(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
|
|
- Filippo Damiani
- 3 anni fa
- Visualizzazioni
Transcript
1 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y). b) Determinare la matrice A associata a T (rispetto alle basi canoniche). c) Stabilire se (3, 4, 1) appartiene a Im(T ). Esercizio 1.2. Sia T : R 4 R 4 l applicazione lineare tale che x 1 T x 2 x 3 = x 4 x 1 + x 2 + 2x 3 + x 4 x 1 + 2x 2 + 4x 3 + x 4 2x 1 + 2x 2 + 4x 3 + 3x 4 x 1 2x 2 + (k 4)x 3 + 2x 4 dove k R Ã un parametro reale. a) Discutere l iniettività e suriettività di T al variare di k R. b) Determinare una base degli spazi vettoriali Im(T ) e Ker(T ) al variare di k R. Esercizio 1.3. Sia T : R 3 R 4 la funzione lineare definita da: T (x 1, x 2, x 3 ) = (2kx 1 x 2, x 2 + kx 3, x 1 + x 2 x 3, x 1 x 2 ) a) Trovare le dimensioni del nucleo e dell immagine di T al variare del parametro reale k. b) Stabilire per quali valori di k il vettore v = (3, 3, 1, 0) appartiene all immagine di T. Esercizio 1.4. Sia T : R 3 R 3 l applicazione lineare definita da T (x, y, z) = (2x, y, 0) (1) Dato il vettore w = (2, 1, 1), calcolare T (w). (2) Determinare la matrice A associata a T rispetto alla base canonica. (3) Calcolare T (w) utilizzando la matrice A. (4) Determinare la dimensione e una base degli spazi vettoriali Im(T ) e Ker(T ). (5) Verificare che l insieme B = {v 1, v 2, v 3 } con v 1 = (1, 0, 1), v 2 = (0, 1, 1), v 3 = (1, 1, 1) è una base di R 3. (6) Determinare la matrice B associata a T rispetto alla base B dello spazio di partenza e alla base canonica C dello spazio di arrivo. (7) Determinare le componenti del vettore w = (2, 1, 1) rispetto alla base B. (8) Calcolare T (w) utilizzando la matrice B. Esercizio 1.5. Sia T : R 3 R 2 l applicazione lineare tale che T (x, y, z) = (2x, y + z) (1) Verificare che T è un applicazione lineare. (2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. (4) Calcolare T (w) utilizzando la matrice A. (5) Determinare la dimensione e una base degli spazi vettoriali Im(T ) R 2 e Ker(T ) R 3. (6) Verificare che l insieme B = {v 1, v 2, v 3 } con v 1 = (2, 1, 0), v 2 = (0, 1, 0), v 3 = (1, 0, 1) è una base di R 3. (7) Determinare la matrice B associata a T rispetto alla base B di R 3 e alla base canonica di R 2. (8) Calcolare T (w) utilizzando la matrice B. Esercizio 1.6. Sia f : R 3 R 3 l applicazione lineare definita ponendo f(x, y, z) = (x + y 2z, 3x z, 2x y + z) e sia g : R 3 R 3 l applicazione lineare definita ponendo g(x, y, z) = (x + z, x y + z, y) Si trovino le dimensioni dei nuclei delle applicazioni lineari g f e f g. 1
2 2 Esercizio 1.7. Sia S : R 3 R 3 la funzione lineare associata a: rispetto alla base B = {(1, 1, 1), (0, 2, 2), (0, 0, 3)} di R 3. a) Si scriva la matrice associata a S rispetto alle basi canoniche. b) Determinare basi dell immagine Im(S) e del nucleo N(S). Esercizio 1.8. Sia S : M n (R) M n (R) la funzione lineare così definita: S(A) = A A T a) Si determini il nucleo e l immagine di S. b) Posto n = 2, si determini la matrice associata a S rispetto alla base {[ ] [ ] [ ] [ ]} B =,,, c) Per n = 2, la funzione lineare S è diagonalizzabile? Esercizio 1.9. Sia S : M n (R) M n (R) la funzione lineare così definita: S(A) = A + A T a) Si determini il nucleo e l immagine di S. b) Posto n = 2, si determini la matrice associata a S rispetto alla base {[ ] [ ] [ ] [ ]} B =,,, c) Per n = 2, la funzione lineare S è diagonalizzabile? Esercizio Si f : R 2 [x] R 2 [x] l applicazione lineare definita ponendo f(ax 2 + bx + c) = (a b)x 2 + (b c)x + a c a) Si trovi la matrice rappresentativa di tale applicazione rispetto alla base B = { x 2 + 2, x 1, x + 1 } b) Si trovi la dimensione e una base di Ker(f) e Im(f). 2. Determinante e rango Esercizio 2.1. Calcolare il rango della seguente matrice A, utilizzando il calcolo del determinante. 1 k A = k k k R 1 2k 3 0 Esercizio 2.2. Calcolare l inversa delle seguenti matrici (invertibili) utilizzando il metodo della riduzione a gradini. A = Esercizio 2.3. Sia A la matrice reale [ ] A = k B = a) Calcolare il determinante di A e stabilire per quali valori di k la matrice è invertibile. b) Trovare la matrice inversa di A per k = 1.
3 3 Esercizio 2.4. Sia A la matrice reale A = k k 1 k 0 2k k 1 2 k (k reale). a) Si determini per quali valori di k la matrice A è invertibile. Si calcoli la matrice inversa di A per k = 1. b) Calcolare il rango di A al variare del parametro k. Esercizio 2.5. Sia A la matrice reale A = k 8 + 2k k 1 0 8k (t reale). a) Calcolare il rango di A al variare del parametro k. b) Esistono valori di k per i quali la matrice è invertibile? 3. Prodotto scalare, ortogonalità e basi ortonormali Esercizio 3.1. Siano u = (4, 2, 2) e v = (3, 3, 2) vettori di R 3. a) Calcolare le lunghezze di u e di v (rispetto al prodotto scalare canonico di R 3 ). b) Trovare tutti i vettori w di lunghezza 1 ortogonali a u e a v. Esercizio 3.2. Si considerino i vettori di R 4 v 1 = (0, 2, 1, 1), v 2 = (1, 0, 0, 1). a) Calcolare le lunghezze di v 1 e di v 2 (rispetto al prodotto scalare canonico di R 4 ). b) Determinare la proiezione ortogonale di v 1 su v 2. Esercizio 3.3. Data la base B = {v 1 = ( 1, 0, 1), v 2 = (0, 1, 0), v 3 = (1, 0, 1)} di R 3, si determini una base ortonormale di R 3 utilizzando il procedimento di Gram-Schmidt a partire da B. Esercizio 3.4. Sia V il seguente sottospazio di R 4 Si determini il complemento ortogonale V di V. V = v 1 = (1, 1, 0, 0), v 2 = (1, 2, 1, 3) Esercizio 3.5. Sia V il sottospazio di R 3 di base B = {v 1 = (1, 2, 0), v 2 = (2, 4, 1)}. a) Si trovi una base ortonormale di V a partire da B. b) Si trovi una base ortonormale del complemento ortogonale V di V. Esercizio 3.6. Sia V = R 2 [x] lo spazio vettoriale dei polinomi di grado al più 2. Si consideri il prodotto scalare così definito: p(x) q(x) = p(1)q(1) + p(0)q(0) + p( 1)q( 1). a) Si trovi una base ortonormale di V. b) Si determini la distanza tra i polinomi x 2 2x + 4 e 2x 2 + x 3.
4 4 4. Geometria nello spazio Esercizio 4.1. Stabilire se i punti A(1, 2, 3), B( 2, 1, 3), C(3, 2, 1) e D(4, 1, 0) sono complanari. Esercizio 4.2. Determinare l equazione cartesiana del piano passante per i punti A(1, 2, 3), B( 2, 1, 3) e C(3, 2, 1). Esercizio 4.3. Determinare l equazione cartesiana della retta passante per i punti A(3, 1, 2) e B(1, 1, 0)). Esercizio 4.4. Si determini la distanza del punto P (3, 1, 2) dalla retta di equazione parametrica x = 6 + t y = 2 + 2t z = 1 3t Esercizio 4.5. Si determini la distanza del punto P ( 1, 0, 2) dal piano di equazione x 2y + 3z = 9. Esercizio 4.6. Si determini la distanza tra le rette di equazioni x = t x = 4 + s r : y = 1 + t r : y = s z = 4 t z = 2 s Esercizio 4.7. Si determini la distanza tra le rette di equazioni x = 1 t x = 2 + s r : y = 1 + 3t r : y = s z = t z = 1 t Esercizio 4.8. Nello spazio R 3 si considerino i piani π 1 : 2x + y = 1 e π 2 : x = 2y. a) Determinare la mutua posizione dei due piani. b) Scrivere equazioni cartesiane della retta parallela a π 1, perpendicolare a π 2 e passante per l origine. 5. Autovalori, autovettori e diagonalizzazione di endomorfismi Esercizio 5.1. Sia T : R 3 R 3 l endomorfismo a cui, rispetto alla base canonica, è associata la matrice A = a) Determinare autovalori e autovettori di T. b) Stabilire se T è diagonalizzabile. Esercizio 5.2. Sia T : R 3 R 3 l endomorfismo a cui, rispetto alla base canonica, è associata la matrice A = a) Si determinino gli autovalori di T e si stabilisca se T è diagonalizzabile. b) Si determini una base di R 3 formata da autovettori di T. Esercizio 5.3. Sia T : R 2 R 2 l endomorfismo a cui, rispetto alla base canonica, è associata la matrice [ ] 2 2 A = 1 3 a) Si determini il polinomio caratteristico e gli autovalori di T. b) Si determini l autospazio V λ relativo ad ogni autovalore λ trovato.
5 5 c) Si verifichi che T è diagonalizzabile. d) Si trovi la matrice diagonale B simile alla matrice A. Esercizio 5.4. Sia S l endomorfismo di R 4 con matrice associata A = rispetto alla base canonica. a) Determinare autovalori e autovettori di S. b) Stabilire se S è diagonalizzabile. Esercizio 5.5. Sia T l endomorfismo di R 4 definito dalla matrice A = Stabilire se T è diagonalizzabile. Esercizio 5.6. Data la matrice M = 1 1 k k Discutere la diagonalizzabiltà di M al variare del parametro k R. Esercizio 5.7. Siano A e B le matrici reali A = e B = k k 1 1 Determinare, se esistono, i valori del parametro reale k per cui A e B sono simili. Esercizio 5.8. Sia T l endomorfismo di R 2 [x] la cui matrice associata, rispetto alla base canonica è A = a) Stabilire se 4 è autovalore di T. Calcolare gli autovalori e autovettori di T. b) T è diagonalizzabile? In caso affermativo trovare una base di autovettori di T. Esercizio 5.9. Sia T l endomorfismo di R 2 [x] che associa al polinomio p(x) = ax 2 + bx + c R 2 [x] il polinomio T (p(x)) = (a + kb)x 2 + (ka + b)x + kc. a) Trovare la matrice associata a T rispetto alla base {x 2, x, 1}. b) Calcolare gli autovalori di T. Esercizio Sia T l endomorfismo di R 4 definito dalla matrice A = a) Determinare autovalori e autovettori di T. b) Determinare una base ortonormale di R 4 formata da autovettori di T.
6 6 Esercizio Sia T l endomorfismo do R 4 cosí definito: T (x 1, x 2, x 3, x 4 ) = (3x 1, x 3, x 4, 3x 2 + x 3 + 3x 4 ) a) Mostrare che 1 è autovalore di T. b) Stabilire se T è diagonalizzabile e in caso affermativo trovare una base rispetto a cui T ha matrice diagonale. c) L endomorfismo T è simmetrico? Esercizio Sia T : R 3 R 3 l endomorfismo avente come autovettori i vettori v 1 = (1, 1, 0), v 2 = (0, 1, 1), v 3 = (0, 0, 1), rispetto agli autovalori 1, 1, 2. a) Calcolare la matrice A che rappresenta T rispetto alla base canonica. b) T è invertibile? c) T è un endomorfismo simmetrico?
Esame di Geometria - 9 CFU (Appello del 20 Giugno A)
Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Esercizi per il corso di Algebra e Geometria L.
Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo
I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007
A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I
Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0
Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte
Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Compiti di geometria & algebra lineare. Anno: 2004
Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l
CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)
CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la
ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare
ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007
ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala
Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3
Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori
QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica
Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti
15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI
15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Algebra lineare Geometria 1 11 luglio 2008
Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =
Corso di Algebra lineare - a.a Prova scritta del Compito A
Prova scritta del 23.02.2009 Compito A Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P 1, P 2 e Q i punti di coordinate rispettivamente
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.
COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Applicazioni lineari e diagonalizzazione pagina 1 di 5
pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x
1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i,
. Esercizi () Porre in forma trigonometrica i seguenti numeri complessi: 5, i, + i. () Calcolare le seguenti radici: 3 i, 5 i, 5. (3) Risolvere le seguenti equazioni: z z + 3 = ; z z = i; z + z =. (4)
Endomorfismi e matrici simmetriche
CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori
Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni
Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti
Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0
Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne
PROBLEMI DI GEOMETRIA
PROBLEMI DI GEOMETRIA Lucio Guerra 1994 v. 1 2001 v. 2.7 Dipartimento di Matematica e Informatica - Università di Perugia Indice 1. EQUAZIONI LINEARI 1 2. SPAZI VETTORIALI 2 3. APPLICAZIONI LINEARI 4 4.
10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,
Esercizi Applicazioni Lineari
Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le
appuntiofficinastudenti.com 1. Strutture algebriche e polinomi
1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,
Esercizi di Algebra Lineare. Claretta Carrara
Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo 2. Rette e piani 5. Suggerimenti 9 2. Soluzioni 20 Capitolo 3. Gruppi, spazi e sottospazi
GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A
Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
(c) Stabilire per quali valori di h is sistema ammette un unica soluzione:
ognome e Nome: orso di Laurea: 4 settembre 3. Sia L: R 3! R 3 l applicazione lineare x x y + z L @ ya = @ x + y +za. z x y z (a) Scrivere la matrice A che rappresenta L nella base canonica di R 3 : (b)
CdL in Ingegneria Informatica (Orp-Z)
CdL in ngegneria nformatica (Orp-Z) Prova scritta di Algebra Lineare assegnata il 22 Novembre 2004 - A Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. Sia f
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
Esercizi di Geometria - 1
Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
Ferruccio Orecchia. esercizi di GEOMETRIA 1
A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978
1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?
Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri
Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE
DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica
I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio
QUADERNI DIDATTICI. Dipartimento di Matematica
Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei AA / Quaderno # 8 - Settembre Gli esercizi proposti in questa raccolta
Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.
Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
REGISTRO DELLE ESERCITAZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI.
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI. 1 Regole generali per l esame L esame è costituito da una prova scritta e da una prova orale.
Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z
Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z Anno Accedemico 204-5, I Semestre Docente: Alberto De Sole Lezione : lunedì 29 settembre 204, 2 ore Lettura: AdF
1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.
Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z
CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale
CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale della prova scritta di Algebra Lineare e Geometria- Compito A- 8 Aprile 8 E assegnato l endomorfismo f : R 3 R 3 definito
Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1
Vicenza, 27 giugno 20 TEMA. Determinare, al variare del parametro reale a, una base del nucleo e una dell immagine dell endomorfismo L a di R definito da L a (x, y, z) = (x 2y + az, 2x + 4y + z, ( a)x
Prova scritta di Geometria 2 Prof. M. Boratynski
10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale
Analisi Matematica e Geometria 1
Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e
Prodotto scalare, ortogonalitá e basi ortonormali
CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5
CORSO DI GEOMETRIA. Esercizi su Numeri Complessi. Es. n. 1: Calcolare e rappresentare sul piano di Gauss i seguenti numeri complessi:
Esercizi di algebra lineare e geometria, relativi ai corsi della 1 a Facolta di Ingegneria, nuovo ordinanento. ( Curati da: P.Valabrega, C. Massaza, D. Giublesi) Gli esercizi indicati con (*) richiedono
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Esercizi sulle coniche (prof.ssa C. Carrara)
Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare
Esercizi sulle coniche (prof.ssa C. Carrara)
Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
Algebra Lineare e Geometria
Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Elementi di Algebra Lineare. Spazio Vettoriale (lineare)
Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di INGEGNERIA REGISTRO DELLE LEZIONI Del Corso Geometria 2 (Parte del corso Analisi matematica e Geometria) - Codice 56586 - Laurea Magistrale in Ingegneria Navale
Appunti di Geometria - 5
Appunti di Geometria - 5 Samuele Mongodi - s.mongodi@sns.it Segnatura di un prodotto scalare Richiami Sia V uno spazio vettoriale reale di dimensione n; sia, : V V R un prodotto scalare. Data una base
Parte 12b. Riduzione a forma canonica
Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,
GAAL: Capitolo dei prodotti scalari
GAAL: Capitolo dei prodotti scalari Teorema di Rappresentazione rappresentabile Aggiunto Autoaggiunto Unitariamente diagonalizzabile Teorema spettrale reale Accoppiamento Canonico Forme bilineari Prodotti
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
Matematica Discreta e Algebra Lineare (per Informatica)
Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende
CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.
CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si
Volumi in spazi euclidei 12 dicembre 2014
Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato
Vincenzo Aieta CONICHE, FASCI DI CONICHE
Vincenzo Aieta CONICHE, FASCI DI CONICHE Le coniche 1 Teoria delle Coniche Il nome conica deriva dal semplice fatto che gli antichi Greci secando con un piano una conica a doppia falda ottenevano, a seconda
Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico
Facoltà di Ingegneria ed Architettura Anno Accademico 2016 2017 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2016/17 Mat/07 FISICA MATEMATICA Il settore include competenze
Prova teorica di algebra lineare e geometria del 6 marzo 2009 VERSIONE A
Prova teorica di algebra lineare e geometria del 6 marzo 9 VERSIONE A Nome e cognome: Matricola: Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio. Sia Ax = v un sistema lineare
UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica
UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
6. Spazi euclidei ed hermitiani
6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti
Geometria analitica: rette e piani
Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica
Esercizi di Geometria - 2
Esercizi di Geometria - 2 Samuele Mongodi - s.mongodi@sns.it La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel
Prodotto interno (prodotto scalare definito positivo)
Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi
Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:
Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono
ESERCIZI VARI di GEOMETRIA 1
ESERCIZI VARI di GEOMETRIA 1 Un ovvio consiglio Si giustifichi la risposta ad ogni esercizio (o parte di esercizio) posto in forma di domanda. CAMPI Esercizio 1. Sia K l insieme di tutti i numeri reali
Esercizi di Geometria Affine
Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione
GEOMETRIA /2009 II
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore: