CAPITOLO 2. Numeri reali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAPITOLO 2. Numeri reali"

Transcript

1 CAPITOLO 2 Numeri reali Storicamente i numeri reali sono stati introdotti per misurare le grandezze geometriche. Se ad esempio vogliamo assegnare un numero al rapporto tra la lunghezza d della diagonale e la lunghezza l del lato del quadrato, applichiamo il teorema di Pitagora e scriviamo l 2 + l 2 = d 2 ossia (d/l) 2 = 2. Siamo portati a dire che il numero cercato, reale in quanto esprime una relazione geometrica reale, è esattamente uguale a d/l = 2. Analogamente, dalla geometria siamo convinti dell esistenza di π, il numero che esprime il rapporto tra la circonferenza e la lunghezza del diametro del cerchio. I numeri 2 e π non si possono scrivere come rapporto di numeri interi, non sono cioè razionali. Viceversa, ogni numero razionale, potendosi pensare come un numero che esprime il rapporto tra lunghezze di coppie di segmenti commensurabili, ha da essere un numero reale. Che cosa sono, dunque, i numeri reali? Si potrebbe dire che sono delle entità adeguate a misurare la lunghezza di ogni segmento. Questa risposta è insoddisfacente dal punto di vista formale, anche se per molti versi accurata. La risposta formale viene formulata nell ambito della teoria degli insiemi mediante la costruzione, a partire dai numeri naturali, di un insieme normalmente denotato R e i cui elementi si dicono numeri reali. L insieme R ha tutte le proprietà algebriche che si desiderano. In esso cioè valgono le regole usuali che governano la somma, il prodotto e le relazioni d ordine, e ha l ulteriore cruciale proprietà che si chiama completezza. Essa consente di compiere uno dei passi più importanti della matematica: pensare i punti di una retta come numeri e viceversa, costruendo cioè una corrispondenza biunivoca 1 tra la retta ed R. La corrispondenza tra punti e numeri non è unica, né banale, ma è proprio ad essa che la costruzione di R è ispirata. Non è unica perché la scelta di un origine e di una scala sono arbitrarie, ossia la selezione di due punti sulla retta cui si danno i nomi zero e uno. Una volta fatta questa scelta, esiste un modo essenzialmente unico, quantomeno canonico, per procedere nell identificazione punto numero. Naturalmente, per parlare di corrispondenza biunivoca tra due insiemi è necessario dapprima sapere che cosa sono, cioè come sono definiti. Da un lato si presuppone nota la nozione di retta; si assume di sapere che cosa sia l insieme retta e quali ne siano le proprietà che siamo disposti ad accettare a priori. Dall altro, bisogna disporre dell insieme R dei numeri reali, definito in modo più o meno astratto. Solo a questo punto si può procedere alla definizione di una corrispondenza. La costruzione di R può essere fatta in diverse maniere equivalenti ma presenta difficoltà concettuali ed 1 La nozione esatta di corrispondenza biunivoca tra due insiemi verrà data nel Capitolo 3. Informalmente, ciò significa che ad ogni elemento di un insieme si associa uno ed un solo elemento dell altro e viceversa, cosicché i due insiemi risultano identificabili l uno con l altro. 17

2 18 Analisi Matematica 1 espositive che esulano dagli scopi di questi appunti. Noi procederemo per una via più breve. Elencheremo dapprima una serie di proprietà, i cosiddetti assiomi dei numeri reali. In seguito enunceremo, senza dimostrarla, l esistenza di un insieme non vuoto R, essenzialmente unico, che soddisfa tutti gli assiomi elencati. Accenneremo infine brevemente alla corrispondenza tra R e la retta. 1. Descrizione assiomatica dei numeri reali. Le proprietà che individuano l insieme dei numeri reali riguardano, in primo luogo: le operazioni di somma e prodotto la relazione di ordine la compatibilità tra operazioni e ordinamento. Chiariamo subito che cosa si intenda per relazione di ordine. Definizione 1.1. Una relazione binaria su un insieme A, denotata <, è detta relazione d ordine se essa soddisfa (i) se a, b A, allora una ed una sola delle seguenti possibilità si verifica: a < b, oppure a = b oppure b < a; (ii) se a, b, c A sono tali che a < b e b < c, allora si ha anche a < c. Le proprietà di somma e prodotto definiscono su R la struttura algebrica di corpo, mentre la compatibilità delle operazioni con la relazione d ordine definiscono ciò che si chiama un corpo ordinato. Tutte queste proprietà sono godute anche da Q, che è quindi anch esso un corpo ordinato. Esse stabiliscono le regole di calcolo, che valgono in R quanto in Q. Definizione 1.2. Un corpo è un insieme F su cui siano definite le due operazioni di addizione (o somma) e moltiplicazione (o prodotto), che soddisfano i seguenti assiomi: (A) Assiomi dell addizione. (A1) Se x F e y F allora x + y F. (A2) L addizione è commutativa: x + y = y + x per ogni x, y F. (A3) L addizione è associativa: x + (y + z) = (x + y) + z per ogni x, y, z F. (A4) Esiste un elemento 0 F tale che x + 0 = x per ogni x F. (A5) Ad ogni x F corrisponde un elemento x F tale che x + ( x) = 0. (M) Assiomi della moltiplicazione. (M1) Se x F e y F allora xy F. (M2) La moltiplicazione è commutativa: xy = yx per ogni x, y F. (M3) La moltiplicazione è associativa: x(yz) = (xy)z per ogni x, y, z F. (M4) Esiste un elemento 1 F, 1 0, tale che 1x = x per ogni x F. (M5) Ad ogni x F, x 0, corrisponde un elemento 1/x F tale che: x(1/x) = 1. (D) Proprietà distributiva. Per ogni x, y, z F si ha x(y + z) = xy + xz.

3 Numeri reali 19 L elemento x si dice l opposto di x, mentre l elemento 1/x si dice il reciproco di x. Come conseguenza degli assiomi di corpo valgono le regole di calcolo che sono enunciate negli Esercizi 1, 2 e 3 di questo capitolo. Passiamo adesso agli assiomi che stabiliscono la compatibilità tra le operazioni e la relazione d ordine. Definizione 1.3. Un corpo ordinato è un corpo F in cui sia definita una relazione d ordine < per la quale siano soddisfatti i seguenti assiomi (O) Assiomi dell ordine. (O1) Se x, y, z F e y < z, allora x + y < x + z. (O2) Se x, y F e x > 0, y > 0, allora xy > 0. Nel seguito, con la scrittura x y intendiamo che sia x < y oppure x = y. Ribadiamo che tutti gli assiomi finora elencati sono soddisfatti in particolare da Q, che è quindi un corpo ordinato. I numeri razionali tuttavia non soddisfano l assioma che segue, il vero e proprio tratto distintivo di R. (C) Assioma di completezza. Un insieme F munito di una relazione d ordine < si dice (ordinalmente) completo se dati due sottoinsiemi non vuoti A e B di F tali che a b per ogni a A e per ogni b B, esiste un elemento s F, detto elemento separatore, tale che a s b per ogni a A e per ogni b B. Si faccia attenzione al fatto che l elemento separatore non è necessariamente unico. Per esempio ciascun razionale compreso tra 0 e 1 separa in Q i sottoinsiemi {0} e {1} di Q. Osserviamo però che i sottoinsiemi A = {a Q : a 2 < 2} e B = {b Q : a 2 > 2} di Q non sono separati in Q. Non esiste cioè alcun numero razionale s tale che a s b per ogni a A ed ogni b B ; se esistesse un tale elemento s, infatti, si avrebbe s 2 = 2. Quest ultima implicazione è intuitivamente chiara, ma ha una dimostrazione che richiede l archimedeità di Q, una proprietà che discuteremo più avanti in questo capitolo (cfr il Teorema (5.1)). Il lettore curioso può svolgere gli Esercizi (16) e (17) al riguardo. La proposizione che segue mostra peraltro che l equazione s 2 = 2 non ha soluzioni in Q, il che prova che A e B non sono separati in Q. Ne discende che Q non è completo. Proposizione 1.4. Non esiste alcun numero razionale s tale che s 2 = 2. Dimostrazione. Se esistesse, si potrebbero trovare due interi positivi p e q primi tra loro tali che (p/q) 2 = 2, ossia p 2 = 2q 2. Poiché il membro destro è pari, tale è anche p 2 e quindi p (il quadrato di un numero dispari è dispari). Ma allora p = 2r e quindi 4r 2 = 2q 2, cioè 2r 2 = q 2. Con lo stesso ragionamento si conclude che allora q è pari, contro l ipotesi che p e q siano primi fra loro. Enunciamo finalmente il teorema di esistenza. Teorema 1.5. Esiste un corpo ordinato completo R.

4 20 Analisi Matematica 1 Il teorema di esistenza andrebbe in realtà perfezionato, specificando che R è essenzialmente unico. Il significato dell avverbio essenzialmente fa riferimento alla nozione di isomorfismo di corpi ordinati che viene omessa per semplicità. In sostanza, la cosiddetta unicità a meno di isomorfismi di R, consiste nel fatto che ogni altro corpo ordinato e completo F può essere messo in corrispondenza biunivoca con R in modo da rispettare le operazioni e l ordine, cosicché distinguere R da F diviene una questione solamente nominalistica, inessenziale. 2. La retta e i numeri reali. La retta geometrica non è un corpo ordinato e completo, nel senso che su di essa non sono definite a priori la somma e il prodotto, ne è chiaro quali siano, ad esempio, i punti 0 e 1. Non possiamo quindi fare appello all unicità di R per identificare la retta con R. Sarà piuttosto la costruzione di una corrispondenza biunivoca a consentirci di trasferire sulla retta le operazioni ed avere in tal modo un modello geometrico di R. La costruzione che tratteggiamo qui di seguito è basata sulla nozione intuitiva di retta. Il primo passo consiste nello scegliere due punti distinti sulla retta, che chiamiamo rispettivamente O (lo zero) e U (l uno). La retta privata di O consiste di due semirette. Chiamiamo semiretta positiva quella che contiene il punto U. Per semplificare l esposizione, supponiamo di immaginare la retta in posizione orizzontale e che U stia a destra di O. Il secondo passo consiste nell individuare i punti interi sulla retta. Consideriamo dapprima la semiretta positiva. Sia S un segmento di lunghezza uguale alla lunghezza del segmento OU ed il cui estremo sinistro coincida con il punto U. L estremo destro D di S sarà il punto che corrisponde al numero naturale 2. O U D 2 OU S Ripetendo la costruzione, otteniamo via via i punti che corrispondono ai numeri 3, 4, 5,..., ossia un insieme di punti sulla retta che chiameremo punti naturali. Riportando specularmente i punti naturali sulla semiretta negativa si ottengono i punti interi negativi. Abbiamo quindi determinato una corrispondenza biunivoca tra Z ed un certo sottoinsieme della retta i cui elementi abbiamo chiamato punti interi. Il terzo passo consiste nell individuare i punti razionali sulla retta. Partiamo al solito dalla semiretta positiva. Diciamo che il punto R su di essa è un punto razionale se esistono due interi positivi p e q (cui corrispondano rispettivamente i punti interi P e Q) tali che il segmento OP coincida con il segmento di estremo sinistro O e di estremo destro il punto a distanza q-volte la lunghezza di OR. In tal caso associamo ad R il numero razionale positivo p/q. O R 3/2 P 3 OR OP = 2 OR

5 Numeri reali 21 Viceversa, dato il numero razionale positivo p/q, il punto razionale R che ad esso corrisponde è costruito dividendo in q segmenti uguali il segmento OP : esso sarà l estremo destro del primo di tali segmenti. Riportando specularmente i punti razionali positivi sulla semiretta negativa si ottengono i punti razionali negativi. Abbiamo quindi determinato una corrispondenza biunivoca tra Q ed un certo sottoinsieme della retta i cui elementi abbiamo chiamato punti razionali. Osserviamo che tra due punti razionali distinti vi è sempre almeno un altro punto razionale, ad esempio il punto medio. Il quarto passo consiste nel completare la corrispondenza tra i punti della retta ed i numeri reali. Questo è ovviamente il passo più sottile. Innanzitutto definiamo sulla retta l ordine naturale, stabilendo cioè che P > Q se P è a destra di Q, nel senso intuitivo cui abbiamo fatto già riferimento. In secondo luogo, ci appelliamo ancora una volta alla nostra intuizione geometrica per osservare che l assioma di completezza (ordinale) ha sulla retta un significato evidente e lo assumiamo quindi come vero: se due sottoinsiemi giacciono l uno completamente alla destra dell altro, salvo avere al più un punto in comune, si potrà tagliare la retta in due semirette in modo che uno dei due insiemi sia completamente contenuto in una semiretta e l altro nell altra, perdendo al più il punto di taglio. Prendiamo dunque un punto qualunque X sulla retta e consideriamo gli insiemi A e B formati rispettivamente da tutti i punti razionali a sinistra di X e da tutti i punti razionali a destra di X. Come conseguenza del fatto che tra punti razionali distinti ve ne è sempre un altro, si può vedere che X è l unico elemento separatore tra A e B. Ai sottoinsiemi A e B della retta corrispondono sottoinsiemi A e B in R formati da numeri razionali e per i quali risulta a < b per ogni a A e per ogni b B. Si può dimostrare che l elemento separatore x R tra A e B, certo esistente per via dell assioma di completezza, è anch esso unico. Associamo quindi a X il numero reale x. Viceversa, dato il numero reale x, consideriamo i sottoinsiemi A e B di R formati rispettivamente da tutti i numeri razionali minori di x e da tutti i numeri razionali maggiori di x. Agli insiemi A e B corrispondono sottoinsiemi A e B della retta formati da punti razionali e per i quali risulta P < Q per ogni P A e per ogni Q B. Il punto X della retta che separa A e B è anch esso unico, ed è il punto associato ad x. 3. Intervalli. Insiemi aperti e intorni. Questa sezione è dedicata a introdurre una classe di sottoinsiemi di R particolarmente rilevanti: gli intervalli. Mediante gli intervalli si possono poi formulare i concetti di insieme aperto e insieme chiuso, ed il concetto di intorno di un punto. Essi definiscono ciò che si suole chiamare la topologia della retta, ossia la nozione di punti vicini ad un dato punto. Un intervallo è un insieme di numeri reali cui corrisponde un segmento o una semiretta, estremi inclusi o esclusi. Gli intervalli sono quindi definiti in termini di ordinamento. Se a e b sono numeri reali e a < b, poniamo: (a, b) = {x R : a < x < b} intervallo aperto; [a, b] = {x R : a x b} intervallo chiuso; (a, b] = {x R : a < x b} intervallo aperto a sinistra e chiuso a destra;

6 22 Analisi Matematica 1 [a, b) = {x R : a x < b} intervallo aperto a destra e chiuso a sinistra. Per quanto riguarda le semirette, introduciamo i simboli + e. È bene chiarire che essi non rappresentano alcun numero reale, ma servono semplicemente a scrivere in modo efficiente. Poniamo: (, a) = {x R : x < a} semiretta aperta e superiormente limitata 2 ; (, a] = {x R : x a} semiretta chiusa e superiormente limitata; (a, + ) = {x R : a < x} semiretta aperta e inferiormente limitata; [a, + ) = {x R : a x} semiretta chiusa e inferiormente limitata. Si dicono intervalli degeneri gli insiemi del tipo {a} ove a R. Infine, R stesso è da riguardarsi come un intervallo, fatto che viene evidenziato scrivendo R = (, + ). Si noti che l intersezione di due intervalli è sempre un intervallo, eventualmente degenere o vuoto, mentre l unione di due intervalli può essere un intervallo oppure no. Ad esempio, (0, 3] [4, 5) non è un intervallo, mentre (0, 3) [1, 3] = (0, 3]. Convenzionalmente, come abbiamo fatto noi, si usano parentesi tonde in corrispondenza di estremi esclusi e parentesi quadre in corrispondenza di estremi inclusi. Nel primo caso, abbiamo usato la parola aperto e nel secondo la parola chiuso. Queste parole hanno, come vedremo, un significato preciso. Si dice intervallo aperto centrato nel punto x 0 di semiampiezza a > 0 l intervallo (x 0 a, x 0 + a). Esso è un intervallo aperto il cui punto medio è esattamente x 0. x 0 a ( x 0 x 0 + a ) Se consideriamo un punto x 0 R, ogni intervallo aperto centrato in x 0 contiene tutti i punti vicini ad x 0, nel senso che in ogni intervallo (x 0 a, x 0 + a) vi sono tutti i punti che distano da x 0 meno di a. Ognuno di questi intervalli costituisce una sorta di bolla che isola x 0 : tutti i punti al di fuori dell intervallo sono ad una certa distanza (almeno a) da x 0 e quindi non sono poi così vicini ad x 0. Gli intervalli aperti centrati in x 0 sono il prototipo di ciò che si chiama un intorno di x 0, come chiarito dalla definizione che segue. Definizione 3.1. Sia x 0 R. Si dice intorno di x 0 un insieme U che soddisfi le due seguenti proprietà: (i) x 0 U (ii) esiste un intervallo aperto I centrato in x 0 tale che I U. Un insieme G si dice aperto se esso è intorno di ogni suo punto, ossia se per ogni x G esiste un intervallo aperto centrato in x che sia tutto contenuto in G. Infine, un insieme F si dice chiuso se il suo complementare in R è aperto. È a questo punto evidente che gli intervalli aperti sono aperti nel senso della Definizione (3.1). Infatti, dato un intervallo (s, d) ed un suo punto qualunque x 0 2 Le parole superiormente limitata e inferiormente limitata hanno un significato preciso che verrà discusso nella Sezione 6. Per ora esse hanno da essere intese in senso informale e intuitivo.

7 Numeri reali 23 potremo certo trovare un a > 0 tale che (x 0 a, x 0 + a) (s, d): basta scegliere a minore o uguale al più piccolo tra (x 0 s)/2 e (d x 0 )/2. s ( x 0 a ( x 0 x 0 + a ) d ) Similmente, sono aperte le semirette aperte del tipo (, a) oppure (a, + ). Osserviamo che l unione di due o più insiemi aperti è sempre aperta. È invece forse un po meno evidente che gli intervalli chiusi sono chiusi nel senso della Definizione (3.1). Basta però notare che [a, b] = R \ {(, a) (b, + )} e siccome (, a) (b, + ) è aperto, [a, b] risulta essere il complementare di un aperto ed è quindi chiuso. Similmente, da (, a] = R \ (a, + ), [a, + ) = R \ (, a) si vede che le semirette chiuse sono chiuse nel senso della Definizione (3.1). 4. Valore assoluto e disuguaglianza triangolare. La nozione di valore assoluto serve ad esprimere l idea di distanza che abbiamo implicitamente usato nella sezione precedente. Definizione 4.1. Per ogni numero reale x definiamo x se x 0 x = x se x < 0. Il numero x si chiama il valore assoluto (o il modulo) di x. Il numero non negativo x esprime la distanza di x dall origine: x 0 x Evidentemente x y esprime allora la distanza di x da y: x y Riassumiamo alcune proprietà del valore assoluto nella proposizione che segue. Si faccia particolare attenzione al punto (iii). Proposizione 4.2. Valgono le seguenti proprietà: (i) x = x per ogni x R;

8 24 Analisi Matematica 1 (ii) se a > 0 la relazione x < a è equivalente alla relazione a < x < a e similmente x a è equivalente alla relazione a x a; (iii) per ogni x, y R vale la disuguaglianza triangolare, cioè x + y x + y ; (iv) xy = x y per ogni x, y R; (v) x y x y per ogni x, y R. Dimostrazione. (i) Questo è ovvio. (ii) Se x 0 allora x > a è sempre soddisfatta, ed inoltre x = x < a. Se invece x < 0 allora x < a è sempre soddisfatta, ed inoltre x = x > a. (iii) Se x ed y sono entrambi non negativi, allora x+y = x+y = x + y, mentre se sono entrambi negativi tale è anche x+y e quindi x+y = (x+y) = ( x)+( y) = x + y. Supponiamo allora che siano l uno negativo e l altro non negativo, ad esempio x < 0 y. Allora x + y < y < y + x = y + x e x + y x x y = x y. In altre parole abbiamo ( x + y ) x + y ( x + y ) e l asserto segue da (ii). (iv) Questo è ovvio per via di (i). (v) Dalla disuguaglianza triangolare si ha x = x y + y x y + y, ossia x y x y. D altra parte anche y = y x + x y x + x, ossia x y x y. Abbiamo visto che x y x y x y e possiamo perciò concludere utilizzando (ii). 5. Alcune proprietà dei numeri reali. Dall assioma di completezza si può derivare una importante conseguenza, nota come la proprietà archimedea di R. Essa è una proprietà più debole della completezza. Infatti, anche Q è archimedeo, pur non essendo completo. Teorema 5.1 (Archimedeità di R). Per ogni y R ed ogni x R, x > 0, esiste un intero positivo n tale che nx > y. Dimostrazione. Se y < 0 oppure 0 < y x non c è nulla da dimostrare. Dunque è lecito assumere x < y. Supponiamo che la tesi sia falsa. Posto A = {nx : n N}, si ha a y per ogni a A, cosicché se B = {b R : b a per ogni a A} risulta B in quanto y B. Sia s un elemento separatore tra A e B. Poiché x > 0, s x < s. Se d = s x soddisfacesse d nx per ogni n, allora sarebbe d B cosicché s d per definizione di elemento separatore; ma questo contraddice il fatto che d < s. Pertanto deve esistere un intero positivo n tale che d = s x < nx ossia s < (n + 1)x. D altra parte (n + 1)x A e s a per ogni a A. Da questa contraddizione segue che la tesi è vera. Corollario 5.2. Sia x R. Se per ogni intero n > 0 si ha x 1/n, allora x = 0.

9 Numeri reali 25 Dimostrazione. Se fosse x > 0, allora in virtù del teorema precedente esisterebbe un intero positivo tale che n x > 0, contro l ipotesi. Un altra proprietà importantissima di R è la cosiddetta densità dei razionali, ossia il fatto che tra due reali qualunque cade sempre un razionale. Teorema 5.3 (Densità di Q). Se x, y R e x < y, allora esiste r Q tale che x < r < y. Dimostrazione. Poiché x < y si ha y x > 0 e per la proprietà archimedea di R esiste un intero positivo n tale che n(y x) > 1. Applicando ancora due volte la proprietà archimedea, otteniamo due interi positivi m 1 ed m 2 tali che m 1 = m 1 1 > nx e m 2 = m 2 1 > nx, ossia m 2 < nx < m 1. Perciò esiste un intero m con m 2 m m 1 tale che Dalle disuguaglianze precedenti otteniamo Infine, siccome n > 0 si ha m 1 nx < m. nx < m 1 + nx < ny. x < m n < y e l asserto è dimostrato con r = m/n. 6. Estremo superiore e inferiore. L assioma di completezza riveste, come abbiamo visto, un ruolo di fondamentale importanza. Come spesso accade in matematica, un concetto può essere riformulato ed assumere una valenza maggiormente operativa. E questo il caso dell assioma di completezza, che risulta essere equivalente all esistenza del cosiddetto estremo superiore di ogni insieme non vuoto che si trovi, per così dire, tutto a sinistra di un certo punto. Si potrebbe dire che l estremo superiore di un siffatto insieme S è il punto più appiccicato ad S tra quelli che stanno ancora a destra di S, quando non ne è proprio l elemento più grande. La definizione di estremo superiore non è molto più concreta di quella di elemento separatore ma le caratterizzazioni che se ne possono dare ne consentono un uso in un certo senso abbastanza pratico. Mediante la nozione di estremo superiore è possibile esprimere in modo sintetico e persino intuitivamente soddisfacente molte verità sottili dell Analisi Matematica. Iniziamo col precisare che cosa abbiamo inteso dire con l espressione S sta tutto a sinistra (o a destra) di un certo punto. Definizione 6.1. Sia S un sottoinsieme non vuoto di R. Diremo che S è superiormente limitato se esiste M R tale che s M per ogni s S. In questo caso, M si dirà un maggiorante di S. Analogamente, diremo che S è inferiormente limitato se esiste m R tale che m s per ogni s S. In questo caso, m si dirà un minorante di S. Diremo infine che S è limitato se è superiormente e inferiormente limitato.

10 26 Analisi Matematica 1 Si può riformulare la definizione precedente considerando l insieme dei maggioranti di S, ponendo cioè S = {M R : M s per ogni s S} e dicendo che S è superiormente limitato se S. Analogamente si può procedere introducendo l insieme S = {m R : m s per ogni s S} dei minoranti di S. Esempi. (1) Le semirette (, 0] e (, 0) sono entrambe superiormente limitate ma non inferiormente limitate. In effetti, 0 è un maggiorante per entrambe ma non vi sono minoranti ne per l una ne per l altra. Quindi non sono limitate. (2) L intervallo (0, 1] è limitato inferiormente da 0 e superiormente limitato da 1. Quindi è limitato. (3) L insieme I = {1/n : n N \ {0}} è limitato inferiormente da 0 e superiormente da 1, perché 1/n 1 per ogni naturale non nullo n. Quindi è limitato. In particolare abbiamo provato che I (0, 1]. (4) Prendendo spunto dall esempio precedente, possiamo dimostrare che se A B e B è limitato, tale è anche A. Infatti se M ed m sono rispettivamente un maggiorante ed un minorante di B, allora m b M per ogni b B. D altra parte, per ogni a A risulta a B cosicché m a M per ogni a A. Se un insieme S ha un maggiorante M, sono maggioranti di S anche tutti i numeri maggiori di M. Non è invece detto che ve ne sia qualcuno più piccolo di M. Se c è un maggiorante M < M, possiamo dire che M è meglio di M nel senso che M descrive più accuratamente la regione in cui è localizzato S, approssimandone meglio il confine destro. Poniamoci quindi la seguente domanda: esiste il migliore, cioè il più piccolo, dei maggioranti? Questo certamente avviene se S possiede un elemento che è più grande di tutti gli altri suoi elementi: esso marca il confine. Definizione 6.2. Sia S un sottoinsieme non vuoto di R. Diremo che S ammette massimo e che M R è il massimo di S se M S e se M x per ogni x S. In tal caso scriveremo M = max S. Analogamente, diremo che S ammette minimo e che m R è il minimo di S se m S e se m x per ogni x S. In tal caso scriveremo m = min S. Possiamo ora definire i concetti di estremo superiore e di estremo inferiore. Si noti che la definizione fa uso esclusivamente della relazione d ordine e di nessun altra proprietà di R. Definizione 6.3. Sia S un sottoinsieme non vuoto di R. Si chiama estremo superiore di S il minimo dei maggioranti di S, se esso esiste. In tal caso esso si denota sup S. Si chiama estremo inferiore di S il massimo dei minoranti di S, se esso esiste. In tal caso esso si denota inf S. Definiamo inoltre sup S = + se S non è superiormente limitato e inf S = se S non è inferiormente limitato. Osserviamo che se S ammette un massimo M, allora M è anche l estremo superiore di S. Infatti, M è un maggiorante e se ve ne fosse uno più piccolo M, si avrebbe M < M, contraddicendo il fatto che M sia un maggiorante, in quanto M S ; perciò

11 Numeri reali 27 M è il minimo dei maggioranti, cioè M = sup S. Similmente, se S ammette minimo m, allora m = inf S. Ne segue in particolare che se esiste sup S ma sup S S, allora S non ha massimo. Infatti, se esistesse il massimo M esso coinciderebbe con l estremo superiore, cioè M = sup S, cosicché si avrebbe sup S S, contro l ipotesi. Similmente, se esiste inf S ma inf S S, allora S non ha minimo. Esempi. (5) Riprendiamo l esempio (1) e proviamo che max(, 0] = sup(, 0] = 0. Infatti 0 (, 0] e x 0 per ogni x (, 0], da cui max(, 0] = 0. Per quanto osservato sopra, sup = max se il massimo esiste e quindi sup(, 0] = 0. Proviamo ora che sup(, 0) = 0, mentre il massimo di (, 0) non esiste. Chiaramente, 0 è un maggiorante. Se M < 0, M non è un maggiorante in quanto M < M/2 < 0 e M/2 (, 0). Perciò per ogni maggiorante M si ha 0 M e questo prova che 0 è il minimo dei maggioranti, cioè 0 = sup(, 0). Infine, siccome 0 (, 0), il massimo di (, 0) non esiste. (6) Riprendiamo l esempio (4) e proviamo che, posto I = {1/n : n N \ {0}}, si ha max I = sup I = 1, inf I = 0, ma min I non esiste. Per ogni intero positivo n si ha n 1, cosicché 1/n 1 e 1 è un maggiorante di I. Siccome 1 = 1/1 I, esso è il massimo e quindi anche il sup. Ora, 0 è un minorante per I in quanto ogni elemento di I è strettamente positivo. Sia ora m un numero reale positivo. Siccome R è archimedeo, dati i numeri reali m > 0 e 1, esiste un intero positivo n tale che nm > 1, cioè 1/n < m. Abbiamo provato che nessun numero positivo m può essere un minorante per I. Quindi, per ogni minorante m di I si ha m 0 e 0 è dunque il massimo dei minoranti, cioè 0 = inf I. D altra parte, I non ha minimo perché 0 I. La definizione di estremo superiore può essere riformulata mediante l insieme S dei maggioranti di S, ponendo min S se S e se S ammette minimo sup S = + se S =. Potrebbe quindi darsi che S sia superiormente limitato, cioè S, ma che S non ammetta minimo, nel qual caso non esisterebbe l estremo superiore di S. Ciò non si verifica mai, nel senso che se S, allora esiste min S R, ossia ogni insieme superiormente limitato ammette estremo superiore. Omettiamo la non difficile dimostrazione del seguente teorema, a cui abbiamo accennato all inizio di questa sezione e da cui segue l affermazione che abbiamo appena fatto, nonché l analoga per l estremo inferiore. Teorema 6.4. Sia F un corpo ordinato. Le asserzioni seguenti sono equivalenti: (i) F è ordinalmente completo; (ii) ogni sottoinsieme non vuoto e superiormente limitato di F ammette estremo superiore in F ; (iii) ogni sottoinsieme non vuoto e inferiormente limitato di F ammette estremo inferiore in F.

12 28 Analisi Matematica 1 Dal Teorema (6.4) segue appunto che poiché R è ordinalmente completo, cioè vale la proprietà (i), allora ogni sottoinsieme non vuoto e superiormente limitato di R ammette estremo superiore, ossia vale la proprietà (ii). Di più è vero: si potrebbe sostituire l assioma di completezza ordinale (C) con una qualunque delle proprietà (ii) oppure (iii) e ancora si otterrebbe un unico corpo ordinato con tale proprietà, ossia R. Passiamo ora a dare una caratterizzazione di sup e inf. Proposizione 6.5. Sia S un sottoinsieme non vuoto di R. Il numero β R è l estremo superiore di S se e solo se (i) β è un maggiorante per S ; (ii) per ogni x R con x < β esiste s S tale che x < s. Il numero α R è l estremo inferiore di S se e solo se (i) α è un minorante per S ; (ii) per ogni x R con x > α esiste s S tale che s < x. Dimostrazione. Supponiamo che β = sup S e proviamo che β soddisfa (i) e (ii). La (i) è banalmente soddisfatta. Sia ora x R con x < β. Siccome β è il minimo dei maggioranti, x non è un maggiorante e quindi esiste un s S più grande di x, cioè tale che s > x. Viceversa, supponiamo che β soddisfi (i) e (ii) e proviamo che allora β = sup S. Dobbiamo provare che β è il minimo dei maggioranti. Supponiamo invece che vi sia un maggiorante x più piccolo di β, cioè tale che x < β. Per la (ii) esiste allora s S tale che x < s, in contraddizione con l ipotesi che x sia un maggiorante. Pertanto β è il minimo dei maggioranti. La dimostrazione dell enunciato relativo all estremo inferiore è del tutto analoga e viene lasciata per esercizio. 7. Potenze e radici. Se x R ed n N \ {0} è ben noto che cosa si intenda per la potenza n-esima di x, denotata x n, ossia x n = x } x {{ x}. n volte La associatività del prodotto rende non ambigua l espressione precedente. Si osservi che se x > 0 allora x n > 0 per ogni intero positivo n (mentre se x < 0, il segno di x n dipende da n: se n è pari allora x n > 0 mentre se n è dispari, allora x n < 0). In particolare quindi, se fissiamo un intero positivo n l insieme P n = {x n : x > 0} è un sottoinsieme di R + = (0, + ). Una domanda naturale da porsi è se P n sia un sottoinsieme proprio di R + o se viceversa coincida con esso. In questo secondo caso, che è naturalmente quello che si verifica, si ha che per ogni intero positivo n ed ogni y > 0 esiste x > 0 tale che x n = y (vedi il Teorema (7.3) qui sotto). Il numero reale positivo x si chiama la radice n-esima di y, e si denota con uno dei simboli y 1/n oppure n y. Per poter dimostrare questo semplice ma fondamentale teorema, premettiamo due semplici osservazioni.

13 Numeri reali 29 Lemma 7.1. Sia k un intero positivo. Se 0 < a < b allora 0 < a k < b k. Dimostrazione. Esercizio. Lemma 7.2. Se 0 < a < b ed n è un intero positivo, allora (7.5) b n a n n(b a)b n 1 Dimostrazione. Fattorizzando ed utilizzando il lemma precedente si ha b n a n = (b a)(b n 1 + b n 2 a + + ba n 2 + a n 1 ) (b a)(b n 1 + b n 2 b + + bb n 2 + b n 1 ) = (b a)nb n 1. Teorema 7.3. Per ogni numero reale positivo y ed ogni intero positivo n esiste una ed una sola radice n-esima positiva y 1/n. Dimostrazione. L unicità è ovvia per via del Lemma (7.1): se 0 < x 1 < x 2 si ha anche 0 < x n 1 < x n 2. Sia ora y > 0 fissato e consideriamo l insieme A = {x R : x n y}. Questo insieme non è vuoto, perché α = min{1, y} A ed è limitato superiormente perché β = max{1, y} è un maggiorante. Infatti: α n = (min{1, y}) n min{1, y} y β n = (max{1, y}) n max{1, y} y. Esiste quindi x = sup A. Proveremo ora che x n = y. Scegliamo un qualunque numero positivo ε. Siccome x α > 0, posto { ε δ = min n2 n x ; x } n 1 2 si ha ovviamente 0 < δ < x. Allora, da 0 < x δ < x < x + δ segue (x δ) n < x n < (x + δ) n. D altra parte, per le proprietà dell estremo superiore, tra x δ ed x vi è certamente un elemento di A, mentre senz altro x + δ A. Quindi Da queste diseguaglianze, e da (7.5), segue (x δ) n < y < (x + δ) n. x n y < (x + δ) n (x δ) n 2δn(x + δ) n 1 < 2δn(2x) n 1 = δn2 n x n 1 ε. Poiché quindi x n y < ε per ogni ε > 0 si ha x n = y, come volevasi.

14 30 Analisi Matematica 1 Esercizi 1. Provare che gli assiomi dell addizione implicano le seguenti proprietà (a) Se x + y = y + z allora x = z. (b) Se x + y = y allora x = 0. (c) Se x + y = 0 allora y = x (unicità dell opposto). (d) ( x) = x. 2. Provare che gli assiomi della moltiplicazione implicano le seguenti proprietà (a) Se x 0 e xy = xz, allora y = z. (b) Se x 0 e xy = y, allora x = 1. (c) Se x 0 e xy = 1, allora y = 1/x (unicità del reciproco). (d) Se x 0, allora 1/(1/x) = x. 3. Provare che gli assiomi di corpo implicano le seguenti proprietà (a) 0x = 0. (b) Se x 0 e y 0, allora xy 0. (c) ( x)y = (xy) = x( y). (d) ( x)( y) = xy. Nota: gli esercizi dal (4) al (13) servono per ripassare l algebra delle disuguaglianze. Essi sono in ordine, nel senso che per svolgerne uno può essere necessario utilizzarne uno precedente. 4. Siano x, y R. Provare che x y se e solo se y x 0 e x < y se e solo se y x > 0. Dedurne che l opposto di un numero positivo è un numero negativo e l opposto di un numero negativo è un numero positivo. 5. Siano x 1, x 2, y 1, y 2 R. Provare che se x 1 y 1 e x 2 y 2 allora si ha anche x 1 + x 2 y 1 + y 2 ; provare inoltre che quest ultima diseguaglianza è stretta (ossia < ) se e solo se una delle due precedenti lo è. 6. Provare che la somma di un numero finito di numeri reali non negativi è non negativa e che se almeno uno di essi è positivo, la somma è positiva. 7. Siano x, y, z R con z < 0. Provare che se x y, allora xz yz e se x < y, allora xz < yz. 8. Provare che per ogni numero reale x si ha x 2 0 e che se x 2 = 0 allora x = Siano x 1, x 2, y 1, y 2 R. Provare che (a) se 0 x 1 y 1 e 0 x 2 y 2 allora x 1 x 2 y 1 y 2 ; (b) se y 1 > 0 e y 2 > 0 e x 1 < y 1 oppure x 2 < y 2, allora x 1 x 2 < y 1 y 2.

15 Numeri reali Provare che il prodotto di un numero finito di numeri reali positivi è positivo. 11. Provare che se x R è positivo, allora 1/x > 0 e se è negativo allora 1/x < Siano x e y due numeri reali positivi. Provare che x y se e solo se y/x 1 e x < y se e solo se y/x > Siano x, y R entrambi non nulli. Provare che (a) se 0 < x < y oppure x < y < 0, allora 1/x > 1/y; (b) se x < 0 < y allora 1/x < 1/y. 14. Risolvere le seguenti disequazioni (i) x(x + 2) 2 < 0; (ii) (2x + 3) 4 (x + 4) < 0; (iii) 2x 1 x + 2 0; (iv) x2 3x 10 x 2 + x + 1 < Siano A k = {x R : kx 5 0} e B = {x R : x 3 < 0}. Per quali k R si ha A k B? Per quali k R si ha A k B? 16. Sia s Q tale che s 2 < 2. (i) si provi utilizzando l archimedeità di Q che esiste un intero n > 1 per il quale n(2 s 2 ) > 2s + 1; (ii) utilizzando il punto precedente, si provi che esiste un numero razionale del tipo r = s + 1/n con n intero positivo, tale che r 2 < Si provi che se esistesse un razionale s che separa gli insiemi A = {a Q : a 2 < 2} e B = {b Q : b 2 > 2}, allora necessariamente s 2 = 2. [Traccia: si proceda provando che né s 2 < 2 né s 2 > 2 possono essere vere per via di quanto visto all esercizio precedente.] 18. Provare che se A e B sono sottoinsiemi limitati di R tali sono anche A B e A B. 19. Dimostrare il punto (ii) della Proposizione Dimostrare il Lemma 7.1.

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x}

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x} NUMERI REALI In quanto segue non diremo che cosa è un numero reale ma definiremo per via assiomatica l insieme dei numeri reali. Insieme che denotiamo con IR. L insieme dei numeri reali è un campo totalmente

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI COSTRUZIONE ASSIOMATICA DEI NUMERI REALI Si vuole arrivare alla descrizione completa dell insieme dei numeri reali R per via assiomatica partendo dall insieme dei numeri naturali N e passando attraverso

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

= {(a, b) : a A, b B}.

= {(a, b) : a A, b B}. Relazioni 1. Il prodotto cartesiano. Definizione 1. (Prodotto cartesiano di due insiemi). Dati due insiemi non vuoti A e B, si chiama prodotto cartesiano dell insieme A per l insieme B, e si indica con

Dettagli

Corso di Analisi Matematica. L insieme dei numeri reali

Corso di Analisi Matematica. L insieme dei numeri reali a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

I NUMERI. Si dice "radice quadrata" di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a.

I NUMERI. Si dice radice quadrata di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a. Questa dispensa rappresenta una breve introduzione ai numeri reali e alla loro Topologia, minimo necessario per affrontare serenamente lo studio dell ANALISI MATEMATICA. Inoltre non si ha la pretesa che

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Il sistema dei numeri reali

Il sistema dei numeri reali Il sistema dei numeri reali Appunti per il corso di Analisi Matematica 1, C.L. Matematica e C.L. Fisica, Università di Parma a.a. 015/16 Marino Belloni & Stefano Panizzi 1 Relazioni d ordine Dato un insieme

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

A = n : n N, n > 0 } 2, 1 3, 1

A = n : n N, n > 0 } 2, 1 3, 1 5 ALCUNI ESEMPI. Troviamo, se esistono, sup/inf, max/min dell insieme A è composto dai numeri A = { n : n N, n > 0 }., 2,, 4,.... Vediamo subito che A e n per ogni n N, n > 0. Questa è la definizione che

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,

Dettagli

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,

Dettagli

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi Università di Bergamo Anno accademico 2008 2009 Primo anno di Ingegneria Algebra Lineare e Geometria Il teorema fondamentale dell algebra 1 Non c è un ordine totale sull insieme dei complessi Vogliamo

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

L insieme dei numeri reali

L insieme dei numeri reali L insieme dei numeri reali È noto che ad ogni razionale n m Q corrisponde una rappresentazione decimale periodica: n m = ± c, c 1 c 2... c k c k+1... c k+h con c N e c i {0, 1, 2,..., 9} (cifre). La corrispondenza

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

1. Teoria degli insiemi

1. Teoria degli insiemi 1. Teoria degli insiemi Introduzione Il concetto di insieme è un concetto primitivo: possiamo dire che un insieme è una collezione di elementi. Indicheremo gli insiemi con lettere maiuscole A,B,... e gli

Dettagli

G. Pareschi RELAZIONI D ORDINE

G. Pareschi RELAZIONI D ORDINE G. Pareschi RELAZIONI D ORDINE 1 Definizione 1.1. Sia X un insieme. Una relazione su X è detta una relazione d ordine o un ordinamento di X se è riflessiva, antisimmetrica e transitiva. Un insieme X, munito

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

La costruzione dei numeri reali

La costruzione dei numeri reali Indice 1 Nozione di campo Archimedeo ordinato..................... 1 2 Richiami sui numeri razionali........................... 3 3 Inadeguatezza dei razionali e completezza di un insieme numerico.......

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

Vettori. Capitolo Vettori applicati e vettori liberi

Vettori. Capitolo Vettori applicati e vettori liberi apitolo 3 Vettori 3.1 Vettori applicati e vettori liberi In questo numero introduciamo il concetto di vettore geometrico su una retta, nel piano e nello spazio che ci consentirà di sviluppare un linguaggio

Dettagli

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane G. Pareschi FUNZIONI BOOLEANE 1. Funzioni booleane In questa sezione ci occuperemo principalmente delle funzioni booleane: data un algebra di Boole B finita o infinita), ed un numero naturale n, si considerano

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

1 Combinazioni lineari.

1 Combinazioni lineari. Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli