INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3."

Transcript

1 INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi di Gomtria Toria di Gruppi. Tsto di rifrimnto consigliato pr qusti argomnti: S.Lang, Algbra Linar, Boringhiri, Torino 989 Indic Triangolazion di matrici. Torma di Cayly-Hamilton. 3 3 Matrici nilpotnti. 6 4 Forma canonica dll matrici Esmpi.

2 TRIANGOLAZIONE DI MATRICI. Triangolazion di matrici. In qusta szion dimostriamo pr l matrici complss ( pr l matrici rali con tutti gli autovalori rali) l sistnza di una bas ortonormal in cui la matric assum una forma triangolar. Ovvro ch l matrici in ipotsi sono triangolabili. Torma. Sia A una matric complssa, allora sist in C n una bas ortonormal in cui la matric assum una forma triangolar. Prova. La dimostrazion procd pr induzion. Considriamo in C n un prodotto hrmitiano. Il caso dll matrici è banal. Considriamo ora una matric complssa n n. Esist sicuramnt almno un autovalor un autovttor: Av = λv E possiamo prndr v =. Sia E il sottospazio gnrato da v complmnto ortogonal F : C n = E F Pr ogni v C n si ha la scomposizion unica: considriamo il suo Av = kv + w dov w F k dipndono da v. Dfiniamo ora una applicazion linar A : C n F : A (v) = w La rstrizion di A al sottospazio F è una matric n n ch pr l ipotsi induttiva è triangolabil, sist cioè una bas ortonormal {v, v 3,...v n } di F in cui: A (v ) = a v A (v 3 ) = a 3 v + a 33 v 3... A (v n ) = a n v + a 3n v a nn v n Aggiungndo il vttor v abbiamo allora una bas ortogonal di tutto C n ch triangolarizza la matric n n da cui siamo partiti. Ottniamo infatti, dalla scomposizion unica Av = kv + w applicata ai vttori dlla bas: A(v ) = λv A(v ) = k v + a v A(v 3 ) = k v + a 3 v + a 33 v 3... A (v n ) = k n v + a n v + a 3n v a nn v n

3 TEOREMA DI CAYLEY-HAMILTON. 3 Ossrvazion. La forma triangolar è quindi: λ k k... k n a a 3... a n a a 3n a nn Gli autovalori dlla matric sono gli lmnti dlla diagonal, prchè il polinomio carattristico di una matric triangolar è: P A (x) = (λ x) (a x)... (a nn x) Ossrvazion. La dimostrazion non fornisc un procdimnto costruttivo dlla bas ch triangolarizza, vdrmo in sguito (forma canonica di Jordan) splicitamnt almno pr l matrici 3 3, un procdimnto costruttivo. Ossrvazion.3 La dimostrazion ovviamnt val anch s la matric è ral ha tutti gli autovalori rali. Torma di Cayly-Hamilton. In qusta szion nunciamo dimostriamo un risultato molto important, il cosiddtto torma di Cayly-Hamilton. Gnralizziamo prima ai polinomi di matrici il torma dl rsto, valido pr i polinomi rali o complssi. Il torma dl rsto dic il rsto dlla division di un polinomio p(x) di grado pr il polinomio (x a) è p(a). Ovvro: Sia ora p(x) = q(x)(x a) + p(a) p(x) = a x q + a x q a q un polinomio di grado q A una matric ral o complssa. Torma. Torma dl rsto. Val la sgunt formula matricial: p (x) I = Q(x) (xi A) + p(a) dov I è la matric idntità, Q(x) è una matric i cui lmnti sono polinomi in x p(a) è il polinomio matricial ottnuto sostitundo la matric A all indtrminata x nl polinomio p(x). Prova. Poniamo p (x) I = Q(x) (xi A) + S ()

4 TEOREMA DI CAYLEY-HAMILTON. 4 Crchiamo di dtrminar la matric Q(x) ponndo: Q(x) = x q R + x q R R q Dov l R i sono matrici ch non dipndono da x. Sostitundo nlla () ottniamo: ( a x q + a x q a q ) I = ( x q R + x q R R q ) (xi A) + S Uguagliando i cofficinti dll potnz distint di x ottniamo la catna di quazioni: R = a o I R R A = a I... =... R q R q A = a q I S R q A = a q I Qust quazioni possono ssr risolt in succssion. Abbiamo quindi dimostrato l sistnza di Q(x). Moltiplichiamo ora la prima quazion pr A q, la sconda pr A q, così via fino alla pnultima ch si moltiplica pr A l ultima pr I. Ottniamo allora: Sommando tutt qust quazioni ottniamo: Cioè S = p(a) =. R A q = a o A q R A q R A q = a A q... =... R q A R q A = a q A S R q A = a q I S = p(a) Torma. Torma di Cayly-Hamilton: ogni matric è radic dl suo polinomio carattristico. Ovvro p A (A) = Prova. Ricordiamo ch p A (x) = dt(a xi) = ( ) n dt(xi A) Ossrviamo ch dalla formula dllo sviluppo pr righ dl dtrminant di una matric B si ottin: (dt B) I = B t B dov B t è la trasposta dlla matric di complmnti algbrici.

5 TEOREMA DI CAYLEY-HAMILTON. Ponndo B = ( ) n dt(xi A) ottniamo: p A (x)i = ( ) n dt(xi A) I = (xi A) t (xi A) Pr cui, applicando a qusto caso il torma prcdnt, ottniamo subito ch Q(x) = (xi A) t S = p A (A) = Il torma di Cayly-Hamilton ha intrssanti consgunz: Torma.3 Sia A una matric n n, allora A n I, A, A,...A n. è combinazion linar dll matrici Prova. Basta infatti scrivr il polinomio carattristico p A (x) = ( ) n x n + a x n dt A E applicar Cayly-Hamilton: p A (A) = ( ) n A n + a A n (dt A) I = E quindi: A n = ( ) n+ ( a A n (dt A) I ) Ossrvazion. E anch chiaro ch ogni potnza A m con m n è combinazion linar dll matrici I, A, A,...A n. Infatti basta dividr m pr n, con rsto r, ottnndo quindi A m = A kn+r = (A n ) k A r, nl prodotto a dstra, basta sostituir a ogni occorrnza di A n la sua sprssion com combinazion linar di I, A, A,...A n. Torma.4 Sia A una matric n n, invrtibil, allora A è combinazion linar dll matrici I, A, A,...A n. Prova. Com sopra, da ( ) n A n + a A n (dt A) I =, raccoglindo A si ottin: ( ) n A n + a A n +... = (dt A) A

6 3 MATRICI NILPOTENTI. 6 3 Matrici nilpotnti. Studiamo in qusto paragrafo l proprità più lmntari di una important class di matrici, l cosiddtt matrici nilpotnti. Dfinizion 3. Una matric A si dic nilpotnt s sist un intro m tal ch A m = Dfinizion 3. Si dic indic di nilpotnza di una matric nilpotnt il più piccolo intro r pr cui A r = Ossrvazion 3. L indic di nilpotnza è consrvato dalla rlazion di similitudin. Ossrviamo prima di tutto ch una matric simil a una nilpotnt è anch ssa nilpotnt, infatti s A m = B = M AM una matric simil ad A, abbiamo subito: B m = M A m M = Mostriamo ora ch l indic di nilpotnza si consrva. Siano infatti A una matric con indic di nilpotnza r B = M AM una matric simil ad A, indichiamo con s il suo indic di nilpotnza. Ottniamo subito = B s = M A s M = A s = = r s = A r = MB r M = B r = = s r Il torma di Cayly-Hamilton fornisc una carattrizzazion dll matrici nilpotnti: Torma 3. Una matric n n è nilpotnt s solo s ha com unico autovalor lo zro con moltplicità algbrica n. Prova. S una matric è nilpotnt l unico autovalor possibil è lo zro: Av = λv = = A m v = λ m v = λ = Vicvrsa s una matric n n ha com unico autovalor lo zro con moltplicità algbrica n il suo polinomio carattristico è p A (x) = ( ) n x n, pr cui il torma di Cayly-Hamilton assicura ch: p A (A) = ( ) n A n = Ossrvazion 3. E chiaro ch l unica matric nilpotnt diagonalizzabil è la matric nulla. Infatti pr ssr diagonalizzabil l autospazio dll autovalor zro, cioè il nuclo dlla matric, dv avr dimnsion n qusto implica ch il rango dlla matric sia zro. L matrici nilpotnti sono prò smpr triangolarizzabili, com vdrmo nlla prossima szion.

7 3 MATRICI NILPOTENTI. 7 Prosguiamo il paragrafo con alcun ossrvazioni sui nucli sull immagini dll potnz positiv di una matric data B. Sia B una matric n n considriamo l su potnz positiv B m, si ha: Infatti, ad smpio: così via. {} kr B kr B kr B 3... C n v kr B = Bv = = B (Bv) = = v kr B Ossrvazion 3.3 S la matric A è nilpotnt la catna di inclusioni di nucli è finita trmina con l uguaglianza. Analoga catna di inclusioni val pr l immagini: Infatti, ad smpio: così via. {}... Im B 3 Im B Im B C n w Im B = w = B v = w = B (Bv) = w Im B Ossrvazion 3.4 S la matric A è nilpotnt la catna di inclusioni dll immagini è finita inizia con l uguaglianza. Studiamo ora il caso particolar di matrici B tali ch B 3 =. S B 3 = allora: w = Bv B w = B 3 v = Im B kr B () S l indic di nilpotnza di B è du si ha anch: w = Bv B = B v = Bw = Im B kr B dim kr B dim Im B (3) S invc l indic di nilpotnza è tr possiamo ossrvar anch ch: w = B v B 3 = B 3 v = Bw = Im B kr B kr B (4) Ossrvazion 3. Nl caso particolar di matrici 3 3 abbiamo ch s B = ma B allora il torma dll dimnsioni: dim kr B + dim Im B = 3 la (3) implicano ch la dimnsion di kr B sia, s invc B 3 = ma B ancora il torma dll dimnsioni la (4) implicano ch la dimnsion di kr B sia.

8 4 FORMA CANONICA DELLE MATRICI Forma canonica dll matrici 3 3. Sia ora B una matric 3 3 nilpotnt ( allora Cayly-Hamilton implica ch B 3 = ). Escludndo il caso banal B =, studiamo i du casi B B =. Nl primo caso prndiamo un vttor v / kr B / kr B (l ultima ossrvazion dl paragrafo prcdnt dimostra ch un tal vttor sist). Dimostriamo ch i vttori v, Bv, B v sono indipndnti. Infatti: av + bbv + cb v = = B ( av + bbv + cb v ) = abv + bb v = Considriamo ora la bas costituita dai vttori: In qusta bas si ha: = B ( abv + bb v ) = ab v = = a = b = c = v = B v v = Bv v 3 = v Bv = Bv = v Bv 3 = v Cioè la matric B assum la forma: B = S invc B =, prndiamo un vttor u Im B, u = Bv, un vttor w kr B indipndnt da u. Un tal vttor sist smpr pr l ultima ossrvazion dl paragrafo prcdnt. I vttori v, Bv, w sono indipndnti: Allora nlla bas: si ha: av + bbv + cw = = B (av + bbv + cw) = = a = bbv + cw = = b, c = v = w v = Bv v 3 = v Bv = Bv = Bv 3 = v

9 4 FORMA CANONICA DELLE MATRICI Cioè la matric B assum la forma: B = Riassumndo, abbiamo dimostrato ch: Torma 4. Sia B una matric nilpotnt 3 3 allora sist una bas in cui la matric assum una dll tr form canonich (dtt di Jordan) dim kr B = 3 B = dim kr B = B = dim kr B = B = Ossrvazion 4. Si potrbb dimostrar ch un risultato simil val pr matrici nilpotnti di qualsiasi ordin: si possono smpr mttr in una forma diagonal con zri sulla diagonal blocchi di lmnti uno zro appna sopra la diagonal (forma canonica di Jordan) Qusto studio sull matrici nilpotnti 3 3 si applica dirttamnt al caso dll matrici 3 3 con un solo autovalor di moltplicità algbrica 3. Torma 4. Sia A una matric 3 3 con un solo autovalor λ di moltplicità algbrica 3, allora sist una bas in cui la matric assum una dll tr form canonich (dtt di Jordan) λ dim kr (A λi) = 3 A = λ λ λ dim kr (A λi) = A = λ λ λ dim kr (A λi) = A = λ λ Prova. Pr dimostrar il risultato basta ossrvar ch il polinomio carattristico in qusto caso è p A (x) = (λ x) 3 quindi si ottin da Cayly-Hamilton ch (λi A) 3 = applicar poi il torma prcdnt alla matric nilpotnt B = (A λi)

10 4 FORMA CANONICA DELLE MATRICI 3 3. Ossrvazion 4. Abbiamo anch ottnuto un risultato intrssant: sia A una matric 3 3 con un solo autovalor λ di moltplicità algbrica 3, allora può ssr mssa in forma di somma di una matric diagonal di una nilpotnt ch commutano fra di loro. Infatti basta ossrvar ch A = λi + B. Trascurando il caso banal in cui la matric è diagonalizzabil, pr studiar la forma canonica dll matrici 3 3 riman il caso in cui la matric ha du autovalori distinti di cui uno di moltplicità algbrica gomtrica. Il suo polinomio carattristico è quindi dl tipo: P A (x) = (λ x) (µ x) Poniamo B = A λi C = A µi. Abbiamo dal torma di Cayly-Hamilton ch B C = sappiamo anch ch dim kr C = dim kr B =. Ricordiamo anch ch autospazi di autovalori distinti hanno intrszion ridotta al solo vttor nullo. kr B kr C = {} Ossrviamo ora ch dall dfinizioni di B C sgu ch BC è nilpotnt: B C = = B C = (BC) = E chiaro ch nl nostro caso BC. Infatti s BC = = Im C kr B quindi dim Im C, ma allora dim Im C dim kr C contrariamnt all ipotsi dim kr C = dim kr B =. Sia ora v tal ch BCv prndiamo w 3 = Cv. Prndiamo poi w = BCv kr B (infatti B Cv = ) w kr C. Ossrviamo ora ch Aw = µw quindi: B w = (A λi) (A λi) w = (A λi) (µ λ) w = (µ λ) w I tr vttori w i formano allora una bas prchè sono indipndnti: aw + bw + cw 3 = = B (aw + bw + cw 3 ) = bb w = b = aw + cw 3 = B (aw + cw 3 ) = cbcv = c = aw = a = Allora nlla bas formata dai vttori: si ha: Av = µv Av = λv v = w kr C v = w = BCv kr B v 3 = w 3 = Cv Av 3 = (B + λi) Cv = BCv + λcv = v + λv 3

11 4 FORMA CANONICA DELLE MATRICI 3 3. Cioè la matric A assum la forma: A = µ λ λ Ossrvazion 4.3 Anch in qusto caso la matric può ssr mssa in forma di somma di µ una matric diagonal λ una matric nilpotnt. λ Ossrvazion 4.4 Qusto risultato important val in raltà pr matrici complss (o matrici rali con tutti gli autovalori rali) di ogni dimnsion. Infatti abbiamo visto ch tali matrici sono triangolabili con gli autovalori sulla diagonal la diffrnza tra la matric la sua diagonal è una matric triangolar con solo zri sulla diagonal, quindi, avndo com autovalori il solo zro con moltplicità n, è nilpotnt. Ossrvazion 4. la forma canonica di Jordan è particolarmnt util quando si dsidra calcolar l sponnzial di una matric. Infatti è facil calcolar l sponnzial di matrici nilpotnti in forma canonica: = I + A = = I + A + A = Da qust formul allora si ricava subito, ad smpio: a a a a a a a b b = = = a a a a a a a b b b = = a a a a a a a a a a

12 ESEMPI. In gnral, pr calcolar l sponnzial di una matric A, ad smpio 3 3, si può mttr la matric in forma canonica C = M AM mdiant l basi costruit in qusti appunti poi applicar la formula: A = MCM = M C M Ossrvazion 4.6 µ a λ b λ = b a a µ λ λ a b a Esmpi. Considriamo la matric A = 3 3 dl nuclo 3 3 ha nuclo di dimnsion con bas, La forma canonica di A è prtanto ha l autovalor, allora B = A I =. B = 6, con bas. Infatti sgundo il procdimnto indicato sopra: prndiamo un vttor vnon appartnnt al nuclo di B non appartnnt al nuclo di B, ad smpio v = costruiamo poi la bas: v =, Bv = 3 3 si ha: = , B v = = = 6 = A =. In qusta bas Considriamo la matric A = ha autovalor, ha nuclo di dimnsion con bas. A 6 3 =, con bas dl nuclo, La

13 ESEMPI. 3 forma canonica di A è prtanto. Infatti sgundo il procdimnto indicato sopra: prndiamo un vttor v non appartnnt al nuclo di A non appartnnt al nuclo di A, ad smpio v = costruiamo poi la bas: v =, Av =, A v = 6 6 A = Considriamo ora la matric A = gli autovalori sono : I = B = A I = C =., nullspac basis: Vrifichiamo ch B C =, BC = A la matric non è diagonalizzabil. Costruiamo una bas pr mttrla in forma canonica: v = w kr C = v = w = BCv kr B prndiamo pr smpio v = : allora BCv = v 3 = w 3 = Cv = Abbiamo allora: 3 3 =

14 ESEMPI. 4 Possiamo allora calcolar ad smpio: E allora: 3 3 = = + = +

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamnti di Algbra Linar Gomtria Inggnria Arospazial d Inggnria dll Enrgia - Canal B Quarto Appllo - 3 fbbraio 5 TEMA A Risolvr i sgunti srcizi motivando adguatamnt ogni risposta. () Sia data la matric

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

AUTOVALORI. NOTE DI ALGEBRA LINEARE

AUTOVALORI. NOTE DI ALGEBRA LINEARE AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti Svolgimnto di tmi d sam di Matmatica Anno Accadmico 05/6 Albrto Prtti April 06 A Prtti Svolgimnto di tmi d sam di Matmatica AA 05/6 PROVA INTERMEDIA DI MATEMATICA I part Vicnza, 04//05 Domanda Scomporr

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA 8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Definizione 1 (per endomorfismi). Sia V uno spazio vettoriale su di un campo K e f : V V un suo endomorfismo. Si dice autovettore per f ogni vettore x 0 tale che f(x) = λx, per

Dettagli

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi Capitolo 1 L insim di numri complssi 11 Introduzion ai numri complssi Dfinizion 111 Sia assgnata una coppia ordinata (a, b) di numri rali Si dfinisc numro complsso l sprssion z = a + ιb I numri a b sono

Dettagli

Matrici simili. Matrici diagonalizzabili.

Matrici simili. Matrici diagonalizzabili. Matrici simili. Matrici diagonalizzabili. Definizione (Matrici simili) Due matrici quadrate A, B si dicono simili se esiste una matrice invertibile P tale che B = P A P. () interpretazione: cambio di base.

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie Trasformat di Laplac risoluzion di sistmi linari di Equazioni Diffrnziali Ordinari Flaviano Battlli 1 Trasformat di Laplac di funzioni a valori in R Una funzion f : R R si dic un original o anch L-trasformabil,

Dettagli

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione.

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione. Corso di Matematica Discreta. Anno accademico 2008-2009 Appunti sulla diagonalizzazione. Autovalori e autovettori di un endomorfismo lineare. Sia T : V V una applicazione lineare da uno spazio vettoriale

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Esercitazioni di geometria /2009 (Damiani) Il polinomio minimo. I) Definizione del polinomio minimo.

Esercitazioni di geometria /2009 (Damiani) Il polinomio minimo. I) Definizione del polinomio minimo. Esercitazioni di geometria 2-2008/2009 (Damiani) Il polinomio minimo I) Definizione del polinomio minimo. Siano k un campo, A un anello (associativo) unitario, k Z(A) A un omomorfismo di anelli unitari

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli