Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro."

Transcript

1 Nueri reltivi e operzioi - 1 Nueri reltivi I ueri preceduti d u sego si dicoo ueri reltivi. +9 e -5 soo ueri reltivi Il odulo o vlore ssoluto di u uero reltivo è il uero stesso sez il sego. Per idicre il odulo si uso due sbrrette verticli. +3 = -3 = 3 U uero reltivo è, quidi, l ssocizioe di u vlore ssoluto e di u sego e le due prti soo iscidibili tr loro. Due ueri reltivi si dicoo cocordi se ho lo stesso sego. +3 e +7 soo cocordi Due ueri reltivi si dicoo discordi se ho sego diverso +3 e -7 soo discordi Due ueri reltivi si dicoo opposti se soo discordi e ho lo stesso odulo. +4 e -4 soo opposti Cofroto di ueri reltivi Due ueri reltivi si dicoo uguli se ho lo stesso sego e lo stesso odulo. +4 e +4 soo uguli Tr due ueri reltivi discordi il ggiore è sepre quello positivo. +4 > -3 Tr due ueri reltivi positivi il ggiore è quello di ggiore vlore ssoluto. +4 > +3 perché +4 > +3 Tr due ueri reltivi egtivi il ggiore è quello di iore vlore ssoluto. -3 > -4 perché -3 < -4,b Nueri reltivi Trsforo i u so (prio terie soto opposto del secodo terie Differez operzioe Moltipliczioe Divisioe Regol dei segi Prodotto/Quoziete vlori ssoluti Addizioe cocordi Sì positivi Sì Sego positivo No No (-) Sego positivo + Sego del vlore ssoluto ggiore Sego egtivo So dei vlori ssoluti - Differez dei vlori ssoluti Sego egtivo Copyright owed by Ubldo Perigo, plese cotct: Tutti i coteuti, ove o diversete idicto, soo coperti d licez Cretive Coos Attribuzioe-No coercile-no opere derivte 3.0 Itli Licese: (Attributio-Nocoercil-No Derivtive Works 3.0) L riproduzioe di tutto o prte dei coteuti potro vveire solo sez lcu scopo di lucro e dovro riportre l ttribuzioe ll utore ed u lik UbiMth e/o quell dell utore/i origirio.

2 Nueri reltivi e operzioi - 2 Le operzioi Addizioe L so di due ueri reltivi cocordi è u uero che h lo stesso sego degli ddedi e vlore ssoluto ugule ll so dei loro vlori ssoluti. (+3)+(+4) = +7 (-2)+(-5) =-7 L so di due ueri reltivi discordi è u uero che h il sego dell ddedo di vlore ssoluto ggiore e vlore ssoluto ugule ll differez dei loro vlori ssoluti. (-3)+(+4) = +1 + perché +4 > -3 (+2)+(-5) =-3 - perché -5 > +2 Regole di uso prtico U utile regol di uso prtico, pplicbile qudo si deve clcolre l so di più ueri reltivi, cosete si eseguire l so di tutti i ueri positivi e di quelli egtivi e di seguire poi l regol precedete per il clcolo dell so file. (+3)+(-2)+(+7)+(-9) = (+3)+(+7)+(-2)+(-9) = (+10)+(4) = -1 I u so le coppie di ddedi opposti possoo essere eliite. (+3)+(-5)+(-3) = -5 U uero positivo può essere scritto beissio sez sego. Si può ricorrere ll scrittur seplifict di u so lgebric trsfordol i u espressioe co soli segi + e sepliceete ricorddo che u pretesi precedut dl sego + può essere eliit. (+4)+(+3) = (+5)+(-7) = ( ) = 7 + ( ) = Sottrzioe L differez tr due ueri reltivi è il uero che si ottiee sodo l iuedo l opposto del sottredo. I ltre prole l sottrzioe può essere ricodott u ddizioe. Regole di uso prtico Si può ricorrere ll scrittur seplifict di u differez lgebric trsfordol i u espressioe co soli segi + e sepliceete ricorddo che u pretesi precedut dl sego - può essere eliit cbido di sego tutti i suoi terii. (+4)-(+3) = 4 3 (+5)-(-7) = ( ) = 7 - ( ) = Moltipliczioe e divisioe Il prodotto o il quoziete di due ueri reltivi è u uero reltivo che h vlore ssoluto ugule l prodotto o l quoziete dei vlori ssoluti e sego positivo se i terii dell operzioe soo cocordi e sego egtivo se i terii dell operzioe soo discordi (regol dei segi). (+4) (+3) = +12 (+4) : (+2) = +2 (-2) (-6) = +12 (-4) : (-2) = +2 (+5) (-7) = -35 (-6) : (+2) = -3 Per l regol dei segi, spiegzioi ulteriori e il etodo isegto elle scuole russe (ico di u io ico [+], ico di u io eico [-], eico di u io ico [-] e eico di u io eico [+]) vedi l iteresste docueto dispoibile su Copyright owed by Ubldo Perigo, plese cotct: Tutti i coteuti, ove o diversete idicto, soo coperti d licez Cretive Coos Attribuzioe-No coercile-no opere derivte 3.0 Itli Licese: (Attributio-Nocoercil-No Derivtive Works 3.0) L riproduzioe di tutto o prte dei coteuti potro vveire solo sez lcu scopo di lucro e dovro riportre l ttribuzioe ll utore ed u lik UbiMth e/o quell dell utore/i origirio.

3 Nueri reltivi e operzioi - 3 Operzioe di eleveto potez Le regole segueti soo otteute pplicdo quto già cooscio sulle poteze e i coseguez dell legge di Hkel (pricipio di perez delle regole del clcolo). L potez di ueri reltivi positivi è sepre positiv. (+3) 2 = (+3) (+3) = +9 = 9 L potez di ueri reltivi egtivi è positiv se l espoete è pri, egtiv se l espoete è dispri. (-3) 2 = (-3) (-3) = +9 = 9 + espoete pri (-3) 3 = (-3) (-3) (-3) = espoete dispri Poteze co espoete egtivo e bse divers d zero soo pri u potez che h coe bse l iverso dell bse e coe espoete lo stesso espoete positivo Prest ttezioe o cofodere i segueti diversi tipi di scrittur: (-3) 2 = (-3) (-3) = +9 versus -3 2 = -9 Vlgoo che per i ueri reltivi le proprietà delle poteze. Il prodotto di poteze veti l stess bse é u potez che h per bse l stess bse e per espoete l so degli espoeti x y = x+y Il quoziete di poteze veti l stess bse é u potez che h per bse l stess bse e per espoete l differez degli espoeti x y = x-y L potez di u potez é u potez che h per bse l stess bse e per espoete il prodotto degli espoeti ( x ) y = x y Il prodotto di poteze co lo stesso espoete é u potez che h per espoete lo stesso espoete e per bse il prodotto delle bsi x b x = ( b) x Il quoziete di poteze co lo stesso espoete é u potez che h per espoete lo stesso espoete e per bse il quoziete delle bsi x b x = ( b) x Qulsisi potez co espoete 1 è l bse b 1 = b e quidi b = b 1 Qulsisi potez co espoete 0 è pri 1 0 = 1 L potez 0 0 è priv di sigificto! 0 0 => priv di sigificto Qulsisi potez co bse 1 è 1 1 = Copyright owed by Ubldo Perigo, plese cotct: Tutti i coteuti, ove o diversete idicto, soo coperti d licez Cretive Coos Attribuzioe-No coercile-no opere derivte 3.0 Itli Licese: (Attributio-Nocoercil-No Derivtive Works 3.0) L riproduzioe di tutto o prte dei coteuti potro vveire solo sez lcu scopo di lucro e dovro riportre l ttribuzioe ll utore ed u lik UbiMth e/o quell dell utore/i origirio.

4 Nueri reltivi e operzioi - 4 Estrzioe di rdice di ueri reltivi E' dett rdice eesi (, che, di idice ) di u uero rele, u secodo uero rele (se esiste), b, tle che l potez eesi di questo si ugule d. Si scrive b che equivle b e che può essere posto sotto l for b 1 b Il uero che copre sotto il sego di rdice è detto rdicdo, il uero b rdice e, posto sopr il sibolo di rdice, è detto idice. Se il rdicdo è u uero reltivo positivo e l idice è pri l rdice può ssuere due vlori opposti tr di loro Se il rdicdo è u uero reltivo positivo e l idice è dispri l rdice è u uero positivo L rdice di idice pri di u uero reltivo egtivo o esiste. 1 o esiste co pri o esiste L rdice di idice dispri di u uero reltivo egtivo è u uero egtivo Vlgoo che per i ueri reltivi le proprietà segueti. b c b c b b b b Copyright owed by Ubldo Perigo, plese cotct: Tutti i coteuti, ove o diversete idicto, soo coperti d licez Cretive Coos Attribuzioe-No coercile-no opere derivte 3.0 Itli Licese: (Attributio-Nocoercil-No Derivtive Works 3.0) L riproduzioe di tutto o prte dei coteuti potro vveire solo sez lcu scopo di lucro e dovro riportre l ttribuzioe ll utore ed u lik UbiMth e/o quell dell utore/i origirio.

5 Nueri reltivi e operzioi - 5 Iizio co u rccoto Estrtto di uo sputo didttico di Ubldo Perigo i u delle sue clssi Gli orizzoti crescedo si llrgo uovi odi e scoperte, fcedo RELATIVI i cofii uerici dell ifzi. Si scopre coe di oguo esist il suo OPPOSTO, l lter ego, il ister Hyde, l fcci scost, l scher e il cuore di pietr. Se esiste il POSITIVO, il buoo, esisterà, scosto i qulche golo recodito, il NEGATIVO, il cttivo e l ioibile. Gurddo ttetete, sez prevezioe lcu, si scoprirà coe oguo si però sepre se stesso, é bello é brutto, é bee é le, é positivo é egtivo, coe oltre le prveze di oguo esist u suo VALORE ASSOLUTO. L icotro di etità opposte le ichilisce, ristbiledo l equilibrio, qule sprticque tr il le e il bee, il positivo e il egtivo. Mgicete etità CONCORDI gioco crere vlori positivi, etre etità DISCORDI porto esttete el verso opposto, i egtivo. Gli ici e i eici, il bee e il le che tutto circod ci port seplici regole del quieto vivere e u cert dose di s diffidez. L'ico di u io ico è u io ico. L'ico di u io eico è u io eico. Il eico di u io ico è u io eico. Il eico di u io eico è u io ico. Cot, quidi, sui veri ici che trovi lugo l strd e diffid delle fcili proposte e devizioi. Scvdo i profodità si trov, ifie, l ipossibile e oltre cor odi IMMAGINARI le cui sfccettture riescoo crere isiei ftstici. Che e dici poi di quest vrite t i clsse co B. Alessdro ell ottobre > -> -> -> Keywords Algebr, ueri reltivi, reltivi, ueri postivi, ueri egtivi, vlore ssoluto, ueri reli, sego, Z, espressioi lgebriche, esercizi co soluzioi, tetic Algebr, Z, siged ubers, itegers, egtive e o-egtive ubers, rel ubers, sig, exercises with solutio, Algebric Expressios solved, th Algebr, Z, obre egtivo, obre positivo, sigo, teátic Algèbre, Z, obres reltifs, obre égtifs, obre positifs, obres réels, thétique Algebr, Z, Positive ud Negtive Zhle, reelle Zhle, Sigu, Mthetik Copyright owed by Ubldo Perigo, plese cotct: Tutti i coteuti, ove o diversete idicto, soo coperti d licez Cretive Coos Attribuzioe-No coercile-no opere derivte 3.0 Itli Licese: (Attributio-Nocoercil-No Derivtive Works 3.0) L riproduzioe di tutto o prte dei coteuti potro vveire solo sez lcu scopo di lucro e dovro riportre l ttribuzioe ll utore ed u lik UbiMth e/o quell dell utore/i origirio.

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

INDICE. Scaricabile su: Algebra e Equazioni TEORIA

INDICE. Scaricabile su:  Algebra e Equazioni TEORIA P r o f. Gu i d of r c h i i Atepri Atepri Atepri www. l e z i o i. j i d o. c o Scricile su: http://lezioi.jido.co/ Alger e Equzioi TEORIA INDICE Nozioi geerli, isiei, uioe ed itersezioe, ueri reli Mooi

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati.

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati. M.C.D. E il più grde tr tutti i ueri iteri positivi che dividoo i ueri dti. 4 = 144 = 4 M.C.D.= = 1 60 = 5 Si predoo cioè tutti i fttori coui co l espoete iore. Il M.C.D. tr due o più ooi è u ooio co coefficiete

Dettagli

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili Apputi di tetic SIRIO Soluzioe Copito i clsse Correzioe Copito di tetic - Clsse SIRIO I Qudriestre.s. 00/07 Docete Robert Virili. Copletre le uguglize pplicdo le proprietà delle poteze. b. 9 0 9 0 d. (

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino RADICALI Clsse II.s. 00/0 Prof.ss Rit Schettio RADICALI Aritetici I R Algerici I R prof.ss R. Schettio N. B. R idic l isiee dei ueri reli o egtivi, ossi positivi o ulli. RADICALI ARITMETICI DEFINIZIONE

Dettagli

NUMERI NATURALI E INTERI

NUMERI NATURALI E INTERI NUMERI NATURALI E INTERI.L isiee dei ueri turli. Le operzioi fr ueri turli: ddizioe e oltipliczioe.2 L ordieto.3 Sottrzioe e divisioe.4 Divisibilità ell isiee dei turli.5 L eleveto potez.6 Rppresetzioe

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

Progetto Matematica in Rete - I radicali - I radicali 2 = 4

Progetto Matematica in Rete - I radicali - I radicali 2 = 4 Progetto Mtemtic i Rete - I rdicli - I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto x x Per esempio: 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero,

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi MTRICI E DETERMINNTI Si

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n =

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n = Poteze volte FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) proprietà: ) 2) 3) 4) 5) m m m m m m b 0 per qulsisi Numeri iteri: umero co sego e vlore Somm lgebric: Segi cocordi + +b - - b ddizioe Prodotto

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Le successioni di Fibonacci traslate

Le successioni di Fibonacci traslate Le successioi di iboacci traslate Di Cristiao Arellii, cristiao.arellii@alice.it U successioe di iboacci è ua successioe uerica descritta dalla forula di ricorreza: 0 0, ; +,,3,4,... ovvero ogi terie è

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Compendio di Calcolo Combinatorio in preparazione all esame di stato

Compendio di Calcolo Combinatorio in preparazione all esame di stato Compedio di Clcolo Combitorio i preprzioe ll esme di stto Simoe Zuccher prile Idice Permutzioi semplici Permutzioi co ripetizioe Disposizioi semplici Disposizioi co ripetizioe 5 Combizioi semplici 6 Combizioi

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

FORMULARIO prof. Danilo Saccoccioni

FORMULARIO prof. Danilo Saccoccioni PROPRIETA' DELLE RADICI Vlgoo le segueti proprietà se i rdicdi soo positivi: FORMULARIO prof. Dilo Sccoccioi E' fodmetle ricordre le segueti equivleze, vlide per tre umeri qulsisi, b e c che le redo seste

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

E T MATEMATICA EORIA SERCIZI. Aritmetica G. Bonola I. Forno. esercizi effettivi! esercizi per il recupero. esercizi per l'invalsi

E T MATEMATICA EORIA SERCIZI. Aritmetica G. Bonola I. Forno. esercizi effettivi! esercizi per il recupero. esercizi per l'invalsi G. Bool I. oro.000 esercizi effettivi! 000 esercizi per il recupero 00 esercizi per l'inalsi MATEMATICA E T EORIA SERCIZI Aritmetic B Le Mppe INTERATTIE per l L.I.M. Approfodimeti ONLINE LIBRO MISTO PROGETTO

Dettagli

Unità Didattica N 35 I sistemi lineari

Unità Didattica N 35 I sistemi lineari Uità Didttic N 5 Uità Didttic N 5 ) Sistem liere di equioi i icogite: teorem di Crmer ) Sistem liere di m equioi i icogite ) Teorem di ouchè-cpelli 4) Sistem di m equioi lieri omogeee i icogite 5) isoluioe

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1 Prof. Roberto Milizi presso Liceo cietifico E. Ferio Mesge BR UNITA. PROGREIONI ARITMETICHE E GEOMETRICHE.. Le successioi ueriche.. Le progressioi ritetiche.. Il terie geerico e l rgioe i u progressioe

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

DAI RAZIONALI AI REALI

DAI RAZIONALI AI REALI DAI RAZIONALI AI REALI. L isieme dei umeri rzioli. Le operzioi fr umeri rzioli: ddizioe, moltipliczioe, sottrzioe e divisioe.. L elevmeto potez. L ordimeto.. Proprietà delle disuguglize (?disuguglize e

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

Potenze reali ad esponente reale

Potenze reali ad esponente reale Poteze reli d esoete rele Leged: N è l'isieme dei umeri turli (0, 1, 2, 3,...) N 0 è l'isieme dei umeri turli d esclusioe dello zero (1, 2, 3,...) Z è l'isieme dei umeri iteri (..., 3, 2, 1, 0, 1, 2, 3,...)

Dettagli

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06 DISEQUAZIONI IRRAZIONALI ispri: DISPENSE DI MATEMATICA GENERALE Versioe 0/0/06 > [ [ 0, > b { 0 b < 0 { > b b 0, CLASSIFICAZIONE DELLE FUNZIONI Fuzioi lgebriche Fuzioe potez,

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI FATTI NUMERICI & PROPRIETÀ dell SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE lle SUPERIORI QUADRATI & RADICI NOTEVOLI ² = = ² = 4 4 = ² = 9 9 = 4² = 6 6 = 4 5² = 5 5 = 5 6² = 6 6

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

Numeri relativi Espressioni con le potenze e le frazioni. Completi di soluzione guidata. Signed Numbers

Numeri relativi Espressioni con le potenze e le frazioni. Completi di soluzione guidata. Signed Numbers Numeri Relativi. Espressioni con le potenze - Eserciziario ragionato con soluzioni - Copyright -0 owned by Ubaldo Pernigo, please contact ubaldo@pernigo.com Tutti i contenuti, ove non diversamente indicato,

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Verifica di Matematica n. 2

Verifica di Matematica n. 2 A.S. 0- Clsse I Verific di Mtemtic. ) Dto il trigolo equiltero ABC, si prolughi il lto AB di u segmeto BD cogruete l lto del trigolo. Si cogiug C co D e si dimostri che il trigolo ACD è rettgolo. ) Si

Dettagli

BREVE COMPENDIO DI MATEMATICA 1 / 15

BREVE COMPENDIO DI MATEMATICA 1 / 15 www.osvldoduiliorossi.it BREVE COMPEDIO DI MATEMATICA 1 / 15 Questo breve compedio guid il lettore tr le regole e i modelli bsilri dell mtemtic, e forisce gli strumeti co cui impostre e risolvere problemi

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI

NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI I olti testi si fa riferieto ai ueri irrazioali liitadosi a spiegare la atura e acceado alla coplessità delle operazioi di calcolo quado di essi si ategoo elevate

Dettagli

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler 2 Numeri reli M. Simonett Bernei & Horst Thler Numeri interi positivi o Nturli 0 1 2 3 4 Con i numeri Nturli è sempre possiile fre l ddizione e l moltipliczione p.es.: 5+2 = 7; 3*4 = 12; m non sempre l

Dettagli

GLI SCANDALOSI NUMERI IRRAZIONALI

GLI SCANDALOSI NUMERI IRRAZIONALI GLI SCANDALOSI NUMERI IRRAZIONALI Prticolre dell'ffresco di Rffello "L Scuol di Atee", che rffigur Pitgor L scuol pitgoric, fodt d Pitgor Crotoe itoro l 530.C., fu fodmetle per lo sviluppo dell mtemtic.

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

10. FUNZIONI CONTINUE

10. FUNZIONI CONTINUE . FUNZIONI CONTINUE DEFINIZIONE DI CONTINUITÀ DI UNA FUNZIONE IN UN PUNTO 46 oppure: def. f cotiu i lim f ( ) = f ( ) def. f cotiu i lim f ( + h ) = f ( ) h Il cocetto è vermete fodmetle e quidi dimo d

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Insieme dei numeri razionali

Insieme dei numeri razionali Isieme ei umeri razioali Q - 1 Isieme ei umeri razioali Per iicare il quoziete fra ue umeri e, si scrive ua frazioe che ha come umeratore il ivieo e per eomiatore il ivisore ella ivisioe. Qualsiasi ivisioe

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

IL PROBLEMA DEL CERCHIO DI GAUSS

IL PROBLEMA DEL CERCHIO DI GAUSS I.S.I.S.S. MARCO CASAGRANDE ANNA BARISAN V B LICEO SCIENTIFICO TESINA DI MATURITA' IL PROBLEMA DEL CERCHIO DI GAUSS ANNO SCOLASTICO 2014-2015 PIEVE DI SOLIGO GIUGNO 2015 L tetic è l regi delle scieze,

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 8a b 3ab b 10ab 5ab 8a b 5b 10ab 3a b 8ab 3b 3a b

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 8a b 3ab b 10ab 5ab 8a b 5b 10ab 3a b 8ab 3b 3a b Operzioni on i monomi Polnomils Comining "Like Terms" Eléments du lul littérl Operzioni on i monomi. Eserizirio rgionto on soluzioni. - Somm lgeri di monomi...... 0. 8.. 0... 8 8 0 8 0 8.. ( ) ( ) ( )..

Dettagli

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA.

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA. I RADICALI. DEFINIZIONE DI RADICE (esercizi pg. 8) Si dice rdice qudrt (cuic, qurt, quit,... ) di u umero rele 0, quel umero rele 0 che elevto l qudrto (l cuo, ll qurt, ll quit,... ) dà come risultto.

Dettagli

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA.

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA. I RADICALI. DEFINIZIONE DI RADICE (esercizi pg. 8) Si dice rdice qudrt (cuic, qurt, quit,... ) di u umero rele 0, quel umero rele 0 che elevto l qudrto (l cuo, ll qurt, ll quit,... ) dà come risultto.

Dettagli

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA.

Quindi L'OPERAZIONE DI ESTRAZIONE DI RADICE È L'OPERAZIONE INVERSA DELL'ELEVAMENTO A POTENZA. I RADICALI. DEFINIZIONE DI RADICE (esercizi pg. 8) Si dice rdice qudrt (cuic, qurt, quit,... ) di u umero rele 0, quel umero rele 0 che elevto l qudrto (l cuo, ll qurt, ll quit,... ) dà come risultto.

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

a1 + a2 + a an

a1 + a2 + a an I SIMBOLI DI SOMMATORIA E DI PRODUTTORIA Date più quatità o eleeti di u isiee (ad esepio ueri reali) dipedeti da u idice: a, a, a 3,..., a la loro soa: a + a + a 3,... + a si idica, i fora copatta, col

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE Politecico di Milo Diptieto di Igegei Aeospzile INSTABILITA PANNLLO PIANO SOGGTTO A COMPRSSION DISPNS DL CORSO DI STRUTTUR MATRIALI AROSPAZIALI II VITTORIO GIAVOTTO CHIARA BISAGNI ANNO ACCADMICO 1/ Mteile

Dettagli

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei istillzioe istillzioe Oerzioe che cosete di serre i comoeti di u miscel liquid, sfruttdo l differez di tesioe di vore degli stessi comoeti. Obiettivi Arricchire l miscel dei comoeti iù voltili. Imoverire

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli