Appendice A Grafici elementari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appendice A Grafici elementari"

Transcript

1 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza Appendice A Grafici elementari In questa appendice espongo alcune tecniche utili per ottenere grafici di funzioni che sono semplici trasformazioni di funzioni elementari. In particolare, data una funzione f di cui conosciamo il grafico, impareremo a disegnare il grafico delle funzioni (a) f() (b) f() (c) f() + k (d) f( ) (e) f( ) (f) f( + k) (g) kf() (h) f(k) dove k è una costante, cioè un numero reale. (a) Grafico di f(). Detto a parole, basta capovolgere il grafico di f facendone il simmetrico rispetto all asse. Ecco un disegno che illustra la trasformazione: f() f() Esempio Grafico di g() =. Dato che g() = ( ), si ha: f() Esempio Grafico di g() = ln. ln ln ln Esempio Grafico di g() = e. e e e Di norma, quando un grafico si ottiene da un altro con una qualche trasformazione, riporto tratteggiato il grafico precedente. Quando lo spazio me lo consente riporto anche l espressione analitica della funzione relativa al grafico tratteggiato.

2 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 2 (b) Grafico di f(). Detto a parole: dove la funzione è positiva la si lascia com è, dove è negativa si capovolge il grafico come fatto in precedenza. Il tutto segue dalla definizione di valore assoluto, che ricordo ancora una volta: f() = { f() f() 0 f() f() < 0. Ecco un disegno che illustra la trasformazione: f() f() f() Esempio Grafico di g() =. Esempio Grafico di g() = Esempio Grafico di g() = ln. ln ln Esempio Grafico di g() =. La funzione è ovviamente.

3 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 3 (c) Grafico di f() + k. Detto a parole: si muove il grafico di f verso l alto se k è positivo e verso il basso se k è negativo. Ecco un disegno che illustra la trasformazione: f() k > 0 k < 0 f() + k Esempio Grafico di g() = Esempio Grafico di g() =. La funzione è definita per 0. Per costruirlo si può iniziare da, costruire e infine +. (In ogni grafico a partire dal secondo è tratteggiato il grafico precedente). Esempio Grafico di g() = e. Per costruire questo si può iniziare da e, costruire e e infine e +. (In ogni grafico a partire dal secondo è tratteggiato il grafico precedente). e e e e e

4 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 4 (d) Grafico di f( ). Detto a parole: basta capovolgere il grafico di f facendone il simmetrico rispetto all asse (basta pensare che la funzione f( ) assume in lo stesso valore che la funzione f assume in ). Ecco un disegno che illustra la trasformazione: f() f( ) f() Esempio Grafico di g() = e. e e e Esempio Grafico di g() = ln( ). Ovviamente la funzione è definita sulle negative. ln( ) ln ln Esempio Grafico di g() = 3. Si noti che la funzione si può ottenere sia come ( 3 ), e quindi con un ribaltamento del grafico di 3 rispetto all asse sia come ( ) 3 e quindi con un ribaltamento della stessa rispetto all asse. Il risultato è ovviamente lo stesso Esempio Grafico di g() =. La funzione è definita per 0.

5 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 5 (e) Grafico di f( ). Detto a parole: sulle positive la funzione rimane quello che è; sulle negative ha un grafico simmetrico a quello che c è sulle positive. Gli eventuali valori che f assumeva sulle negative non hanno alcun effetto. Ecco un disegno che illustra la trasformazione: f() f( ) Esempio Grafico di g() = ln. La funzione è definita per 0. ln ln Esempio Grafico di g() = e. e e Esempio Grafico di g() =. La funzione è definita in tutto R. Esempio Grafico di g() = ( ) 2. ( ) 2 ( ) 2

6 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 6 (f) Grafico di f( + k). Detto a parole: si muove il grafico di f verso sinistra se k è positivo e verso destra se k è negativo. 2 Ecco un disegno che illustra la trasformazione: f() k > 0 k < 0 f( + k) Esempio Grafico di g() = ln( + ). La funzione è definita per >. ln( + ) ln ln Esempio Grafico di g() =. La funzione è definita per. Esempio Grafico di g() =. La funzione è definita per. Esempio Grafico di g() = e +. e e e e + 2 Attenzione. Non è come potrebbe sembrare: se k è positivo il grafico va spostato verso sinistra. Non è difficile capire il perché. Si consideri ad esempio f( + ): questa funzione assume in il valore che f assume in +, quindi è chiaro che il grafico di f( + ) è spostato a sinistra rispetto al grafico di f.

7 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 7 (g) Grafico di kf(). La moltiplicazione per un fattore k del valore di f produce una deformazione del grafico nella direzione delle (cioè in verticale). Più precisamente, se k > si ha una dilatazione del grafico, se 0 < k < si ha una contrazione. Con i valori negativi di k è lo stesso, solo che c è anche un ribaltamento nella direzione delle (come quando abbiamo visto il grafico di f()). Ecco un disegno che illustra la trasformazione: f() kf() k > 0 0 < k < Esempio Grafico di g() = 2 ln. 2 ln ln ln Esempio Grafico di g() = 2 e. e e 2 e /2 Esempio Grafico di g() = 2. / 2 / 2 2

8 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 8 (h) Grafico di f(k). La moltiplicazione per un fattore k dell argomento di f produce una deformazione del grafico nella direzione delle (cioè in orizzontale). Più precisamente, se k > si ha una contrazione del grafico, se 0 < k < si ha una dilatazione. 3 Con i valori negativi di k è lo stesso, solo che c è anche un ribaltamento nella direzione delle (come quando abbiamo visto il grafico di f( )). Ecco un disegno che illustra la trasformazione: f() f(k) k > 0 0 < k < Esempio Grafico di g() = (2 ) 2 e di g() = ( 2 )2. (2 ) 2 ( ) 2 ( ) 2 ( ) 2 ( 2 )2 2 2 Osservazioni Il grafico di g() = ln(2) è il grafico di ln 2+ln, che si può ottenere come già visto anche con una traslazione verso l alto del grafico della funzione logaritmica. Il grafico di g() = 2 è il grafico di 2, che si può ottenere come già visto anche con una dilatazione in verticale del grafico della funzione radice quadrata. Lo stesso dicasi per il grafico di g() = 4 2 = (2) 2. Si osservi anche che invece il grafico di g() = e 2 oppure g() = e /2 non rientrano in quelli già visti (se non quest ultimo). e e e e 2 e /2 Nel seguito vediamo qualche esempio in cui mettiamo insieme tutte le tecniche viste. 3 Anche per questo tipo di trasformazioni, come per f( + k), l effetto non è quello che forse uno si aspetta. Con un k > si ha una contrazione. E anche qui non è difficile capire il perché. Si consideri ad esempio f(2): questa funzione assume in il valore che f assume in 2, quindi è chiaro che il grafico di f(2) è come schiacciato orizzontalmente.

9 UNIVR Facoltà di Economia Corso di Matematica Sede di Vicenza 9 Esempio Grafico di g() = e. Si può ottenere disegnando in sequenza i grafici di e, e, e e e +. e e e e e e e Esempio Grafico di g() = ln. Si può ottenere disegnando in sequenza i grafici di ln, ln, ln e ln. ln ln ln ln ln ln Esempio In modo analogo si ottiene il grafico di g() =. Basta disegnare in sequenza i grafici di,, e. Esempio Grafico di g() = + +. Si può ottenere disegnando in sequenza i grafici di, +,

II-3 Funzioni reali di variabile reale

II-3 Funzioni reali di variabile reale GRAFICO DI UNA FUNZIONE REALE II-3 Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................ 2 2.2

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

1. Rappresentate il grafico delle funzioni. 1 2 x + 1. (i) 3x + 1 (ii) 3x 2 (iii) 2x + 1 (iv) delle rette in questione.

1. Rappresentate il grafico delle funzioni. 1 2 x + 1. (i) 3x + 1 (ii) 3x 2 (iii) 2x + 1 (iv) delle rette in questione. Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria Ambientale Esercizi di Analisi Matematica 1 - Primo Foglio - 16 settembre 2015 Soluzioni 1. Rappresentate il grafico delle funzioni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio.

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio. GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE Funzione opposta y = Il grafico della funzione funzione f( x ). f( x ) si ottiene simmetrizzando rispetto all asse x, il grafico della f( x ) Appunti di

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO Note su GRAFICI DI FUNZINI E TRASFRMAZINI DEL IAN Giulia Fidanza In queste note ci proponiamo di trovare l equazione di una funzione il cui grafico sia ottenuto dal grafico di una funzione nota attraverso

Dettagli

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt.

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt. Esercitazioni di Matematica Esercitazioni VIII -5//6 Soluzioni delle Esercitazioni VIII -5//6 A. Funzione integrale. La funzione integrale di f nell intervallo [, ] è per definizione F() = dt con [,].

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

Metodo Grafico. Tecniche per ottenere per via geometrica dal grafico di una funzione, il grafico di altre funzioni da essa generate

Metodo Grafico. Tecniche per ottenere per via geometrica dal grafico di una funzione, il grafico di altre funzioni da essa generate Metodo Grafico Tecniche per ottenere per via geometrica dal grafico di una funzione, il grafico di altre funzioni da essa generate Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte). ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

TRASFORMAZIONI DEL PIANO E GRAFICI

TRASFORMAZIONI DEL PIANO E GRAFICI Trasformazioni del piano e grafici TRASFORMAZIONI DEL PIANO E GRAFICI RICHIAMI DI TEORIA Definizione: consideriamo il piano R munito di un sistema di riferimento cartesiano ortogonale. Una trasformazione

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Soluzioni delle Esercitazioni I 19-23/09/2016

Soluzioni delle Esercitazioni I 19-23/09/2016 Esercitazioni di Matematica Esercitazioni I 9-3/09/06 Soluzioni delle Esercitazioni I 9-3/09/06 A. Polinomi Si ha:. (x+y)(3xy xy) = 6x y x y +3xy 3 xy.. (x y) = 4x 4xy +y. 3. Se non ci si ricorda lo sviluppo

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

A grande richiesta, esercizi di matematica&.!

A grande richiesta, esercizi di matematica&.! A grande richiesta, esercizi di matematica&.! A partire dalla conoscenza del grafico di f(x) = 1/x, disegna il grafico delle seguenti funzioni g(x) =1/(x+1) ; g(x) =1/(2x -1); g(x) =2 + 1/x ; g(x) =2-1/x

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

I.T.I.S L. Da Vinci G. Galilei Progetto: Diritti a Scuola - Matematica - Anno 2016

I.T.I.S L. Da Vinci G. Galilei Progetto: Diritti a Scuola - Matematica - Anno 2016 Si ringrazia il gentilissimo Prof. Nicola Filipponio per la sua disponibilità, per aver tenuto delle brillanti lezioni presso il nostro istituto e per l utilizzo del suo materiale relativo alla costruzione

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

asse fuoco vertice direttrice Fig. D3.1 Parabola.

asse fuoco vertice direttrice Fig. D3.1 Parabola. D3. Parabola D3.1 Definizione di parabola come luogo di punti Definizione: una parabola è formata dai punti equidistanti da un punto detto fuoco e da una retta detta direttrice. L equazione della parabola

Dettagli

EQUAZIONI E GRAFICI con DERIVE. Gli errori di Derive EQUAZIONI

EQUAZIONI E GRAFICI con DERIVE. Gli errori di Derive EQUAZIONI Gli errori di Derive 1 DERIVE rappresenta un potente e affidabile strumento di calcolo, ma i risultati ottenuti devono essere interpretati con gli opportuni strumenti matematici. Infatti, avvicinandoci

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Matematica ed Elementi di Statistica. Regole di calcolo

Matematica ed Elementi di Statistica. Regole di calcolo a.a. 2011/12 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica Regole di calcolo Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Definizioni basilari di funzione.

Definizioni basilari di funzione. Definizioni basilari di funzione. Una funzione per definizione e' una legge che ad ogni elemento di un insieme ( detto dominio ed indicato con D) associa un unico elemento di un secondo insieme (il codominio)

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano note a cura di Luigi Carlo Oldani - novembre 9 A technique ceases to be a trick and becomes a method only when it has been encountered enough times to seem natural. W.J.LeVeque,

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Risolvere equazioni goniometriche riconducibili a quelle elementari. Daniela Valenti, Treccani scuola

Risolvere equazioni goniometriche riconducibili a quelle elementari. Daniela Valenti, Treccani scuola Risolvere equazioni goniometriche riconducibili a quelle elementari 1 Metodi per risolvere equazioni trigonometriche non elementari A. Ricondurre l equazione ad equazioni elementari con procedimenti algebrici,

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

A grande richiesta, esercizi di matematica.!

A grande richiesta, esercizi di matematica.! A grande richiesta, esercizi di matematica.! A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3)

Dettagli

Lezione 16: La funzione modulo. La composizione

Lezione 16: La funzione modulo. La composizione Lezione 16: La funzione modulo. La composizione Nelle prossime lezioni richiameremo un po di funzioni elementari insieme ad alcune proprietà generali delle funzioni. Prima di cominciare introduciamo una

Dettagli

Elementi di matematica - dott. I. GRASSI

Elementi di matematica - dott. I. GRASSI Gli assi cartesiani e la retta. Il concetto di derivata. È ormai d uso comune nei libri, in televisione, nei quotidiani descrivere fenomeni di varia natura per mezzo di rappresentazioni grafiche. Tali

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

La città ideale Scheda di laboratorio (II sessione classe II secondaria di I grado)

La città ideale Scheda di laboratorio (II sessione classe II secondaria di I grado) La città ideale Scheda di laboratorio (II sessione classe II secondaria di I grado) Continuiamo con le nostre rappresentazioni in prospettiva. La volta scorsa vi sarete accorti che, quando vogliamo rappresentare

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Appendice 3. Rotazioni

Appendice 3. Rotazioni Appendice 3. Rotazioni Indice 1 Tensori ortogonali 2 2 Rotazioni e simmetrie in uno spazio di dimensione 2 2 3 Tensori ortogonali in uno spazio di dimensione 3 4 4 Rotazioni in uno spazio di dimensione

Dettagli

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 1. Per prima cosa determiniamo l espressione analitica della funzione f per x 8. x 8 = y y = 2x 16 2 4 Del grafico di f (x) possiamo dire

Dettagli

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 )

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 ) ESERCIZI DI MATEMATICA: SCHEDA n.1 su derivate: la definzione Classe 5B Sc.Soc. Data:...... Teoria in sintesi. Data una funzione y = f(x) denita intorno ad x 0 (ovverosia il dominio contiene un intervallo

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

I-5 Elementi di geometria analitica

I-5 Elementi di geometria analitica RETTE NEL PIANO I-5 Elementi di geometria analitica Indice Rette nel piano. Rette passanti per un punto assegnato..................................... Rette passanti per due punti assegnati.....................................

Dettagli

ESPONENZIALE E LOGARITMO, COORDINATE CARTESIANE E POLARI

ESPONENZIALE E LOGARITMO, COORDINATE CARTESIANE E POLARI ESPONENZIALE E LOGARITMO, COORDINATE CARTESIANE E POLARI Passiamo adesso a considerare la trasformazione complessa derivata dalla funzione esponenziale. Dalle rette orizzontali di ordinata y b, che scriviamo

Dettagli

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

INDICI DI FORMA: L ASIMMETRIA

INDICI DI FORMA: L ASIMMETRIA INDICI DI FORMA Per sintetizzare una distribuzione, oltre gli indici di posizione e di variabilità, si possono utilizzare anche indici di forma. Gli indici di forma sono indici descrittivi che mettono

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti A. A. 2014-2015 L.Doretti 1 IDEA INTUITIVA DI LIMITE I Caso: comportamento di una

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

1. Funzioni e grafici elementari

1. Funzioni e grafici elementari 1. Funzioni e grafici elementari Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 A.A. 2016/17 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli