Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari"

Transcript

1 Le si ell geometri pin Punti, rette, pini Segmenti, ngoli, rette prllele e perpeniolri SEZ. D Punti, rette, pini 1 Stilisi se le seguenti ffermzioni sono vere o flse. e f g Per un punto pssno infinite rette. Per ue punti pss un sol rett. Per tre punti non pss lun rett. Su un rett i sono molti punti. Un punto ivie un rett in ue prti uguli. Su un semirett giiono infiniti punti. Un rett pprtenente un pino lo ivie in ue prti illimitte. Possimo verifirlo grfimente: isegnimo un punto su un foglio e trimo on un rig elle rette pssnti per quel punto: possimo veere he le possiili rette sono infinite. Per ue punti possono però pssre infinite linee. Se i punti sono llineti si può isegnre l rett he pss per essi. Tle rett è uni. Segmenti, ngoli, rette prllele e perpeniolri A. Clvi - G. Pnzer ELI - L Spig L rett è un line formt infiniti punti llineti; è efinit nhe ome un line he mntiene sempre l stess irezione. L line è un ente geometrio on un sol imensione e può essere urv, rett, mist, spezzt. L semirett è isun elle ue prti in ui un rett viene ivis un punto, etto origine; ess h un punto i inizio, m non un fine. Stilisi se le seguenti ffermzioni sono vere o flse. A C B Due segmenti sono onseutivi se hnno un punto in omune. Due segmenti onseutivi possono essere ienti. Il punto meio i un segmento ivie metà il segmento. Tre segmenti ienti formno un spezzt. Il pino è un ente geometrio illimitto he ontiene infinite rette. Il semipino è isun elle ue prti in ui un pino viene iviso un rett post su i esso. 1 e f g Su un rett i sono infiniti punti: un insieme formto molti punti, per qunto grne si il numero i punti in esso ontenuti, è sempre finito. gnun elle ue prti si ie semirett. Le ue semirette iniviute un punto su un rett, prese ssieme, ontengono tutti i punti ell rett, he ome imo visto sono infiniti. Le ue prti, ette semipini, sono tr loro uguli, e hnno l rett ome origine. Il segmento è l prte i rett ompres fr ue punti etti estremi. Due segmenti sono onseutivi se hnno un estremo in omune. Due segmenti sono ienti se hnno un estremo in omune e giiono sull stess rett. Si him punto meio i un segmento il punto he ivie il segmento in ue prti uguli tr loro. Briiole i teori Briiole i teori

2 Sezione D Le si ell geometri pin Non sempre ue segmenti he hnno un punto in omune sono onseutivi, perhé il punto eve essere un estremo per entrmi i segmenti. Due segmenti he oltre essere onseutivi giiono sull stess rett sono etti ienti. Per efinizione il punto meio i un segmento lo ivie in ue prti uguli tr loro, isun elle quli è quini l metà el segmento to. I segmenti ienti giiono sull stess rett. Quno si prl i spezzt si intene invee un line ostituit iversi segmenti ue ue onseutivi, m non ienti. Disegn un rett e posizion su i ess tre punti A, B, C. Qunte sono e ome si himno le prti in ui l rett rest ivis? A B C L rett rimne ivis in prti he sono: un semirett i origine A, un semirett i origine C, ue segmenti AB e BC. Risolvi i seguenti prolemi. L somm i ue segmenti onseutivi è lung 1 m e uno è ell ltro. Determin le lunghezze ei segmenti e rppresentli grfimente. Inihimo i segmenti on AB e CD; proeeno ol metoo grfio possimo srivere le ipotesi: AB + CD = 1 m e AB = CD. AB (1 : ) = m lunghezz i CD ( ) = 6 m lunghezz i AB AB + CD ( ) = 9 m lunghezz i CD Un segmento AB è lungo m e il segmento CD è lungo 16 m. Determin l misur el segmento MN = AB + CD. 8 Ipotesi: AB = m; CD = 16 m. ( ) = 1 m AB 16 = 10 m CD 8 8 (1 + 10) = m lunghezz i MN 6 L somm i ue segmenti AB e CD è lung m e AB è triplo i CD. Determin l lunghezz ei ue segmenti. Risolvimo il prolem pplino il metoo grfio. Ipotesi: AB + CD = m; AB = CD. CD ( : ) = 6 m lunghezz i AB (6 1) = 6 m lunghezz i CD AB + CD (6 ) = 18 m lunghezz i AB A. Clvi - G. Pnzer ELI - L Spig

3 Segmenti, ngoli, rette prllele e perpeniolri 7 I el segmento AB sono pri 1 m. Determin l lunghezz el segmento AB e quell el suo iente CD, speno he è pri i AB. Ipotesi: AB = 1 m; CD = AB. L srittur AB signifi he l intero, ioè AB, è stto iviso in prti uguli e ne sono stte onsierte, he orrisponono 1 m; si trtt i un prolem fonmentle inverso. Per lolre l lunghezz i isun prte oimo iviere 1 m per ; per lolre AB oimo moltiplire il risultto per ; utilizzno il lolo frzionrio si può sintetizzre: = 0 m lunghezz i AB 0 1 : = 8 m lunghezz i CD Ini l rispost estt. 8 Un ngolo è un figur pin elimitt : ue segmenti on un estremo in omune. ue semirette on l origine in omune. ue rette he si interseno. 9 In un ngolo pitto i lti: sono uno il prolungmento ell ltro. sono segmenti ienti. sono segmenti onseutivi. 10 Un ngolo mpio 91 è: ottuso. uto. qusi retto. Dll efinizione l rispost estt è. Si può prlre però ell ngolo formto ue segmenti, he è l ngolo formto lle semirette sostegno ei segmenti. Due rette he si interseno iniviuno invee ngoli on vertie nel punto i intersezione. L rispost estt è ; inftti i lti i un ngolo pitto sono ue semirette opposte e, ome tli, un è il prolungmento ell ltr. L rispost non è formlmente orrett perhé, per efinizione, i lti i un ngolo sono semirette e non segmenti. L rispost non è orrett si per l uso el termine segmento, si perhé i segmenti onseutivi non giiono neessrimente sull stess rett ome evono invee fre i lti i un ngolo pitto. L rispost estt è perhé un ngolo on mpiezz mggiore i 90 è, per efinizione, ottuso. L rispost è plesemente sglit perhé se un ngolo è ottuso non può essere uto. L rispost non può nemmeno essere pres in onsierzione perhé in mtemti non esiste il onetto i qusi. Si ie ngolo l prte i pino ompres tr ue semirette on l origine in uno stesso punto etto vertie. Un ngolo è pitto se è formto ue semirette pprtenenti ll stess rett e venti l origine in omune. 180 Un ngolo è retto se è l qurt prte ell ngolo giro. Un ngolo è ottuso se è mggiore i un ngolo retto. Un ngolo è uto se è minore i un ngolo retto. Briiole i teori Briiole i teori Briiole i teori A. Clvi - G. Pnzer ELI - L Spig

4 Sezione D Le si ell geometri pin 11 Due ngoli opposti l vertie: giiono nello stesso semipino. hnno gli stessi lti. hnno l stess mpiezz. L rispost estt è perhé sono supplementri ell ngolo iente entrmi e ngoli supplementri i uno stesso ngolo sono tr loro ongruenti. L rispost è sglit perhé l rett sostegno i isun lto ivie il pino in ue semipini isuno ei quli ontiene uno o l ltro egli ngoli ti. L rispost è sglit perhé gli ngoli opposti l vertie non hnno lti in omune, m i lti i uno sono i prolungmenti ei lti ell ltro. Dte ue rette he si interseno, sono opposti l vertie ue ngoli he non hnno lti in omune. β β Briiole i teori 1 Due ngoli supplementri: sono sempre ienti. hnno sempre l somm elle mpiezze pri 180. possono essere entrmi uti. L rispost estt è perhé un ngolo pitto h mpiezz pri 180. L rispost non è orrett perhé l essere ienti impli un posizione reipro ei ue ngoli, he non è vinolnte per eterminre l somm elle mpiezze. Due ngoli ienti sono omunque sempre supplementri. L rispost è sglit perhé l somm i ue ngoli uti non può essere 180. Due ngoli sono omplementri se l loro somm è un ngolo retto. Due ngoli sono supplementri se l loro somm è un ngolo pitto. Briiole i teori Stilisi se le seguenti ffermzioni sono vere o flse. 1 Due ngoli supplementri possono essere: uno uto e uno ottuso. tutti e ue uti. tutti e ue ottusi. tutti e ue retti. Le risposte estte sono: perhé ue ngoli sono supplementri se l somm elle loro mpiezze è 180, quini: un ngolo uto e uno ottuso possono vere per somm 180 (8 + 9 = 180 ); ue ngoli uti hnno per somm un ngolo siurmente minore i 180 ( = 178 ); ue ngoli ottusi hnno per somm un ngolo siurmente mggiore i 180 ( = 18 ); ue ngoli retti hnno sempre per somm un ngolo i 180 ( = 180 ). 1 Due ngoli omplementri possono essere: uno uto e uno ottuso. uno retto e uno uto. tutti e ue uti. tutti e ue ottusi. Le risposte estte sono: perhé ue ngoli sono omplementri se l somm elle loro mpiezze è 90, quini nessuno egli ngoli eni può essere i suo mggiore o ugule 90, ioè un ngolo retto; l uni possiilità i vere per somm 90 è he entrmi gli ngoli sino minori i 90 e quini uti. A. Clvi - G. Pnzer ELI - L Spig

5 Segmenti, ngoli, rette prllele e perpeniolri Risolvi i seguenti prolemi. 1 Determin il omplementre i un ngolo mpio 0'. Due ngoli omplementri hnno per somm 90, quini: 90 0' = 89 60' 0' = 6 0' mpiezz ell ngolo omplementre ell ngolo to. 16 Uno egli ngoli formti ue rette inienti è mpio 10. Determin l mpiezz egli ltri ngoli formti lle ue rette. Rppresentimo grfimente ue rette inienti. D A C B L ngolo to è mpio 10, quini è ottuso; osservno l figur imo: AÔB = 10 e DÔC = 10 perhé gli ngoli opposti l vertie sono uguli. Inoltre AÔB e BÔC sono ienti e pertnto supplementri, quini: BÔC = 180 AÔB = = 60 DÔA = 60 perhé opposto l vertie i BÔC. 17 Un ngolo è l quint prte el suo iente β. Determin l mpiezz ell ngolo e quell el suo omplementre. 1 + β = 180 = β Due ngoli sono onseutivi se hnno in Rppresentimo β omune il vertie e grfimente i ue A B un lto. ngoli.: Due ngoli sono ienti se sono onse- Dll figur veimo he l ngolo AÔB, pitto, è formto 6 prti uguli mpie, quini possimo srivere: utivi e i lti non omuni pprtengono (180 : 6) = 0 mpiezz i ll stess rett. Due (0 ) = 10 mpiezz i β ngoli ienti sono Il omplementre i è mpio 90 = 90 0 = 60. supplementri. Briiole i teori 18 L somm i tre ngoli è 6. Clol l loro mpiezz speno he il seono e il terzo ngolo sono rispettivmente il triplo e il quruplo el primo ngolo. Inihimo i tre ngoli on, β e γ; imo: + β + γ = 6. β γ + β + γ (6 : 8) = 8 mpiezz i (8 ) = mpiezz i β (8 ) = mpiezz i γ A. Clvi - G. Pnzer ELI - L Spig

6 Sezione D Le si ell geometri pin 19 Disegn tre ngoli onseutivi AÔB =, BÔC = 0, CÔD = 0, e onui l isettrie M ell ngolo AÔD. Determin l mpiezz i isuno egli ngoli he ess form on le semirette A, B, C, D. Disegnimo qunto rihiesto l prolem. A B M C 0 0 D sservno l figur possimo rivre: AÔB + BÔC + CÔD = = 1 AÔM = MÔD = 1 : = 6 BÔM = AÔM AÔB = 6 = 8 MÔC = MÔD CÔD = 6 0 = 1 L isettrie i un ngolo è l semirett he ivie l ngolo in ue prti uguli. Briiole i teori Ini l rispost estt. 0 Due rette sono prllele quno: non si inontrno. si inontrno, m fuori l foglio. pprtengono llo stesso pino e non si inontrno. L rispost estt è. L rispost è sglit perhé non è speifito he le rette sono omplnri: ue rette he non si inontrno e non pprtengono llo stesso pino sono ette sgheme. L rispost è sglit perhé se le rette si inontrssero fuori l foglio su ui sono isegnte, si inontrereero omunque sul pino ui il foglio pprtiene. Due rette sono prllele se sono omplnri e non hnno punti in omune. Briiole i teori 1 Due rette sono perpeniolri quno: sono inienti e formno quttro ngoli. sono inienti e formno quttro ngoli retti. sono inienti e formno ue oppie i ngoli opposti l vertie ongruenti. L rispost estt è : isuno ei quttro ngoli formti lle ue rette perpeniolri è un qurto i un ngolo giro, ioè un ngolo retto. L rispost è sglit perhé ue rette he si inontrno formno sempre quttro ngoli, m non sempre questi sono uguli tr loro: solo in tl so si può prlre i ngoli retti. L rispost è sglit perhé qulunque oppi i rette inienti, nhe se non perpeniolri, form oppie i ngoli opposti l vertie tr loro ongruenti. Due rette sono perpeniolri se sono inienti e formno quttro ngoli uguli. Briiole i teori Le rette perpeniolri un rett t sono: infinite. più i un, m non più i ue. un e un sol. L rispost estt è : per qulunque punto i un rett è possiile trire un perpeniolre ll rett t e, poihé l rett è ostituit infiniti punti, è possiile trire infinite rette perpeniolri. A. Clvi - G. Pnzer ELI - L Spig 6

7 Segmenti, ngoli, rette prllele e perpeniolri L istnz i un punto P un rett: è l semirett i origine P e perpeniolre ll rett. è un segmento on un estremo in P e uno sull rett. è il segmento i perpeniolre onotto P ll rett on un estremo in P e l ltro sul piee ell perpeniolre. L rispost estt è, inftti il termine istnz impli il onetto i minimo perorso ; osserv l rppresentzione grfi nell figur nto. P Q H S T K r PH è perpeniolre ll rett r; PQ, PS, PT, PK sono generii segmenti onotti P r; si può veere he il segmento minore è quello perpeniolre. Dllo stesso isegno euimo quini he l rispost è sglit. L rispost è sglit perhé l istnz è un lunghezz misurile e quini finit, mentre l semirett è infinit. L sse el segmento è: un rett pssnte per il punto meio el segmento. l rett perpeniolre l segmento pssnte per il punto meio. un elle rette perpeniolri l segmento. L rispost estt è perhé per efinizione l sse eve essere perpeniolre l segmento, m eve nhe iviere il segmento stesso in ue prti ongruenti. L rispost è errt perhé le rette pssnti per il punto meio sono infinite. L rispost è errt perhé si possono trire infinite rette perpeniolri l segmento, m un sol ivie il segmento stesso in ue prti ongruenti. Stilisi se le seguenti ffermzioni sono vere o flse. Due rette prllele tglite un trsversle formno otto ngoli retti. Due rette prllele tglite un trsversle formno sempre ngoli lterni interni supplementri. Due rette prllele tglite un trsversle formno sempre ngoli orrisponenti ongruenti. Due rette prllele tglite un trsversle formno ngoli oniugti esterni omplementri. Perhé si prl i un generi trsversle e non viene speifito he si perpeniolre lle ue rette prllele te. Perhé gli ngoli lterni interni sono ongruenti e non supplementri. Perhé gli ngoli orrisponenti sono ongruenti inipenentemente ll posizione ell trsversle. Perhé gli ngoli oniugti esterni sono supplementri e non omplementri. TEREMA DELLE PARALLELE TAGLIATE DA UNA TRASERSALE Due rette prllele tglite un trsversle formno: ngoli lterni interni uguli = ; 6 = ngoli lterni esterni uguli = 8 ; 1 = 7 ngoli orrisponenti uguli = 6 ; = 7 ; 1 = ; = 8 ngoli oniugti interni supplementri + 6 = 180 ; + = 180 ngoli oniugti esterni supplementri + 7 = 180 ; = t Briiole i teori A. Clvi - G. Pnzer ELI - L Spig 7

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Il piano cartesiano e la retta

Il piano cartesiano e la retta Cpitolo Eserizi Il pino rtesino e l rett Teori p. Coorinte rtesine nel pino Stilisi ove si trov isuno ei punti ti. (I I qurnte, II II qurnte, III III qurnte, IV IV qurnte, x sse x, y sse y) A(0, 8) B(,

Dettagli

COGNOME... NOME... Classe... Data...

COGNOME... NOME... Classe... Data... Cpitolo I tringoli Criteri i ongruenz - Tringoli isoseli erifi per l lsse prim Clsse.................................... Dt............................... Congruenz Tringolo isosele Teorem Quesiti 186

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometri pin 1. Formule fonmentli Rettngolo = h = h = h p = + h p = + h h= p = p h + ( ) = h = h h= = se = igonle p = perimetro h = ltezz = re p = semiperimetro Qurto = l l = = l l = l = lto = igonle

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione Geometri solid ette e pini nello spzio + poliedri + solidi di rotzione ette e pini nello spzio tilisi se le seguenti ffermzioni sono vere o flse. EZ. d e e tre rette nello spzio sono tr loro prllele, llor

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Elementi di Geometria. Lezione 02

Elementi di Geometria. Lezione 02 Elementi di Geometri Lezione 02 Angoli complementri e supplementri Due ngoli si dicono complementri qundo l loro somm è un ngolo retto. In Figur 15 i due ngoli e sono complementri perché, sommti come descritto

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Probabilità e statistica Statistica Probabilità

Probabilità e statistica Statistica Probabilità Proilità e sttisti Sttisti Proilità Sttisti Risolvi i seguenti prolemi. SEZ. Q Polo h sull su lireri liri i nrrtiv spessi 3 m, 3 volumi i un enilopei i spessore m ognuno e voolri spessi 9, m. Clol lo spessore

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Grafici elementari 1 - geometria analitica

Grafici elementari 1 - geometria analitica Grfii elementri - geometri nliti Un equzione rppresent un funzione se è possiile metterl in form espliit (rivre l y) ottenendo un sol espressione. Un urv rppresent un funzione se, preso un qulsisi punto

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

1) TEOREMA: OGNI TRIANGOLO E INSCRIVIBILE/CIRCOSCRIVIBILE IN/AD UNA CIRCONFERENZA

1) TEOREMA: OGNI TRIANGOLO E INSCRIVIBILE/CIRCOSCRIVIBILE IN/AD UNA CIRCONFERENZA 1) TEORE: OGNI TRINGOLO E INSRIVIILE/IROSRIVIILE IN/ UN IRONFERENZ TRINGOLO INSRITTO: isegniamo il triangolo. Si tracciano i due assi r ed s dei lati e. Indichiamo con il loro punto di incontro. Sappiamo

Dettagli

Gli Elementi di Euclide

Gli Elementi di Euclide Gli Elementi di Euclide Muro Sit e-mil: murosit@tisclinet.it Versione provvisori. Novembre 2011. 1 Indice 1 L struttu degli Elementi. 1 2 Le prime proposizioni 3 3 Il quinto postulto 4 Simplicio: Voi procedete

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

RETTA, SEMIRETTA E SEGMENTO

RETTA, SEMIRETTA E SEGMENTO RETT, SEMIRETT E SEGMENTO La RETT viene definita come un insieme infinito di punti allineati secondo una stessa direzione : r le parti tratteggiate stanno proprio ad indicare che essa si estende all'infinito:

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

CONCETTI PRIMITIVI DELLA GEOMETRIA. Punto. Punto. Linea. Piano. La linea retta. Piano PAGINA 1

CONCETTI PRIMITIVI DELLA GEOMETRIA. Punto. Punto. Linea. Piano. La linea retta. Piano PAGINA 1 NTTI PRIMITIVI LL MTRI Il punto è un entità geometric priv di dimensione. Si indic con un letter miuscol dell lfbeto ltino. sso si individu d intersezioni di linee rette o di rchi o nche d mbedue. L line

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Sia A un sottoinsieme limitato del piano e f ( x, y ) una funzione definita in A e limitata. L integrale doppio

Sia A un sottoinsieme limitato del piano e f ( x, y ) una funzione definita in A e limitata. L integrale doppio Prte secon : Clcolo integrle. Integrle oppio su un rettngolo Si A un sottoinsieme limitto el pino e f ( x, ) un funzione efinit in A e limitt. L integrle oppio A f ( x, ) x è un numero efinito in moo tle

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 3 Aspetti tenologii 4 Reti logihe omintorie Anlisi M.

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Diffrazione & struttura

Diffrazione & struttura Cimi fisi ei mterii Diffrzione & struttur Sergio Brutti Pini retiori prei Consierimo un generio pino retiore in un risto. Su te pino gie un motivo tomio (bse) regore e biimensione Te motivo srà ientio

Dettagli

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo? GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli

Dettagli

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE FUNZINI SEN & SEN TNGENTE & TNGENTE DEFINIZINE DI SEN E SEN onsiderndo l ngolo =, trimo un erhio di rggio qulunque R = = e on entro sul vertie dell ngolo. Le intersezioni del erhio on le semirette dell

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica Liceo Scientifico E. Mjorn Guidoni Numeri Nturli Sintesi dell teori Domnde Risposte Esempi Come si indic l insieme dei numeri nturli {0,,,,, }? L insieme dei numeri nturli si indic con l letter N. Quli

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

UNITA DI MISURA. distanze

UNITA DI MISURA. distanze Unità di misur. ppunti di Topogrfi UNIT DI MISUR distnze L unità di misur bitulmente impiegt per esprimere le distnze è il metro. Per grndezze molto piccole è opportuno ricorrere i sottomultipli, centimetro

Dettagli

Anteprima Esempio di Test di Ingresso

Anteprima Esempio di Test di Ingresso Anteprim Esempio i Test i Ingresso Question 1 Il prinipio i lssifizione e il to sttistio Ogni linguggio, nhe il linguggio orinrio, h fonmento lssifitorio. Nel nome omune si onret il prinipio i ientità

Dettagli