Appendice Analisi in frequenza dei segnali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appendice Analisi in frequenza dei segnali"

Transcript

1 Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in Fig.. dov è il priodo. Un sgnal priodico può ssr, in gnral, cararizzao nl sgun modo: s ( + i ) (.) L indic i, 2, 3... rapprsna la rplica dl sgnal lmnar ch si succd idnica nl mpo, ogni priodo di scondi. Fig. - Sgnal priodico coicini S dllo sviluppo in sri di Fourir. S è il priodo, / è rqunza ondamnal, ω 2π è pulsazion ondamnal. Pr i sgnali priodici la rapprsnazion più usaa nl dominio dlla rqunza è cosiuia dalla scomposizion in sri di Fourir, mdian componni armonich a rqunz mulipl dlla rqunza ondamnal. S j2π (.2) Valuazion di coicini dllo sviluppo in sri I coicini S dllo sviluppo in sri di Fourir possono ssr drminai moliplicando mmbro a mmbro l Eq..2 pr la unzion xp(-j2π mdiando nl priodo. Al scondo mmbro risulranno prano rmini dl ipo xp[j2π(- ) ]. Valuiamo quindi la mdia di qusi rmini nl priodo. S è divrso da, la mdia di una unzion sinusoidal in un mpo muliplo inro dl priodo è smpr nulla. S vicvrsa, orrmo un risulao divrso da zro pari a uno. 27 Misur Elronich

2 Appndic Analisi in rqunza di sgnali - 2 nuo cono di qusi ai si ha: S R[ S co2π ) d j ] + j π 2 j Im[ S d ] [ S, ϕ ] sin(2π d (.3) Spro bilaro I coicini S dllo sviluppo in sri di Fourir risulano quindi quanià complss. L insim di ali coicini, rapprsnai in unzion dll rqunz discr o più smplicmn in unzion dll ordin dlla gnrica armonica, è lo spro a righ dl sgnal priodico. Lo spro di par ral R[S ] è una unzion pari dlla rqunza, mnr lo spro di par immaginaria Im[S ] è una unzion dispari. Dalla conoscnza dgli spri di par ral d immaginaria si dducono anch gli spri di modulo as, S ϕ, ch prsnano l sss cararisich di simmria. ali condizioni di simmria si possono anch sprimr brvmn, inroducndo la orma coniugaa, indicaa con l asrisco (*): S * S (.4) La sri sponnzial uilizza anch l rqunz ngaiv. ali rqunz sono uavia priv di signiicao isico. Il loro impigo nlla praica cosiuisc solamn una rapprsnazion analiica comoda compaa. Pr al sri si usa spsso il rmin di spro bilaro. Sviluppo in sri rigonomrica Lo spro bilaro prsna cararisich di simmria, valid sia pr la rapprsnazion con par ral d immaginaria (R[S ] Im[S ]), sia pr la rapprsnazion in modulo as ( S ϕ ). nndo cono di qus proprià si ongono sviluppi con unzioni rigonomrich. Fig..2 - Rapprsnazioni voriali di coicini dllo sviluppo in sri di Fourir. Inai, ossrvando la Fig..2A, dov è daa un inrprazion vorial di una gnrica coppia di rmini dlla sri sponnzial, pr l rqunz ± ω ± 2π, si dduc: 27 Misur Elronich

3 Appndic Analisi in rqunza di sgnali S co ω + ϕ ) s ( S (.5) ch conin solo indici posiivi. Inolr, con ririmno alla Fig..2B, s poniamo: 2 A 2 R[ S ] 2 B 2 Im[ S ] co2π d sin(2π d si oin il noo sviluppo in rmini di sno cosno: s ( S + [ A cosω + B ω ] sin (.6) (.7) Sgnal a onda rangolar Com smpio di rapprsnazion in rqunza di un sgnal priodico, si considri l onda quadra di Fig..3, onua rplicando ogni scondi un impulso rangolar di ampizza A duraa. Il sgnal si può scrivr nlla orma: i s ( A rc ( i ) L componni dl suo spro bilaro risulano: (.8) S A j2π j2π j2π + / 2 / 2 d + / 2 / 2 j2π A sin π Q π A d sin π π (.9) ssndo: QA l ara dll impulso rangolar lmnar. Nll smpio riporao in Fig..3 si è sclo /2. Fig..3 - Sgnal rangolar suo spro. Squnza di impulsi mamaici Poniamo, nll smpio prcdn, l ampizza A/. Riducndo la duraa dll impulso lmnar, si prvin a un caso limi paricolarmn signiicaivo dll onda rangolar, il rno di impulsi mamaici: 27 Misur Elronich

4 Appndic Analisi in rqunza di sgnali - 4 i i ) lim rc( i ) i (.) dov l ampizza A/ divrg al limi pr, mnr l ara Q dll impulso mamaico lmnar riman cosan di valor pari ad uno (Fig..4). Lo spro dlla squnza di impulsi mamaici di ara uniaria rqunza si oin quindi passando al limi l componni S dll Eq..9 pr, mannndo l ara Q dll impulso lmnar paria uno. Risulano prano componni armonich u uguali, con valor ral S. Sussis in diniiva, pr una squnza di impulsi mamaici, lo sviluppo in sri: i i ) j 2π (.) Fig..4 - Squnza di impulsi mamaici coicini dllo sviluppo in sri di Fourir. 2 - Sgnali apriodici I sgnali apriodici sono cararizzai dall avr nrgia inia. Pr al ao sono di anch sgnali impulsivi, divrsamn dai sgnali priodici ch si ripono indiniamn. In Fig.2. è riporao, com smpio, un sgnal con duraa limiaa. Fig.2. - Sgnal apriodico suo spro. Pr i sgnali apriodici prd signiicao lo sviluppo in sri di Fourir, mancando il principal prsupposo: la priodicià. Pr i sgnali impulsivi, l analisi in rqunza vin condoa mdian la rasormaa (dira invrsa) di Fourir. 27 Misur Elronich

5 Appndic Analisi in rqunza di sgnali - 5 rasormaa anirasormaa di Fourir I sgnali apriodici sono cararizzai in rqunza rami la rasormaa di Fourir ). Mdian l anirasormaa si ricosruisc vicvrsa il sgnal nl mpo : ) ) j2π j2π d I[ ] d I [ )] ) (2.) Poichè la rasormaa di Fourir ) è una unzion coninua nl dominio dlla rqunza, sis un ininià di componni armonich di ampizza ininisima ) d as ). Proprià sull ar La componn coninua dllo spro ) rapprsna l ara sosa dal sgnal nl dominio dl mpo, mnr l ara sosa dallo spro ornisc l ordinaa all origin dl sgnal nl mpo. Inai si ha: ) ) ) j2π j2π d d d ara di ) d ara di ) (2.2) Spro dll impulso rangolar Applicando la dinizion di rasormaa di Fourir all impulso rangolar di Fig.2.2, con ampizza A duraa (ara QA), si oin: sin π A rc( ) A (2.3) π Fig Impulso rangolar suo spro. L impulso mamaico Lo spro di un impulso mamaico mporal di ara uniaria (Q) si oin passando al limi ( ) la duraa dll impulso rangolar, mannndon cosan l ara (A/ ). Esrapolando gli andamni di Fig.2.2 si vd ch lo spro si riduc a una cosan pr u l rqunz con valor pari all ara uniaria (Q). Lo spro dll impulso mamaico ha quindi un snsion ininiamn ampia: I cosan (2.4) [ ] É vro anch il dual: a una cosan di valor uniario nl mpo corrispond un impulso 27 Misur Elronich

6 Appndic Analisi in rqunza di sgnali - 6 mamaico nl dominio dlla rqunza: I, [ ] ) (2.5) Si conrma ch un sgnal cosan nl mpo prsna solo una componn coninua in rqunza. Dualià mpo-rqunza Pr un sgnal nl mpo di ipo ral, lo spro di modulo ) è una unzion pari, mnr lo spro di as ) è una unzion dispari. S, com caso paricolar, il sgnal nl mpo olr ch ral è anch pari, consgu ch lo spro ) si riduc al solo spro di modulo ), mnr lo spro di as ) è idnicamn nullo. In al caso sussis l inrcambiabilià ra l variabili d. Uilizzando la proprià di dualià si può drminar immdiaamn l andamno mporal ch corrispond a uno spro rangolar in rqunza. Inai, dao lo spro rangolar in rqunza, rapprsnao in Fig.2.3, dov M rapprsna la larghzza di banda dllo spro, il sgnal corrispondn nl mpo risula dl ipo sin(x)/x. Fig Spro rangolar corrispondn sgnal nl mpo, sin(x)/x. Proprià di raslazion La raslazion di un sgnal nl mpo dlla quanià inroduc una variazion linar di as nllo spro dl sgnal originario. Inai: ) ) α) j2π j2π ( α+ ) d dα ) [ poso : α ] j 2 π (2.6) raslar uno spro in rqunza di una quanià a prdr l cararisich di simmria rispo all origin, con la consgunza ch il sgnal nl mpo non è più ral. Inai: ) β) ) j2π j2π( β+ ) d dβ 2 [ poso : β ] j π (2.7) D alra par, raslando lo spro originario dlla sssa quanià ± sia a dsra ch a sinisra dll origin, il sgnal corrispondn (a causa dlla riprisinaa simmria in rqunza) risula ral. Si oin inai: j2π 2 ( ) ( ) ( ) j π S + S + s + 2 co2π ) (2.8) 27 Misur Elronich

7 Appndic Analisi in rqunza di sgnali - 7 Qusa oprazion corrispond moliplicar il sgnal originario nl mpo pr un oscillazion cosinusoidal di rqunza. 3 - rasormaa di Fourir di sgnali priodici Si è mosrao ch pr un sgnal priodico sis lo sviluppo in sri di Fourir. Ciascun rmin dlla sri è una cosan S moliplicaa pr un sponnzial. Allora: a) b) I I quindi [ S ] j2π [ S ] I S ) S j 2π [ ] I S ) S ) (3.) Inai: a) la rasormaa di Fourir di una cosan S è un impulso mamaico, b) la prsnza di un sponnzial si raduc in una raslazion in rqunza: Si conclud ch anch pr i sgnali priodici sis la rasormaa di Fourir, sppur in snso limi. Qusa conclusion è inrssan in quano consn di uilizzar l rasorma di Fourir, olr ch pr i sgnali apriodici, anch pr qulli priodici, consnndo di uniicar il modo di raamno di sgnali nl dominio dlla rqunza, laddov ciò appaia convnin. rasormaa di Fourir dl rno di impulsi mamaici Si considri inin il rno di impulsi mamaici c(, con priodo c ampizza uniaria, com rapprsnao in Fig.3.. Fig.3. - Squnza di impulsi mamaici rlaiva rasormaa di Fourir. Quso sgnal, in quano priodico, può ssr sviluppao in sri di Fourir, pr quano appna viso, prsna anch la rasormaa di Fourir. Risula quindi: c( C( ) I j 2πc ic ) c i j2πc c c ) c (3.2) Si conclud ch un rno di impulsi nl mpo è rapprsnao da un rno di impulsi anch in rqunza (vdi Fig.3.). al risulao è uil nlla raazion di sgnali campionai. Il campionamno inai rapprsna il primo passo pr l laborazion digial di sgnali. 27 Misur Elronich

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Introduzione alla Trasformata di Fourier

Introduzione alla Trasformata di Fourier Corso di Laura Magisral in Chimica A.A. 3-4 Sproscopi Magnich Inroduzion alla Trasformaa di Fourir La Trasformaa di Fourir è usaa in moli divrsi campi: dalla analisi di sgnali lrici, alla analisi dll immagini

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 Toria dll cod La oria dll cod comprnd lo sudio mamaico dll cod o sismi d'asa. La formazion dll lin di asa è un fnomno comun ch si vrifica ogni

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Correnti di linea e tensioni concatenate

Correnti di linea e tensioni concatenate Sismi Trifas Sismi rifas l rasporo la disribuzion di nrgia lrica avvngono in prvalnza pr mzzo di lin rifas Un sisma rifas è alimnao mdian gnraori a r rminali rapprsnabili mdian rn di gnraori sinusoidali

Dettagli

Sollecitazioni semplici La torsione

Sollecitazioni semplici La torsione Sollciazioni smlici La orsion Considrazioni inroduiv Un lmno sruural è soggo a sollciazion di orsion quando su di sso agiscono du momni uguali d oosi giacni su un iano rndicolar al suo ass longiudinal

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

PROPRIETA DI CORRELAZIONE

PROPRIETA DI CORRELAZIONE PROPRIEA DI CORRELAZIONE Da un sgnal s() ral cmplss, si dfinisc nrgia al E dl sgnal la sgun grandzza ral (s sis): / / () / / E lim s() s () lim s() 0 L nrgia al ha significa fisic quand s() è ral: ssa,

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII.

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII. Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips 1. Inflazion,

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

I sensori di spostamento

I sensori di spostamento I snsori di sposamno Mol grandzz (prssion, mpraura, forza, acclrazion, c.) vngono rasforma in uno sposamno, prima di ssr convri in un sgnal lrico. 1 I ponziomri i p p i o i p I ponziomri sono snsori di

Dettagli

1 prova in itinere - Fondamenti di segnali e sistemi - Prof. Bernasconi Sede di Como

1 prova in itinere - Fondamenti di segnali e sistemi - Prof. Bernasconi Sede di Como prova in itinr - Fondamnti di sgnali sistmi - Pro. Brnasconi Sd di Como Cognom: om: Matricola: Compilar la tablla coi dati anagraici d il numro di matricola. Esrcizio : sgnali sistmi Sia dato il sgnal

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, )

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, ) INFLAZIONE E DISOCCUAZIONE: INTRODUZIONE hillips (958): Corrlazion ngaiva sabil ra variazion prcnal di salari monari il asso di disoccpazion (Dai UK, 86-957) Samlson Solow (960): confrmano il rislao di

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro:

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro: MONETA E FINANZA INTERNAZIONALE Lzion 3 ARBITRAGGIO SUI TASSI DI INTERESSE Invsimno sro domanda di valua sra Disinvsimno rischio di cambio prché rndimno ral dipnd da R La ablla prsna 4 casi d i rlaivi

Dettagli

Chimica Fisica Industriale Modulo A

Chimica Fisica Industriale Modulo A Chimica Fisica Indusrial Modulo Prof. Savrio Sani Diparimno di Scinz Chimich Via Marzolo Padova 49 8759 savrio.sani@unipd.i Ricvimno: ui i giorni pr appunamno Savrio Sani -Scinz Chimich - Principi di Cinica

Dettagli

Il capitale è uno degli argomenti della funzione di produzione: Y = f(l,k)

Il capitale è uno degli argomenti della funzione di produzione: Y = f(l,k) MACROECONOMIA INVESTIMENTO Il capial è uno dgli argomni dlla funzion di produzion: Y = f(l,k) Il capial è rapprsnao dall insim di qui mzzi cnici ch parcipano alla produzion ma ch non si sauriscono nl ciclo

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

f x 45 Grandezza Coppia nom Velocità a vuoto Dimensioni Peso ➀ n imax

f x 45 Grandezza Coppia nom Velocità a vuoto Dimensioni Peso ➀ n imax S T I E B E R RUOTE IBERE GR.2 TIPO AS Sono ruo libr a rulli non auocnrani. In fas di insallazion è ncssario supporarl con cuscini prvdr lubrificazion nu. dimnsioni corrispondono ai cuscini dlla sri 62.

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Curriculum Vitae Europass

Curriculum Vitae Europass Curriculum Via Europass Informazioni prsonali Nom(i) / Cognom(i) Paola Pancrazi Da Dal 8 Maggio 2014 al 9 Luglio 2014 Dal 21 april al 5 Luglio 2013. Espro srno DGCS - Afghanisan Principali aivià Supporo

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta CONOMIA POLITICA II - SRCITAZION 4 Parià i assi inrss IS-LM in conomia apra srcizio Suppon ch all sro il asso i inrss sia l 5.5% ch l aual asso i cambio nominal sia pari a.5. a) Nl caso in cui ci si aspi

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

La revisione generale dei conti nazionali del 2005

La revisione generale dei conti nazionali del 2005 La rvision gnral di coni nazionali dl 2005 Roma 21-22 giugno 2006 La dflazion di coni conomici in Ialia: rcni svilui imlmnazion Filio Moauro Isa - Dirzion Cnral dlla Conabilià Nazional (vrsion rovvisoria)

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi Capitolo 1 L insim di numri complssi 11 Introduzion ai numri complssi Dfinizion 111 Sia assgnata una coppia ordinata (a, b) di numri rali Si dfinisc numro complsso l sprssion z = a + ιb I numri a b sono

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esmpi di domand pr l sam di Economia Monaria La domanda di mona 1. In ch modo gli conomisi di Cambridg modificano l quazion dgli scambi di Fishr con quali consgunz?. Com si possono sprimr i guadagni asi

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

CORSO DI POLITICA ECONOMICA AA CURVA DI PHILLIPS. DOCENTE PIERLUIGI MONTALBANO

CORSO DI POLITICA ECONOMICA AA CURVA DI PHILLIPS. DOCENTE PIERLUIGI MONTALBANO CORSO DI POLITICA ECONOMICA AA 2014-2015 CURVA DI PHILLIPS DOCENTE PIERLUIGI MONTALBANO pirluigi.monalbano@uniroma1.i CURVA DI PHILLIPS ORIGINARIA Phillips ( 58) Rlazion invrsa ossrvaa ra asso di variazion

Dettagli

A5. Datazione con isotopi radioattivi

A5. Datazione con isotopi radioattivi A5. Daazion con isoopi adioaivi Ricodiao qui bvn co vin applicao il odo di daazion con isoopi adioaivi. Una sosanza adioaiva é una sosanza i cui nucli aoici si asfoano sponanan ni nucli di unala sosanza

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche Ercazon n 4 Mccanm combna nz rmch Tramanz rmch ) Valuar l ramanz rmch dll gun polog d fnr: a) fnra a vro ngolo ( por vro L [mm]; [W/(m)]); b) fnra con dopp vr ( por vro L [mm], ε ε 0.9, nrcapdn ara L n

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

CINETICA FENOMENOLOGICA

CINETICA FENOMENOLOGICA Univrsià gli sui i MILNO Facolà i GRRI El. i Chimica Chimica Fisica Mo. 2 CHIMIC FISIC Lzion 9 nno ccamico 200-20 Docn: Dimirios Fssas CINETIC FENOMENOLOGIC rasformazion chimica fisica microbiologica Sao

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Pag. / Sssion ordinaria 7 Sconda prova scria Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma di: MATEMATICA Il candidao risolva uno di du problmi risponda

Dettagli

Capitolo 7 - Schermature

Capitolo 7 - Schermature Appuni di Compaibilià lomagnica Capiolo 7 - Schmau Inoduzion... fficinza di schmaua... Impoanza dlla schmaua di cavi ch aavsano lo schmo...3 Impoanza dll apu: pincipio di Babin...5 Considazioni gnali...6

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Geotecnica e Laboratorio

Geotecnica e Laboratorio Corso di Lara a ciclo Unico in Inggnria Edil Archira Gocnica Laboraorio Toria dlla consolidaion ion monodimnsional mail: Prof. Ing. Marco Faari marco.faari@nipd.i wbsi: bi www.marcofaari.n Ch cos é la

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Capitolo 3 - Trasformata di Fourier (II)

Capitolo 3 - Trasformata di Fourier (II) Appui di oria di Sgali Capiolo 3 - rasformaa di Fourir (II Cararisich proprià dll impulso di Dirac... Dfiizio... proprià: ara uiaria...3 proprià: proprià di saccio...4 3 proprià: prodoo di covoluzio...4

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

RAPPRESENTAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI PERIODICI

RAPPRESENTAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI PERIODICI RAPPRESENAZIONE DI SEGNALI NEL DOMINIO DELLA FREQUENZA: CASO DEI SEGNALI PERIODICI A parir da un sgnal s() dfini nl dmini dl mp, è spss srmamn uil (pr ua una sri di ragini ch si chiarirann nll ambi dl

Dettagli

Attuatore: Motore in corrente continua (DC)

Attuatore: Motore in corrente continua (DC) Auaor: Moor in corrn coninua DC Sisma: Movimnazion monoass Modllo pr moor DC Accoppiaor oico Circuio ingrao piloa pr moor DC Sisma di piloaggio razionao Encodr incrmnal 360 impulsi/giro Moor in DC Vi snza

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONROLLI DIGIALI Laura Magiral in Inggnria Mccaronica SISEMI A DAI CAMPIONAI Ing. l. 05 535 -mail: criian.cchi@unimor.i hp://www.dimi.unimo.i/mmbr/ccchi Simi a dai campionai Analogamn a quano fao nl coro

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

PRINCIPALI VANTAGGI:

PRINCIPALI VANTAGGI: Ricamo-Lasr-Srass IL PRIMO PROGRAMMA AL MONDO CHE PERMETTE IN UN UNICO SOFTWARE: - La crazion di programmi Ricamo - La crazion di disgni Lasr con vari ffi (da uilizzar con ui i macchinari lasr in grado

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA

ESERCIZI DI MECCANICA QUANTISTICA SCIZI DI MCCANICA QUANTISTICA.uonaura : ISIS ALTINI NOLA (NA) & GSF-AIF 1 - srcizio 6 ( Corpo Nro) Considriamo un piana a disanza r dal Sol (in Unià Asronomich S 11 r 1UA 1.496 1 m ST ) di raggio. a) Calcolar

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UIVERITÀ DEGLI TUDI DI PADOVA FACOLTÀ DI CIEZE TATITICE CORO DI LAUREA I CIEZE TATITICE ED ECOOMICE Tsi di laura METODI APPROIMATI PER IL CALCOLO DEL RICIO DI TRUMETI FIAZIARI DERIVATI: METODOLOGIA E AALII

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli