Lezione 10 Termodinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 10 Termodinamica"

Transcript

1 rgomenti della lezione: Lezione 0 ermodinamica relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot secondo riiio della termodinamica cenni sull entroia

2 Gas ideali n gas è un articolare fluido caratterizzato da non avere forma e volume rori e tale da essere facilmente comresso. Legge di oyle 3 costante > 3 > Isoterme del gas ideale.

3 Gas ideali Legge di Gay Lussac costante Isocore del gas ideale. Legge di Gay Lussac costante Isobare del gas ideale.

4 ii di rasformazione Isoterma cost. Isobara Isocora cost. cost. diabatica q 0 Isoentroica S cost.... Marina obal - it.di Fisica - niversita' di dine

5 rasformazioni notevoli rasformazione adiabatica Q 0 Δ L rasformazione isocora L 0 Δ Q rasformazione isobara L ( ) Q Δ + L f i rasformazione isoterma Δ 0 Q L rasformazione ciclica Δ 0 Q L

6 alori secifici Nel caso di una trasformazione infinitesima isocora: dq d Nel caso di una trasformazione infinitesima isobara: dq d efiniamo il calore secifico molare a volume o ressione costante c n dq d c n dq d nità: J/(mol K) Q Δ Q Δ

7 alori secifici Suoniamo di effettuare una trasformazione fra gli stessi estremi di temeratura rima a volume costante e oi a ressione costante. Q Q Δ Δ W Δ Δ + Δ 0 Ma ossia Δ è la stessa nei due casi er cui c > c Q > Q Nel caso infinitesimo dq d + dw dq d dq + d > d dq d

8 Energia interna di un gas ideale Esansione libera di Joule. Pareti rigide diatermiche che dividono un contenitore in due arti. Il contenitore è a sua volta in un contenitore adiabatico. Si are divisione (rubinetto) e si lascia esandere il gas liberamente Gas inizialmente a sinistra La temeratura finale del rocesso è ari a temeratura di equilibrio Osserviamo che si ha: Q 0 W 0 Δ 0 Notiamo che nel rocesso la temeratura non varia mentre variano ressione e volume, erciò l energia interna deve essere solo funzione della temeratura

9 Energia interna di un gas ideale eterminiamo ora eslicitamente l esressione dell energia interna. + Δ isocora e isoterma lichiamo ora il rimo riiio della termodinamica alla trasformazione isocora ( ) Q Δ Δ Δ costante vol a Per trasformazioni infinitesime d d

10 Relazione di Mayer In una trasformazione isobara infinitesima dq d dq d + dw dw d d d + d ifferenziamo l equazione di stato dei gas ideali nr d + d nrd Ma er un isobara d 0 E in definitiva d c c d + R nrd

11 Relazione di Mayer bbiamo ricavato c c R Raorto c c alori serimentali Gas ideali monoatomici (He, r, vaori metallici di Na, Hg) c 3 5 R c R 5 3 Gas ideali biatomici (H, N, NO, O) c 5 7 R c R 7

12 Riassunto I gas che considereremo saranno semre mono o bi atomici Δ Δ er qualsiasi trasformazione ΔQ ΔQ Δ Δ se se costante costante nr equazione dei gas erfetti c c R relazione di Mayer Δ Q W rimo riiio della termodinamica

13 rasformazioni adiabatiche generale Se il gas è contenuto in un contenitore con areti adiabatiche uò scambiare con l esterno solo lavoro W Δ ma Δ ( ) c c c c R W ( ) ( ) ( ) nr c c c

14 rasformazioni adiabatiche reversibile Se il gas è contenuto in un contenitore con areti adiabatiche uò scambiare con l esterno solo lavoro d + dw d + d 0 nr d d nr + d d + + ( c c ) c n 0 ( c c ) d Searando le variabili d d + 0 d ( ) 0

15 rasformazioni adiabatiche reversibile Integrando fra stati e ( ) d d ( ) ( ) ( )

16 rasformazioni adiabatiche reversibile onsiderando l equazione di stato dei gas erfetti si ottiene ( ) costante costante ( ) costante

17 rasformazioni isoterme onsiderando l equazione di stato dei gas erfetti si ottiene Δ 0 Q W costante nel caso di isoterma reversibile W d d nr nr

18 Δ Macchine termiche na macchina termica è un disositivo che trasforma calore in lavoro. ontiene una sostanza che, in maniera ciclica, assorbe una quantità di calore Q, cede una quantità di calore Q e comie un lavoro W. Rendimento di una macchina termica: Il funzionamento è ciclico, quindi er il riiio Q W 0 ( Q Q ) W 0 Δ Q W W ( Q Q ) 0 η Q Q Q η W Q

19 Macchine termiche Schema di una generica macchina termica: Schema di una generica macchina frigorifera: Rendimento: η W Q Efficienza: ε Q W

20 iclo di arnot rasformazione ciclica rasformazione isoterma alla temeratura. Esansione isoterma rasformazione adiabatica. Esansione adiabatica rasformazione isoterma alla temeratura. omressione isoterma rasformazione adiabatica. omressione adiabatica Scoo: Rendimento: η W Q

21 iclo di arnot Nella esansione adiabatica Q 0 Δ W Nella esansione isoterma Δ 0 costante W Q d nr d W nr W Δ Δ ( )

22 iclo di arnot Nella comressione adiabatica Q 0 Δ W Nella comressione isoterma Δ W 0 costante nr Q d d W nr W Δ Δ ( )

23 iclo di arnot Per cui il lavoro totale è dato da: Riassumendo: Q Q W W Δ W nr > 0 nr < 0 Δ W W W + W + W + W nr W + nr + W nr +

24 iclo di arnot Ma il rendimento è dato dal raorto fra lavoro e calore assorbito. In questo caso il lavoro è stato aena calcolato, il calore viene assorbito durante l esansione isoterma η W Q Q Q + Q nr + + nr

25 iclo di arnot Osserviamo che le trasformazioni e sono di tio adiabatico, er cui: ( ) costante ( ) ( ) ( ) ( )

26 iclo di arnot E in definitiva + η ( ) + η

27 Secondo riiio della termodinamica Può essere esresso in molti modi equivalenti: Non è ossibile realizzare una trasformazione il cui unico risultato sia la conversione integrale di calore assorbito in lavoro (enuiato di Kelvin). Non è ossibile realizzare una trasformazione il cui unico risultato sia il trasferimento di calore da una sorgente a temeratura iù bassa ad una sorgente a temeratura iù alta (enuiato di lausius). Non è ossibile realizzare una macchina termica con rendimento η 00%. Non è ossibile realizzare una macchina frigorifera che non assorba lavoro.

28 rasformazioni reversibili e irreversibili Entroia na trasformazione si dice reversibile se è costituita dalla successione di infiniti stati di equilibrio. In questo caso il sistema uò essere riortato allo stato iniziale riercorrendo all indietro la stessa trasformazione. In una trasformazione irreversibile il sistema assa er stati di non equilibrio e non uò essere invertita erfettamente. onsideriamo una trasformazione reversibile in ciascun elemento della quale una quantità di calore dq rev viene scambiata ad una temeratura. Si definisce variazione di entroia: ΔS f i dqrev

29 Entroia e secondo riiio In un sistema isolato, in cui ci sono solo trasformazioni reversibili, l entroia rimane costante (Δ S0). In un sistema isolato, in cui ci sono trasformazioni irreversibili, l entroia aumenta semre (Δ S>0). Quindi l entroia determina il verso delle trasformazioni irreversibili: un sistema evolverà semre in modo che l entroia aumenti. Significato robabilistico dell entroia:; esrime il grado di disordine microscoico di un sistema. n sistema isolato evolve quindi semre verso stati iù disordinati.

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1 ermologia Paolo Bagnaia - CF - 3 - Esercizi di termologia e termodinamica 1 Esercizio Un cubetto di ghiaccio di 150 g alla temeratura di 0 C è gettato in unreciiente, i che contiene 300 g di acqua alla

Dettagli

LAVORO DI UN GAS. Espansione di un gas a pressione costante V A V B

LAVORO DI UN GAS. Espansione di un gas a pressione costante V A V B LORO DI UN GS Esansione di un gas a ressione costante L F h S h Δ 1 LORO DI UN GS Se la ressione non è costante durante la trasformazione il lavoro si calcola come somma dei lavori comiuti in iccole trasformazioni

Dettagli

Esercizi svolti di termodinamica applicata

Esercizi svolti di termodinamica applicata 0 ; 0 ; 0 Esercizi solti di termodinamica alicata Ex) A g di aria engono forniti 00 J di calore una olta a ressione costante ed una olta a olume costante semre a artire dallo stesso stato iniziale. Calcolare

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica Il rimo rinciio della termodinamica 1) Concetti di variabile di stato e di trasformazione termodinamica Per studiare le relazioni fra calore Q, lavoro W e energia interna U Int nelle interazioni fra sistemi

Dettagli

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: dv dp. dv dt. nrt dt

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: dv dp. dv dt. nrt dt RELAZIONE DI MAYER La relazione di Mayer è: C C R IL rinciio della termodinamica si uò scrivere come du L () Consideriamo due trasformazioni, delle quali una sia un isocora e l altra una isobara, che ortino

Dettagli

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle.

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle. PRIMO PRINCIPIO DLLA RMODINAMICA In una trasformazione adiabatia: In una trasformazione isoora: L In una trasformazione generia: L (7) (Primo riniio della termodinamia) Aliazione del riniio di onservazione

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la

Dettagli

È quella parte della termologia che studia le trasformazioni di calore in lavoro e viceversa.

È quella parte della termologia che studia le trasformazioni di calore in lavoro e viceversa. EMODINMI È quella arte della termologia che studia le trasformazioni di calore in lavoro e viceversa. PINIPIO DI EUIENZ OE - OO Grazie a questo imortante eserimento, Joule oté verificare che il calore

Dettagli

Lezione 5: Termodinamica. Seminario didattico

Lezione 5: Termodinamica. Seminario didattico Lezione 5: Termodinamica Seminario didattico Esercizio n 1 Ad una mole di gas monoatomico viene fatto percorrere il ciclo mostrato in figura il processo bc è una espansione adiabatica; p B =1.03 bar, V

Dettagli

ESERCIZIO (12) ( ) ( ) J ( ) ( )

ESERCIZIO (12) ( ) ( ) J ( ) ( ) onsideriamo una mole di gas perfetto monoatomico che compie il ciclo di figura (motore di Stirling), composto da due isoterme ( e ) e ESEIZIO (1) due trasformazioni a volume costante ( e ). alcolare: il

Dettagli

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l)

8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l) ermodinamica Un gas monoatomico compie il ciclo mostrato nella figura sotto, dove le trasformazioni, sono isobare e le trasformazioni e sono isocore. apendo che l, p 8atm, 6 l, p atm. alcolare il rendimento

Dettagli

Primo principio della Termodinamica

Primo principio della Termodinamica rimo principio della ermodinamica Sistemi termodinamici Esperimento di Joule Energia interna rimo principio della ermodinamica Leggi dei gas Gas erfetto Calori specifici dei gas 1 Sistemi ermodinamici

Dettagli

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp Entalpia Si definisce entalpia la grandezza H ( 1 H = U + pv L'entalpia è una funzione di stato ed è una grandezza estensiva. Differenziando la (1) si ha dh=du+pdv+vdp --> du+pdv = dh - Vdp In una generica

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema Termodinamica: concetti di base Sistema termodinamico: porzione di universo separata da tutto il resto del mondo Ambiente esterno confini del sistema sistema Stato del sistema: definito dal valore delle

Dettagli

Termodinamica. Ireneo Kikic. DICAMP - SFLAB - University of Trieste

Termodinamica. Ireneo Kikic. DICAMP - SFLAB - University of Trieste ermodinamica Ireneo Kikic DIAM - FLAB - University of rieste IRENEO.KIKI@DIAM.UNI.I rimo principio della termodinamica alore e lavoro solo quando sono trasferiti tra i corpi Energia uò essere convertita

Dettagli

Trasformazioni reversibili e irreversibili:

Trasformazioni reversibili e irreversibili: rasformazioni reversibili e irreversibili: Esempi di trasformazioni irreversibili: - un gas compresso si espande spontaneamente in uno spazio vuoto - la neve fonde al sole - un farmaco si scioglie nel

Dettagli

Secondo principio della termodinamica: perché????

Secondo principio della termodinamica: perché???? Secondo principio della termodinamica: perché???? Primo principio: bilancio degli scambi energetici con l ambiente, ma non dà nessuna spiegazione del fatto che in natura alcune trasformazioni procedono

Dettagli

Cap 21- Entropia e II Legge della Termodinamica. Entropia

Cap 21- Entropia e II Legge della Termodinamica. Entropia N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione

Dettagli

Dato che i tre corpi non scambiano calore con l ambiente esterno, allora la somma algebrica dei calori scambiati deve essere uguale a zero: + Q 3

Dato che i tre corpi non scambiano calore con l ambiente esterno, allora la somma algebrica dei calori scambiati deve essere uguale a zero: + Q 3 isica (.. 004/005) Esercizi ermodinamica ( a parte) ) re corpi di capacità termica,,, che si trovano alle temperature,,, vengono posti a contatto. Nell ipotesi che i tre corpi non scambino calore con l

Dettagli

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la ERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la circonda e può influenzarne il comportamento ( ambiente

Dettagli

Secondo principio della termodinamica

Secondo principio della termodinamica Secondo principio della termodinamica Enunciato di Kelvin-Planck E impossibile realizzare una macchina termica ciclica che riesca a sollevare un peso, scambiando calore con un solo termostato, senza altri

Dettagli

SECONDO PRINCIPIO TERMODINAMICA Problemi di Fisica secondo principio termodinamica

SECONDO PRINCIPIO TERMODINAMICA Problemi di Fisica secondo principio termodinamica SEONO PRINIPIO ERMOINMI Problemi di Fisica secondo principio termodinamica SEONO PRINIPIO ERMOINMI PROEM alcolare il rendimento di una macchina di arnot che lavora fra la temperatura di ebollizione dell'acqua

Dettagli

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE TERMODINAMICA DELLE TURBINE A GAS. INTRODUZIONE Il ciclo termodinamico su cui è imostato il funzionamento delle turbine a gas è il ciclo Bryton, la cui analisi orta alla determinazione di due arametri

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

IL SECONDO PRINCIPIO DELLA TERMODINAMICA

IL SECONDO PRINCIPIO DELLA TERMODINAMICA IL SECONDO PRINCIPIO DELLA TERMODINAMICA DOWNLOAD Il pdf di questa lezione (0518.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/biot/ 18/05/2017 SECONDO PRINCIPIO: ENUNCIATI - Kelvin-Planck:

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2016/2017, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2016/2017, Fisica .d.. Scienze e ecnologie grarie,.. 206/207, Fisica a macchina termica: Una macchina termica è un dispositivo che scambia calore con l ambiente e produce lavoro. 2 ced M.. avora secondo una trasformazione

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORI CIETIC DEI GS Gas erfetto molto grande Traiettorie classiche Interazione da sfere rigide, urti elastici Casualita x jx 0 x y z x j 0 j jx + jy + jz x x j 1 l ( ; ) Δx Pxx+Δ x l PRESSIOE f i Δ m(

Dettagli

Enunciato di Kelvin-Plank

Enunciato di Kelvin-Plank ezione VI - 3/03/003 ora 8:30-0:30 - Enunciato di Kelin-Plank, laoro nelle trasformazioni di gas erfetti, Entalia - Originale di Cara Mauro e Dondi Silia Enunciato di Kelin-Plank Non è ossibile effettuare

Dettagli

Macchine Termiche: Guida schematica agli argomenti trattati a lezione

Macchine Termiche: Guida schematica agli argomenti trattati a lezione Macchine Termiche: Guida schematica agli argomenti trattati a lezione Dott. Corso Fisica I per Chimica Industriale a.a. 2014-2015 Testo di riferimento: (FLMP) Ferrari, Luci, Mariani, Pellissetto, Fisica

Dettagli

Tonzig La fisica del calore

Tonzig La fisica del calore 4 onzig La fisica del calore batiche si trova 2 / = / 4, il che vuol dire che la [F] si riduce alla [E]. Ne deriva che, nello secifico caso di un gas erfetto, il rendimento di un ciclo di Carnot è [G]

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

Conversione di lavoro in calore

Conversione di lavoro in calore onversione di lavoro in calore Esempio Se si sfregano insieme due pietre, tenendole sott acqua, il lavoro compiuto per vincere gli attriti si trasforma in energia interna che tende ad aumentare la temperatura

Dettagli

TERMODINAMICA Introduzione Sistema, ambiente, universo e trasformazioni Variabili termodinamiche Principio 0, termometro e temperatura

TERMODINAMICA Introduzione Sistema, ambiente, universo e trasformazioni Variabili termodinamiche Principio 0, termometro e temperatura TERMODINAMICA Introduzione In meccanica abbiamo spesso parlato di energie e forze dissipative senza però riuscire a dare una spiegazione effettiva della loro esistenza; grazie alla termodinamica invece

Dettagli

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante.

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante. All origine di tutto c è il teorema di conservazione dell energia totale meccanica: Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante. Il teorema è tipicamente

Dettagli

I PRINCIPI DELLA TERMODINAMICA

I PRINCIPI DELLA TERMODINAMICA Il diagramma - I RINCII DLLA TRMODINAMICA Un sistema termodinamico è una quantità di materia racchiusa all interno di una superficie chiusa, che può scambiare energia con l ambiente esterno. Lo stato di

Dettagli

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2. Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

Termodinamica. secondo principio. ovvero. principio della impossibilità

Termodinamica. secondo principio. ovvero. principio della impossibilità ermodinamica secondo principio ovvero principio della impossibilità Il verso privilegiato delle trasformazioni di energia: non si crea energia dal nulla Il primo principio può essere enunciato sotto forma

Dettagli

Corso di Fisica Tecnica Ambientale. Introduzione alla Termodinamica: terminologia

Corso di Fisica Tecnica Ambientale. Introduzione alla Termodinamica: terminologia Introduzione alla Termodinamica: terminologia Termodinamica La Termodinamica è la scienza che studia le modificazioni subite da un sistema in conseguenza del trasferimento di energia principalmente sotto

Dettagli

Dal modellino dei Gas perfetti alla Tecnologia del vuoto

Dal modellino dei Gas perfetti alla Tecnologia del vuoto Dal modellino dei Gas erfetti alla ecnologia del vuoto Il gas erfetto è un modellino teorico che ermette di rogettare e dimensionare i sistemi da vuoto, arte tutto da P= Nk () (*) P ressione del gas, olume

Dettagli

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013 Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine

Dettagli

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente. PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

L Entropia ed il Secondo Principio della Termodinamica: Guida schematica agli argomenti trattati a lezione

L Entropia ed il Secondo Principio della Termodinamica: Guida schematica agli argomenti trattati a lezione L Entropia ed il Secondo Principio della Termodinamica: Guida schematica agli argomenti trattati a lezione Dott. Corso Fisica I per Chimica Industriale a.a. 2014-2015 Testo di riferimento: (FLMP) Ferrari,

Dettagli

Moto Monodimensionale in Condotti

Moto Monodimensionale in Condotti Diartimento di Ingegneria Industriale Moto Monodimensionale in Condotti Fluido Comrimibile - eoria Fig a Fig B Fig. A Moti D Comrimibili- ermodinamica Scuola di Ingegneria Corso di e Macchine A.A. 3 4

Dettagli

CONVENZIONE SUI SEGNI

CONVENZIONE SUI SEGNI CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA

Dettagli

IL PRIMO PRINCIPIO DELLA TERMODINAMICA

IL PRIMO PRINCIPIO DELLA TERMODINAMICA IL PRIMO PRINCIPIO DELLA TERMODINAMICA T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e Fo n d a m e n t i

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI INGEGNERIA. Esame di Fisica II (modulo unico) Ingegneria Automatica del

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA FACOLTA DI INGEGNERIA. Esame di Fisica II (modulo unico) Ingegneria Automatica del UNIVERSIA DEGLI SUDI DI ROMA LA SAPIENZA FACOLA DI INGEGNERIA Esame di Fisica II (modulo unico) Ingegneria Automatica del 12.1.26 N.1 Una vaschetta contenente acqua scivola su un piano liscio inclinato

Dettagli

Le Macchine Termiche. Termodinamica dell Ingegneria Chimica

Le Macchine Termiche. Termodinamica dell Ingegneria Chimica Le Macchine Termiche Termodinamica dell Ingegneria Chimica Bilancio di energia per sistemi chiusi: Conservazione dell energia in regime transitorio Normalmente, i termini relativi alle variazioni di energia

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

CALORE E TERMODI NAMI CA - PRI MO PRI NCI PI O

CALORE E TERMODI NAMI CA - PRI MO PRI NCI PI O CALORE E ERMODI NAMI CA PRI MO PRI NCI PI O uanto calore è necessario er riscaldare, alla ressione di atm, una massa di kg di ghiaccio, inizialm ent e a 0 C, finchè t ut t o il ghiaccio non si è trasformato

Dettagli

Energia e trasformazioni spontanee

Energia e trasformazioni spontanee Energia e trasformazioni spontanee Durante le trasformazioni (sia chimiche che fisiche) la materia acquista o cede energia. La termodinamica è quella scienza che studia le variazioni di energia in una

Dettagli

Termodinamica. studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro.

Termodinamica. studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro. Termodinamica studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro. La termodinamica parte da osservazioni sperimentali e quindi si esprime

Dettagli

Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11. Cognome... Nome... Matricola n...

Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11. Cognome... Nome... Matricola n... 22.06.2011 Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11 Cognome... Nome... Matricola n... Esercizio 1. Si abbia un recipiente a pareti adiabatiche contenente

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

Capacità termica e calore specifico

Capacità termica e calore specifico Calori specifici Capacità termica e calore specifico Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T i

Dettagli

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

Il secondo principio della termodinamica

Il secondo principio della termodinamica Lezione n.7n (Modulo di Fisica Tecnica) Il secondo principio della termodinamica Indice Limiti del primo principio della termodinamica Postulato entropico Entropia Equazioni di Gibbs Esempio 1 - Variazione

Dettagli

Che cosa è successo? Prova a rispondere.

Che cosa è successo? Prova a rispondere. Se ti chiedono di scaldare mezzo litro d acqua, qual è il rimo metodo che ti viene in mente?... Se ti viene imedito di utilizzare qualsiasi fonte di calore (il Sole, fornelli, forni, iastre elettriche,

Dettagli

Programma svolto a.s. 2015/2016. Materia: fisica

Programma svolto a.s. 2015/2016. Materia: fisica Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);

Dettagli

Figura 1 Trasformazione proibita dal Secondo Principio

Figura 1 Trasformazione proibita dal Secondo Principio ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare

Dettagli

Tonzig La fisica del calore

Tonzig La fisica del calore 0 Tonzig La fisica del calore c) Per stati di equilibrio caratterizzati da uno stesso valore della ressione (e del numero di moli), volume e temeratura assoluta sono direttamente roorzionali. Se 0 è il

Dettagli

Esercitazione 13/5/2016

Esercitazione 13/5/2016 Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.

Dettagli

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Enunciato di Clausius: È impossibile realizzare una trasformazione il cui unico risultato sia quello di fare

Dettagli

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore. Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di

Dettagli

Conseguenze del teorema di Carnot

Conseguenze del teorema di Carnot Conseguenze del teorema di Carnot Tutte le macchine reversibili che lavorano tra le stesse sorgenti alle temperature T 1 e T 2 hanno rendimento uguale; qualsiasi altra macchina che lavori tra le stesse

Dettagli

La costante (p 0 0 /273) la si riesprime come n R dove R è una costante universale il cui valore dipende solo dalle unità di misura usate: R8.31 Joule/(K mole) e n è il numero di moli L equazione di stato

Dettagli

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a:

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a: Esercizi Si consideri il serbatoio schematicamente raresentato in Fig., in cui è contenuto un gas avente inizialmente (cioè al temo t=0) temeratura T o =0F e ressione oi =0si. Il serbatoio è collegato

Dettagli

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio Argomenti: gas perfetti, trasformazioni adiabatiche, primo principio. Livello: scuola superiore. Un gas perfetto monoatomico si trova in un contenitore chiuso da un pistone mobile. Inizialmente

Dettagli

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale:

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale: A. na maccina disosta su un asse orizzontale è alimentata da una ortata di 0 kg/s di aria (R = 87 J/kg K, c = 004 J/kg K) alla ressione P = 0 bar e alla temeratura T = 00 C, da un condotto circolare di

Dettagli

UNITA' 7 SOMMARIO ATTENZIONE

UNITA' 7 SOMMARIO ATTENZIONE U.7/0 UNITA' 7 SOMMARIO U.7 IL SECONDO PRINCIPIO DELLA TERMODINAMICA 7.1. Introduzione 7.2. Serbatoi e motori termici 7.3. Macchine frigorifere e pompe di calore 7.4. Secondo principio della Termodinamica

Dettagli

dallo stato 1 allo stato 2 è uguale all integrale

dallo stato 1 allo stato 2 è uguale all integrale Capitolo 13 L entropia 167 QUESITI E PROBLEMI 1 La grandezza fisica entropia può assumere valori solo positivi (vero/falso). Se sono determinati lo stato iniziale e lo stato finale di un sistema fisico,

Dettagli

I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test...

I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test... I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test... 7 Statistiche per domanda II Test... 7 III Test di Autovalutazione...

Dettagli

Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K

Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K Scritti di Termodinamica 2002 2016 (02/07/18) Una mole di gas ideale passa dallo stato A allo stato B con una trasformazione isobara in cui: H = 2269.72 J, U = 1621.23 J, S = 6.931 J/K Determinare i valori

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

IL CICLO DI CARNOT. Scambi di energia durante il ciclo

IL CICLO DI CARNOT. Scambi di energia durante il ciclo IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi

Dettagli

Trasformazioni termodinamiche: Esercizi svolti

Trasformazioni termodinamiche: Esercizi svolti Trasformazioni termodinamiche: Esercizi svolti 9 aprile 2013 Esercizio 1 Si consideri un sistema chiuso in cui si abbia inizialmente aria a 5 C, ad una pressione p 1 = 1 bar, che venga in un secondo momento

Dettagli

Peso atomico (meglio massa atomica)

Peso atomico (meglio massa atomica) Nome file d:\scuola\corsi\corso fisica\termodinamica\leggi dei gas.doc Creato il 26/3/2 7.5 Dimensione file: 4864 byte Andrea Zucchini Elaborato il 22//22 alle ore 5.52, salvato il 22//2 7.52 stamato il

Dettagli

Lez 15 22/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 15 22/11/2016. Lezioni in  didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 15 22/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Energia interna di un gas ideale E. Fiandrini Fis. Sper. e 2 Energia

Dettagli

Trasformazioni termodinamiche

Trasformazioni termodinamiche Trasformazioni termodinamiche Evoluzione di un sistema termodinamico -> trasformazione termodinamica Trasformazione quasi statica : stati successivi assunti dal sistema sono stati di equilibrio (parametri

Dettagli

Il I principio della termodinamica. Calore, lavoro ed energia interna

Il I principio della termodinamica. Calore, lavoro ed energia interna Il I principio della termodinamica Calore, lavoro ed energia interna Riassunto Sistemi termodinamici Un sistema termodinamico è una porzione di materia descritto da funzioni di stato che ne caratterizzano

Dettagli

Lezione 4: Termodinamica. Seminario didattico

Lezione 4: Termodinamica. Seminario didattico Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un vaso di massa 150g in rame (calore specifico 0,0923 cal/g K) contiene 220g di acqua, entrambi alla temperatura di 20,0 C. Un cilindro di 300g

Dettagli

Lezione 9 Termodinamica

Lezione 9 Termodinamica Argomenti della lezione: Lezione 9 Termodinamica introduzione misura della temperatura dilatazione termica calore / capacità termica, calore specifico, calore latente calore e lavoro primo principio della

Dettagli

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI Consideriamo un gas contenuto in un recipiente dalle pareti adiabatiche dotato di un pistone in grado di muoversi senza attriti (v. figura). Espansione e compressione

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

Formulario di Termodinamica

Formulario di Termodinamica Formulario di Termodinamica Punto triplo dell acqua: T triplo = 273.16 K. Conversione tra gradi Celsius e gradi Kelvin (temperatura assoluta): t( C) = T (K) 273.15 Conversione tra Caloria e Joule: 1 cal

Dettagli

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 4 Lavoro e calore Misura di lavoro e calore Energia interna 04/03/2008 Antonino Polimeno 1 Sommario (1) - Un sistema termodinamico è una porzione

Dettagli

Impianti di Propulsione Navale

Impianti di Propulsione Navale A/A 2011/12 orso di: Imianti di Proulsione Naale rihiami di termodinamia e mahine Sistema hiuso a) sistema isolato b) sistema rigido ) sistema adiabatio IPN027 Sistema aerto IPN028 I rinii termodinamia

Dettagli

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K. 2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;

Dettagli

Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO

Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Attività didattica TERMODINAMICA E FLUIDODINAMICA [172SM] Periodo di svolgimento: Secondo Semestre Docente titolare

Dettagli

Calore e Temperatura

Calore e Temperatura Calore 1 Calore e Temperatura La Temperatura riflette il movimento casuale delle particelle, ed è quindi correlata all energia cinetica delle molecole Il Calore coinvolge un trasferimento di energia tra

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli