EN 1993 1-1, EN 1993 1-8 Rif. 09/07 1) Introduzione Nel seguante lavoro verranno verificate le aste ed i giunti di una

Dettagli

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale 5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di una turbina assiale con i seguenti valori di progetto:

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Verifica n crediti

Verifica n crediti Verifica n.45-1 crediti aprile 014 - Mercoledi' 9.0-11.0 Si consideri il telaio di Figura 1, vincolato con due appoggi al piede e disconnesso con un bipendolo interno ad asse verticale nella mezzeria del

Dettagli

SOLUZIONE DELLA TRACCIA N 2

SOLUZIONE DELLA TRACCIA N 2 SOLUZIONE DELLA TRACCIA N La presente soluzione verrà redatta facendo riferimento al manuale: Caligaris, Fava, Tomasello Manuale di Meccanica Hoepli. - Studio delle sollecitazioni in gioco Si calcolano

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio Un sistema ottico centrato è costituito (da sinistra a destra) da una lente sottile biconcava (l indice

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Il progetto di travi in c.a.p Iperstatiche Il sistema equivalente alla precompressione

Il progetto di travi in c.a.p Iperstatiche Il sistema equivalente alla precompressione Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento Armato Precompresso A/A 2016-17 Il progetto di travi in c.a.p Iperstatiche

Dettagli

ESERCITAZIONE SUL CRITERIO

ESERCITAZIONE SUL CRITERIO TECNOLOGIE DELLE COSTRUZIONI AEROSPAZIALI ESERCITAZIONE SUL CRITERIO DI JUVINALL Prof. Claudio Scarponi Ing. Carlo Andreotti Ing. Carlo Andreotti 1 IL CRITERIO DI JUVINALL La formulazione del criterio

Dettagli

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico Facoltà di Ingegneria ed Architettura Anno Accademico 2017 2018 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2017/18 ICAR/08 (08/B2) Scienza delle Costuzioni 6 Statica

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4 UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.

Dettagli

Corso di Matematica - Docente Iulita Massimo. Corso di Matematica - Docente Iulita Massimo 11 ottobre 2017

Corso di Matematica - Docente Iulita Massimo. Corso di Matematica - Docente Iulita Massimo 11 ottobre 2017 11 ottobre 2017 Corso di Matematica - Docente Iulita Massimo Documento riassuntivo delle lezioni #settimana 1 #settimana2 Docente: Iulita Massimo 11/10/2017 Definizione di angolo Angolo La geometria definisce

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

Laurea triennale in Fisica a.a

Laurea triennale in Fisica a.a Laurea triennale in Fisica a.a. 010-011 CORSO DI ASTRONOMIA LEZIONE 6 11 aprile 011 Prof. Angelo Angeletti Determinazione di un orbita ellittica da tre osservazioni ρ i u i indicano le posizioni geocentriche

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Università degli Studi della Basilicata Facoltà di Ingegneria

Università degli Studi della Basilicata Facoltà di Ingegneria Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI

Dettagli

3.6.3 Esercizio Esercizio... 85

3.6.3 Esercizio Esercizio... 85 Indice 1 Movimenti rigidi 1 1.1 Trasformazioni nello spazio R 3.................. 1 1.2 Trasformazioni rigide........................ 2 1.2.1 Espressione generale di una trasformazione rigida.... 3 1.2.2

Dettagli

Calcolo di una trave a C

Calcolo di una trave a C Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo

Dettagli

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE Equazioni di Lagrange in forma non conservativa Riprendiamo l equazione simbolica della dinamica per un sistema olonomo a vincoli perfetti nella forma

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno

Dettagli

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze

ESERCIZI SVOLTI. 13 Le strutture a telaio 13.1 I canali statici delle forze 1 ESERCIZI SVOLTI 1 Studiare il portale simmetrico e simmetricamente caricato riportato in figura a, incernierato alla base dei piedritti, gravato sulla traversa di un carico uniformemente ripartito q

Dettagli

1 SIGNIFICATO DEL DETERMINANTE

1 SIGNIFICATO DEL DETERMINANTE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà di Farmacia e Medicina - Corso di Laurea in CTF 1 SIGNIFICATO DEL DETERMINANTE Consideriamo il seguente problema: trovare l area del parallelogramma

Dettagli

Calcolo delle sollecitazioni di una struttura

Calcolo delle sollecitazioni di una struttura alcolo delle sollecitazioni di una struttura o scopo di questa esercitazione è il calcolo delle sollecitazioni agenti su una struttura ed il tracciamento dei relativi grafici; in pratica bisogna tracciare

Dettagli