Elementi di Risk Management Quantitativo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di Risk Management Quantitativo"

Transcript

1 Elementi di Risk Management Quantitativo Marzo 2007 Indice 1 Introduzione Argomenti e testi di riferimento Nozioni preliminari Un po di storia Prezzi e rendimenti Distribuzione lognormale Capitalizzazione Sconto Il concetto di portafoglio Il Capital Asset Pricing Model Relazione fra duration modificata e rischio Il moto browniano Pricing di opzioni: il modello binomiale ad un periodo Formula di Black & Scholes

2 1 Introduzione La disciplina del Risk Management può essere suddivisa in due branche correlate ma distinte: 1. il risk measurement ha lo scopo di fornire misure quantitative di rischio individuate tramite la modellazione e la stima delle proprietà statistiche dei portafogli, trattati come variabili casuali. Preliminarmente, è spesso necessario utilizzare tecniche di pricing per determinare i prezzi degli strumenti finanziari; 2. il risk management utilizza tali misure allo scopo di determinare l allocazione di capitale necessaria all istituzione finanziaria per coprirsi dai rischi. Dal punto di vista quantitativo, le tecniche utilizzate sono di tipo sia statistico (in quanto i portafogli sono variabili casuali di cui è necessario stimare i parametri) che matematico (strumenti di matematica finanziaria per prezzare le attività, metodi di ottimizzazione, ecc.) 1.1 Argomenti e testi di riferimento Argomenti trattati: Distribuzioni di perdita e misure di rischio; Rischi di mercato e operativi; Rischio di credito: probabilità di def ault, modelli di portafoglio. Testi di riferimento: Dispense del docente; McNeil, A.J., Frey, R. e Embrechts, P. (2005), Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton Series in Finance, Princeton, Princeton University Press;

3 (rischio di credito) Bluhm, C., Overbeck, L. e Wagner, C. (2002), An Introducion to Credit Risk Modeling, New York, Chapman and Hall; Sironi, A. (2005), Rischio e Valore nelle Banche, Milano, EGEA. 2 Nozioni preliminari 2.1 Un po di storia Prima del 1973 la finanza era affrontata con concetti e strumenti contabili (cioè aritmetici, o almeno non stocastici). Eccezioni: teoria del portafoglio di Markowitz; Capital Asset Pricing Model. La disciplina nasce con i lavori di Black & Scholes (1973) e Merton (1973). Essi sono i primi a determinare il prezzo di un derivato tramite il principio di non arbitraggio, ipotizzando una precisa evoluzione stocastica del sottostante. Da questo momento gli strumenti probabilistici assumono un ruolo di primo piano in finanza. 2.2 Prezzi e rendimenti Sia P t il prezzo di un attività finanziaria. La variazione percentuale di prezzo (rendimento netto) è data da Il rendimento lordo è dato da R t = P t P t 1 P t 1. R l t = P t P t 1. Infine, il rendimento logaritmico è dato da ( ) r t = ln(rt) l Pt = ln = ln(p t ) ln(p t 1 ) = p t p t 1. P t 1 Teorema 1 Il rendimento netto è un approssimazione lineare del rendimento logaritmico.

4 Dimostrazione. Si approssimi la funzione f(x) = ln(x) in un intorno di x 0 = 1 tramite la formula di Taylor troncata al primo termine: ln(x) = ln(x 0 ) + (x x 0 ) 1 + o(x x 0 ) 2 x 0 = (x 1) + o(x x 0 ) 2. Ponendo x = P t /P t 1 e trascurando il resto si ottiene ( ) Pt ln P t 1 = P t P t 1. P t 1 P t 1 P t 1 Teorema 2 Il rendimento logaritmico relativo a n periodi è dato da Dimostrazione. Esercizio. r n 0 = ln(p n /P 0 ) = r r r n n Distribuzione lognormale P ha distribuzione lognormale di parametri µ e σ 2 se P = e r = e µ+σz, (1) dove Z N(0, 1) e quindi r N(µ, σ 2 ). Valore atteso e varianza della (1) sono dati da: σ2 µ+ E(P ) = e 2, var(p ) = e 2µ+2σ 2 e 2µ+σ2. (2) Perché è conveniente usare i rendimenti logaritmici? Principalmente per ragioni statistiche: i prezzi sono lognormali se e solo se i rendimenti logaritmici sono normali. Quando possibile, conviene sfruttare questa caratteristica per le procedure inferenziali e di simulazione. Si supponga infatti che i rendimenti logaritmici siano normali, assumendo per semplicità µ = 0: r t = σɛ t, ɛ t N(0, 1), t = 1,..., T. Poiché r t = ln(p t /P t 1 ) = ln(p t ) ln(p t 1 ) abbiamo p t = p t 1 + σɛ t, t = 1,..., T. (3)

5 µ= 1, σ=1 µ=0, σ= µ=3, σ=1 x 10 3 µ=15, σ= Figura 1: Distribuzione lognormale Quindi p t p t 1 N(p t 1, σ 2 ). Applicando la funzione esponenziale all equazione (3) si ottiene il modello per l evoluzione temporale dei prezzi: e p t = e p t 1+σɛ t, vale a dire P t = e p t 1 e σɛ t = P t 1 e σɛt t = 1,..., T, (4) che è una distribuzione lognormale di parametri p t 1 e σ Capitalizzazione Si supponga di investire x$ per n anni al tasso annuo R, con capitalizzazione solo alla fine dell anno. Allora il valore futuro dopo n anni è F V n = x(1 + R) n $.

6 Se la capitalizzazione ha luogo m volte all anno si ottiene: ( F V n = x 1 + m) R nm $. Quando m, otteniamo la capitalizzazione continua: ( F Vn c = lim x 1 + R nm $ = xe m m) Rn $. Osservazione. Passando dalla capitalizzazione annuale a quella continua, il valore futuro (sul medesimo orizzonte temporale) aumenta progressivamente. 2.5 Sconto Le corrispondenti formule di sconto sono: x = F V n (1 + R) n $; F V n x = ( ) 1 + R nm $; m x = F V c n e Rn $. 2.6 Il concetto di portafoglio Un portafoglio di N attività è costruito come segue. Sia r i,t+1 il rendimento logaritmico dell attività i nel periodo [t, t + 1). I pesi delle attività nel portafoglio sono w = (w 1,..., w N ). Sia r = (r 1,..., r N ) ; siano inoltre E(r) = µ; var(r) = Σ. Sia r w = w r il rendimento del portafoglio. La sua media e varianza sono E(r w ) = w µ def = µ w ; var(r w ) = w Σw def = σ 2 w. Esempio 1. Sia r N N (µ, Σ). Allora r w N(w µ, w Σw). Esempio 2 Il ruolo della correlazione ρ è essenziale nello studio della diversificazione di portafoglio. Sia L i Bin(1; π), i = 1,..., N l indicatore di def ault dell i-esima controparte. In altre parole, ogni controparte fallisce con la stessa probabilità π. Si supponga inoltre che α i = 1/N, i = 1,..., N

7 e che anche la correlazione sia uniforme: formalmente, cov(l i, L j ) = ρ (i, j = 1,..., N, i j). Allora la varianza di L ptf = (1/N) N i=1 L i è data da: var(l ptf ) = 1 N N N 2 var(l i ) + cov(l i, L j ) i=1 = 1 N N 2 π(1 π) + i=1 i,j=1 i j N ρπ(1 π) i,j=1 i j = 1 [Nπ(1 π) + N(N 1)ρπ(1 π)] (5) N 2 π(1 π) (N 1)ρπ(1 π) = + N N π(1 π) ρπ(1 π) = + ρπ(1 π), N N dove la (5) discende dal fatto che il numero di elementi di una matrice quadrata (N N) al di fuori della diagonale è pari a N 2 N. La varianza del portafoglio è dunque composta da tre addendi. Il primo ed il terzo tendono a zero all aumentare del numero di controparti; il secondo invece, non dipendendo da N, non può essere ridotto aumentando le dimensioni del portafoglio. Per questo motivo la quantità ρπ(1 π) è definita rischio non diversificabile. In definitiva si ha che lim (var(l ptf )) = ρπ(1 π). (6) N Da questo risultato si ricava che, quando le controparti sono correlate, per quanto si aumenti il numero delle controparti, non si può ridurre la varianza sotto una certa soglia. Dalla (6) emerge che la varianza asintotica del portafoglio è uguale a ρπ(1 π), che può assumere valori compresi fra 1 e +1. Ne risulterebbe dunque che la varianza asintotica, quando ρ < 0, è negativa. Questa conseguenza assurda può essere evitata se si impone che la matrice di covarianza sia definita positiva. Formalmente, si può dimostrare che, all aumentare di N, il range di valori ammissibili per il parametro ρ si restringe. Infatti la (6) è maggiore di

8 zero per ogni α IR N se e solo se cov( L) = Σ è definita positiva. Quando, come nel caso presente, Σ è data da 1 ρ ρ ρ ρ 1 ρ ρ Σ = , ρ ρ 1 ρ ρ ρ ρ 1, il valore minimo di ρ per cui è definita positiva cresce al crescere di N. Più precisamente, è possibile dimostrare il seguente risultato. Proposizione 1 Sia X un vettore aleatorio N-dimensionale con E(X) = µ e cov(x) = Σ. Allora Σ è definita positiva (o, equivalentemente, cov(α X) = α Σα > 0 α R N ) se e solo se ρ > 1/(N 1). Ne segue che, per esempio, quando N = 2 la matrice è definita positiva per ρ > 1, quando N = 3 è definita positiva per ρ > 0.5, quando N = 3 è definita positiva per ρ > 0. 3, e così via. 2.7 Il Capital Asset Pricing Model Il Capital Asset Pricing Model (CAPM) è un modello di equilibrio dei rendimenti delle attività finanziarie. Si può dimostrare, utilizzando un approccio à la Markowitz in cui le preferenze degli agenti operanti sul mercato siano del tipo media-varianza, che vale la seguente relazione. che ( ) σim µ i = r + (µ M r); E(R i ) = r + σ 2 M ( cov(ri, R M ) var(r M ) ) (µ M r), (7) dove r è il tasso di interesse risk-free e µ M e σm 2 sono rispettivamente il valore atteso e la varianza del rendimento del portafoglio di mercato, che è il portafoglio contenente tutte le attività rischiose presenti sul mercato. Il beta per l i-esima attività è dato da β i = cov(r i, R M ), var(r M )

9 cosicché il CAPM risulta essere µ i = r + β i (µ M r). (8) Sia ora rp i = β i (µ M r); allora il CAPM può essere riscritto come µ i = r + rp i, che dà una misura esplicita del premio al rischio. Il CAPM cambia il nostro concetto di rischio da σ i a β i. Per esempio, si consideri un attività incorrelata col mercato: il suo beta è uguale a 0, quindi, anche se la sua volatilità, misurata da σ, è molto alta, il suo rendimento, in equilibrio, sarà uguale al tasso di interesse risk-free, perché il suo rischio può essere completamente diversificato. In altre parole, il beta di un attività dà una misura del suo rischio non diversificabile. Risultati. 1. cov(ɛ i, R M ) = 0 [schema della dimostrazione: cov(ɛ i, r M ) = cov(r i β i r M, r M ) = cov(r i, r M ) β i σm 2 = σ im (σ im /σm 2 )σ2 M ) = 0]. 2. var(r i ) = βi 2σ2 M +σ2 ɛ i ; σm 2 è una misura del rischio sistematico, mentre è una misura del rischio specifico (o idiosincratico). Quest ultimo σ 2 ɛ i può essere ridotto (eliminato, asintoticamente) tramite diversificazione, cioè semplicemente aggiungendo altre attività al portafoglio. 3. L extra rendimento sull attività i-esima è collegato alla covarianza dei rendimenti fra l attività i ed il portafoglio di mercato. Un attività con beta uguale ad uno è, in media, rischiosa come il mercato; un attività con un beta maggiore di uno è, in media, più rischiosa del mercato; un attività con un beta minore di uno è, in media, meno rischiosa del mercato. In questa sede, più (meno) rischioso significa che l attività si muove più (meno) del mercato, cioè è un titolo aggressivo (difensivo). 4. La covarianza fra due attività è interamente determinata dai rispettivi

10 beta: cov(r i r, R j r) = cov(r i, R j ) = E(R i R j ) E(R i )E(R j ) = = E(β i (R M r)β j (R M r)) β i β j (µ M r) 2 = β i β j (E(R M r) 2 (µ M r) 2 ) = = β i β j (E(RM) 2 µ 2 M) = = β i β j σm 2 5. Tecnicamente, il CAPM è un modello fattoriale, in cui il fattore è R M. 2.8 Relazione fra duration modificata e rischio La duration di un titolo obbligazionario è la derivata prima della funzione prezzo-rendimento; essa è data dalla media ponderata delle scadenze di tutti i flussi di cassa: D = N i=1 t F C t/(1 + y) t, P dove F C sono i flussi di cassa (pagamento di cedole e rimborso del nominale) ed y è il tasso di rendimento effettivo a scadenza. Si definisce duration modificata la quantità DM = D/(1 + y). Si dimostra che vale la relazione Si ha dunque dp P dp P = DM dy. = DM dy r DM dy σ(r) DM σ(dy) 2.9 Il moto browniano Che ipotesi distribuzionali si adottano in tempo continuo? Normalmente si ipotizza che il prezzo del sottostante S t sia un moto browniano geometrico. Per arrivare a definirlo, è necessario iniziare dal moto browniano standard. Il moto browniano standard è un processo stocastico W t, t IR, definito dalle seguenti proprietà:

11 (i) W 0 = 0; (ii) W t W s N(0, t s). (iii) W t è funzione continua di t; (iv) se t 0 < t 1 < < t n, le v.c. indipendenti. W 0, W 1 W 0,..., W n W n 1 sono Il moto browniano geometrico è la soluzione dell equazione differenziale stocastica: ds t = µs t dt + σs t dw t, dove W t è un moto browniano standard. Si dimostra tramite la formula di Itô che il processo stocastico della variabile ln(s t ) è la soluzione dell equazione ) d ln(s t ) = (µ σ2 dt + σdw t. 2 Tale soluzione è data da S t = S 0 exp ) } {(µ σ2 t + σw t. (9) 2 Dalla (9) si ha che la distribuzione di (S t /S 0 ) S 0 è lognormale di parametri (µ σ 2 /2)t e σ 2 t Pricing di opzioni: il modello binomiale ad un periodo Un opzione è uno strumento finanziario che dà il diritto di comprare (opzione call) o vendere (opzione put) una quantità stabilita di una attività finanziaria (il sottostante) ad un prezzo prestabilito K (strike price) alla scadenza del contratto (opzione europea) o in qualsiasi momento tra l emissione e la scadenza (opzione americana). Il payoff a scadenza di una call è dato da max{s T K, 0}, quello di una put è dato da max{k S T, 0}. Le opzioni sono strumenti non lineari, nel senso che il loro prezzo reagisce in modo non proporzionale ad una variazione del prezzo del sottostante (che è la principale variabile che ne influenza il prezzo) e questa caratteristica è il motivo per cui prezzare questi strumenti è più difficile e richiede un approccio diverso rispetto, per esempio, ai bond; il metodo di pricing delle opzioni è noto come pricing by arbitrage.

12 Si supponga che esistano sul mercato solo due strumenti: un azione e un opzione call il cui sottostante è l azione; inoltre è disponibile un conto corrente il cui rendimento lordo (rendimento lordo risk-free) è indicato con r (se dunque il rendimento netto è uguale al 5%, r = 1.05). Infine, operiamo in tempo discreto, con due soli tempi, 0 e 1. Costruiamo, al tempo 0, un portafoglio ottenuto prendendo a prestito β 0 $ in contanti e comprando α 0 azioni del sottostante. Il valore iniziale di questo portafoglio è dato da Il sottostante al tempo T V 0 = β 0 + α 0 S 0. = 1 può assumere due soli prezzi, e la sua distribuzione di probabilità è di tipo bernoulliano: us 0 con prob. π S 1 = gs 0 con prob. 1 π, 0 < g < u. Data questa struttura di prezzo per il sottostante, in T = 1 anche l opzione può assumere esclusivamente due valori: C u = max{us 0 K, 0} con prob. π C 1 = C g = max{gs 0 K, 0} con prob. 1 π. Sulla base di queste sole informazioni, è possibile ricavare il prezzo dell opzione al tempo 0. A questo scopo, si considerino i due possibili valori del portafoglio al tempo 1: V u = us 0 α 0 + rβ 0 con prob. π V 1 = V g = gs 0 α 0 + rβ 0 con prob. 1 π. Scegliamo ora α 0 e β 0 in modo che le due equazioni seguenti siano simultaneamente soddisfatte: Si ricava facilmente us 0 α 0 + rβ 0 = C u gs 0 α 0 + rβ 0 = C g. (10) α 0 = C u C g (u g)s 0 def =, β 0 = uc g gc u (u g)r. (11)

13 Dunque il portafoglio costituito, in t = 0, da quote dell azione e β 0 $ ha, con certezza, lo stesso payoff dell opzione; ne segue che l opzione e il portafoglio devono avere lo stesso prezzo al tempo 0, cioè C 0 = V 0. Se così non fosse, sarebbe infatti possibile costruire un arbitraggio, cioè una strategia di trading che fornisce un profitto privo di rischio. Infatti, si ipotizzi che sia V 0 > C 0 : in questo caso un investitore potrebbe acquistare l opzione e vendere il portafoglio al tempo 0, con un introito pari a V 0 C 0 ; al tempo 1 il riacquisto del portafoglio al prezzo V 1 sarebbe esattamente compensato dalla vendita dell opzione. Svolgendo i calcoli (esercizio), si trova che il prezzo dell opzione al tempo 0 è dato da C 0 = S 0 + β 0 = 1 r dove π = (r g)/(u g). [( ) r g C u + u g ( ) ] u r C g u g = 1 r [π C u + (1 π )C g ] = 1 r E π (C 1), (12) La strategia di copertura (hedging strategy) corrispondente alle operazioni matematiche descritte in precedenza consiste nelle seguenti operazioni: si costruisce, al tempo 0, un portafoglio ottenuto prendendo a prestito β 0 $ in contanti, comprando α 0 azioni del sottostante e vendendo l opzione. Dunque, operazioni e relativi cashflow al tempo 0 sono come segue: vendo l opzione +C 0 prendo a prestito contanti +β 0 acquisto azioni α 0 S 0. (13) La strategia di copertura si conclude al tempo 1 nel modo seguente: rimborso l opzione C 1 rimborso il prestito β 0 r vendo le azioni α 0 S 1. (14) Sia nella (13) che nella (14) ovviamente bisogna sostituire i valori e β 0 ai valori α 0 e β 0.

14 Esempio. Siano r = 1, S 0 = 10, K = 15, 20 con prob. π S 1 = 7.5 con prob. 1 π. (15) Ne segue che 5 con prob. π C 1 = 0 con prob. 1 π. (16) Dunque, applicando la (11), si ricava = 0.4, β0 = 3$, V 0 = 3$ $ = 1$ e π = 0.2. Al tempo 0, la strategia di copertura consiste in vendere l opzione, il cui prezzo è uguale a V 0 (= +1$), prendere a prestito 3$ e comprare 4$ di azioni. Al tempo 1 ci sono due possibilità: 1. S 1 = 20$. L opzione viene esercitata ( 5$); rimborso il prestito ( 3$), vendo le azioni ( $ = +8$). Bilancio netto: 0$. 2. S 1 = 7.5. L opzione non viene esercitata (0$); rimborso il prestito ( 3$), vendo le azioni ( $ = +3$). Bilancio netto: 0$.

15 Osservazioni. 1. La (12) non dipende dall avversione al rischio degli investitori, ma solo dal fatto che preferiscano più denaro a meno denaro (questa è condizione necessaria per eliminare possibilità di arbitraggio); 2. la (12) non dipende dalla probabilità π, che è ignota ma riguardo alla quale ogni investitore ha una propria opinione; tale opinione è dunque irrilevante per la determinazione del prezzo; 3. la (12) è il valore atteso scontato del payoff dell opzione, dove il valore atteso è calcolato rispetto alla pseudo probabilità π, denominata probabilità risk-neutral. Rispetto a questa misura di probabilità il rendimento del portafoglio di replica è uguale al rendimento risk-free in quanto ha rendimento certo (non dipende dal valore del sottostante al tempo 1); 4. la distribuzione di probabilità determinata da π = (r g)/(u g) nel modello binomiale ad un periodo è definita risk-neutral nel senso seguente. Si verifica (esercizio) che: E π (V 1 V 0 ) = rβ0 + π us 0 α0 + (1 π )gs 0 α0 = rβ0 + rα0s 0 = rv 0, (17) dove la penultima uguaglianza si ottiene sviluppando la quantità π us 0 α0 + (1 π )gs 0 α0, utilizzando π = (r g)/(u g). La (17) dice che il rendimento atteso dell investimento nel portafoglio di replica è uguale al rendimento risk-free; equivalentemente, non c è premio al rischio; 5. condizione necessaria affinché π identifichi una misura di probabilità è che g r u. Osservazioni. Dal modello binomiale ad un periodo emergono fondamentalmente due messaggi. 1. Una posizione nell opzione è strettamente equivalente ad una posizione nel sottostante; quindi un portafoglio contenente l opzione e un appropriata quantità ( ) del sottostante è localmente privo di

16 rischio (con l avverbio localmente si intende per piccole variazioni del prezzo del sottostante ); essendo tale portafoglio privo di rischio, il suo rendimento deve essere il rendimento risk-free. Un portafoglio di opzioni e di posizioni nei rispettivi sottostanti è detto -neutral. 2. Il prezzo dell opzione al tempo t < T può essere calcolato scontando al tasso risk-free il valore atteso del payoff a scadenza calcolato sulla base della probabilità risk neutral Formula di Black & Scholes In tempo continuo, il ragionamento precedente porta alla formula di Black & Scholes. Il prezzo di un opzione call alla scadenza è dato da C T = max(0, S T K), dove K è lo strike price. dei criteri del pricing risk-neutral, il prezzo è dato da Al tempo t < T, sulla base C t = e r(t t) E π [max(0, S T K)], (18) dove π è la probabilità risk-neutral e r è il tasso di interesse risk-free. Analogamente, il prezzo di una put alla scadenza è C T = max(0, K S T ); al tempo t < T si ottiene: C t = e r(t t) E π [max(0, K S T )]. Si dimostra che la (18) si può scrivere nella forma C t = S t Φ(d 1 ) Ke r(t t) Φ(d 2 ), dove S t è il prezzo dell azione sottostante, T è la data di scadenza, K è lo strike price e d 1 e d 2 sono definiti come segue: d 1 = ln(s t/k) + (r + σ 2 /2)(T t) σ T t d 2 = ln(s t/k) + (r σ 2 /2)(T t) σ = d 1 σ T t. T t In termini puramente intuitivi, in t < T, S t Φ(d 1 ) è il valore atteso, calcolato rispetto alla probabilità risk-neutral, di una v.c. discreta che vale S T se S T > K e 0 altrimenti. Il termine Φ(d 2 ) è invece la probabilità, sempre risk-neutral, che l opzione venga esercitata alla scadenza.

17 Si noti che il prezzo C t di un opzione è funzione di S t, r, σ: C t = f(s t, r, σ). Inoltre dipende, ma in modo deterministico, dal tempo a scadenza T t e dallo strike price K. Osservazioni. La formula di B&S vale sotto le seguenti ipotesi: (i) l evoluzione del prezzo in tempo continuo è un moto browniano; (ii) il tasso di interesse risk-free e la varianza σ 2 sono costanti; (iii) il mercato è perfetto (cioè le vendite allo scoperto sono ammesse, il mercato è sempre aperto, i costi di transazione sono nulli). Vale la pena di sottolineare esplicitamente che la formula è valida esclusivamente per opzioni di tipo europeo; per le opzioni americane ed esotiche il prezzo può essere determinato solo tramite metodi numerici, non in forma chiusa (eccezione: per un opzione call americana su un azione che non paga dividendi l esercizio anticipato rispetto alla scadenza non è mai conveniente; quindi il suo prezzo è identico a quello della corrispondente opzione europea e può essere ottenuto tramite la formula di B&S).

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Elementi di Risk Management Quantitativo

Elementi di Risk Management Quantitativo Elementi di Risk Management Quantitativo Marco Bee (marco.bee@economia.unitn.it) Marzo 2006 Indice 1 Introduzione 2 2 Nozioni preliminari 2 2.1 Prezzi e rendimenti........................ 2 2.2 Capitalizzazione.........................

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito.

Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito. 4 Rischio di credito Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito. Obiettivo del credit risk management:

Dettagli

Tecniche di copertura

Tecniche di copertura Tecniche di copertura A tale scopo, il primo parametro da considerare è. Si supponga di possedere un portafoglio Π composto dall opzione e da una quantità pari a del sottostante (dunque, ho venduto l opzione

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo. LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento

Dettagli

Le curve di indifferenza sulla frontiera di Markowitz

Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria da Markowitz al teorema della separazione e al CAPM Le curve di indifferenza sulla frontiera di Markowitz Markowitz

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Introduzione alberi binomiali

Introduzione alberi binomiali Introduzione alberi binomiali introduzione L albero binomiale rappresenta i possibili sentieri seguiti dal prezzo dell azione durante la vita dell opzione Il percorso partirà dal modello a uno stadio per

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 1 Indice La Capital Market Theory di Markowitz Il Teorema della separazione di Tobin e la Capital Market Line

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Corso di Risk Management

Corso di Risk Management Concetti fondamentali di risk management Tutti i concetti della lezione odierna sono presi da McNeil, Frey, Embrechts (2005), Quantitative Risk Management, Princeton, Princeton University Press, cap. 2.

Dettagli

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1 LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

Modelli probabilistici per la finanza

Modelli probabilistici per la finanza Capitolo 5 Modelli probabilistici per la finanza 51 Introduzione In questo capitolo introdurremo un modello probabilistico utile per lo studio di alcuni problemi di finanza matematica, a cui abbiamo già

Dettagli

studi e analisi finanziarie LA PUT-CALL PARITY

studi e analisi finanziarie LA PUT-CALL PARITY LA PUT-CALL PARITY Questa relazione chiarisce se sia possibile effettuare degli arbitraggi e, quindi, guadagnare senza rischi. La put call parity è una relazione che lega tra loro: il prezzo del call,

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria Valutazione opzioni Non posso usare le formule di attualizzazione in quanto non riesco a trovare un accettabile tasso a

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Principali tipologie di rischio finanziario

Principali tipologie di rischio finanziario Principali tipologie di rischio finanziario Rischio di mercato: dovuto alla variabilità dei prezzi delle attività finanziarie Rischio di credito: dovuto alla possibilità che la controparte venga meno ai

Dettagli

Finanza Aziendale. Lezione 12. Analisi del rischio

Finanza Aziendale. Lezione 12. Analisi del rischio Finanza Aziendale Lezione 12 Analisi del rischio Obiettivi i della lezione I rendimenti e la loro misurazione I rendimenti medi ed il loro rischio La misurazione del rischio e l effetto diversificazione

Dettagli

Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come. VaR = z α β σ M,

Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come. VaR = z α β σ M, Il VaR di un azione Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come VaR = z α β σ M, dove σ M è la volatilità dell indice di mercato scelto per l azione.

Dettagli

FINANZA AZIENDALE AVANZATO

FINANZA AZIENDALE AVANZATO FINANZA AZIENDALE AVANZATO La diversificazione di portafoglio e il CAPM Lezione 3 e 4 1 Scopo della lezione Illustrare il modello logico-teorico più utilizzato nella pratica per stimare il rendimento equo

Dettagli

Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901)

Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901) Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901) Classe: LM-16 (Finanza) Anno Accademico 2011/2012 1 1) Secondo qualsiasi

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

Il criterio media-varianza e il modello CAPM

Il criterio media-varianza e il modello CAPM Il criterio media-varianza e il modello CAPM 1 Il criterio media-varianza Se α 1 è la quota della ricchezza destinata all acquisto del titolo 1 e α 2 èlaquota impiegata nell acquisto del titolo 2, il valore

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Strategie α nella costruzione di portafoglio. 03 Maggio 2012

Strategie α nella costruzione di portafoglio. 03 Maggio 2012 Strategie α nella costruzione di portafoglio 03 Maggio 2012 AGENDA La costruzione di portafoglio Le strategie alpha Il portafoglio con strategie alpha LA COSTRUZIONE DI UN PORTAFOGLIO FINANZIARIO Un portafoglio

Dettagli

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3 Sommario Prefazione XI PARTE I INTRODUZIONE 1 Capitolo 1 Arbitraggio e decisioni finanziarie 3 1.1 Valutazione dei costi e benefici 4 Utilizzo dei prezzi di mercato per determinare valori monetari 4 Quando

Dettagli

Introduzione all Option Pricing

Introduzione all Option Pricing Introduzione all Option Pricing Arturo Leccadito Corso di Matematica Finanziaria 3 Anno Accademico 2008 2009 1 Il Modello Binomiale Si supponga che oggi (epoca 0) sia disponibile un titolo azionario il

Dettagli

I modelli fondati sul mercato dei capitali

I modelli fondati sul mercato dei capitali I modelli fondati sul mercato dei capitali Slides tratte da: Andrea Resti Andrea Sironi Rischio e valore nelle banche Misura, regolamentazione, gestione Egea, 2008 AGENDA L approccio basato sugli spread

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

TEST FINANZA OTTOBRE 2013

TEST FINANZA OTTOBRE 2013 TEST FINANZA OTTOBRE 03. Si consideri la funzione f ( ) ln( e ). Determinare l espressione corretta della derivata seconda f ( ). e f( ) ( e ) A B f( ) e f( ) ln ( e ) C D f( ). Dati i tre vettori (, 3,

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA anno accademico 2007/2008 modulo n. 1 Lezioni 6 Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria LE OPTION Contratto a termine mediante

Dettagli

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 =

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 = Volatilità implicita Abbiamo visto come sia possibile calcolare la volatilità di un titolo attraverso la serie dei log-return. In teoria però la volatilità di un sottostante può essere determinata dal

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

Dividendi e valore delle azioni

Dividendi e valore delle azioni Dividendi e valore delle azioni La teoria economica sostiene che in ultima analisi il valore delle azioni dipende esclusivamente dal flusso scontato di dividendi attesi. Formalmente: V = E t=0 1 ( ) t

Dettagli

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea Corso di Laurea magistrale in Economia e Finanza Tesi di Laurea Titolo Modelli della capital growth e dalla growth security nella gestione di portafoglio. Relatore Ch. Prof. Marco Corazza Laureando Alessio

Dettagli

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004 Note integrative di Moneta e Finanza Internazionale c Carmine Trecroci 2004 1 Tassi di cambio a pronti e a termine transazioni con consegna o regolamento immediati tasso di cambio a pronti (SR, spot exchange

Dettagli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Un portafoglio è costituito dal titolo A e dal titolo B. Il

Dettagli

Tecniche di stima del costo e delle altre forme di finanziamento

Tecniche di stima del costo e delle altre forme di finanziamento Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Tecniche di stima del costo e delle altre forme di finanziamento Capitolo 17 Indice degli argomenti 1. Rischio operativo e finanziario

Dettagli

GUIDA ALLA LETTURA DELLE SCHEDE FONDI

GUIDA ALLA LETTURA DELLE SCHEDE FONDI GUIDA ALLA LETTURA DELLE SCHEDE FONDI Sintesi Descrizione delle caratteristiche qualitative con l indicazione di: categoria Morningstar, categoria Assogestioni, indice Fideuram. Commenti sulla gestione

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

Modelli di portafoglio

Modelli di portafoglio Università Bicocca - Milano Anno Accademico 2007 / 2008 Modelli di portafoglio Corso di Risk Management Milano, 26 Marzo 2008 Perchè stimare EL e UL: un esempio Actual Portfolio Loss 2.00% 1.80% 1.60%

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Note sulle Opzioni Americane

Note sulle Opzioni Americane Note sulle Opzioni Americane Wolfgang J. Runggaldier Universitá di Padova June 16, 2007 Si fornisce qui una traccia sull argomento delle opzioni americane a tempo discreto (dette anche Bermudean options)

Dettagli

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Capital budgeting Luca Deidda Uniss, CRENoS, DiSEA Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Introduzione Scaletta Introduzione Incertezza e costo del capitale Costo del capitale di rischio (equity

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni Introduzione alle opzioni Tipi di Opzioni La call è un opzione di acquisto La put è un opzione di vendita Le opzioni europee possono essere esercitate solo alla scadenza Le opzioni americane possono essere

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO Docente: Prof. Massimo Mariani 1 SOMMARIO Il costo del capitale: la logica di fondo Le finalità del calcolo del costo del capitale Il costo del capitale

Dettagli

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite Analisi degli Investimenti 2015/16 Lorenzo Salieri Il valore dell impresa come una torta Debito Capitale Azionario 2 Struttura Finanziaria

Dettagli

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*)

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*) Operazioni Tecniche Asset allocation: come ottimizzare un portafoglio di attività di Amedeo De Luca (*) Attraverso una composizione del portafoglio di attività strategica e ben condotta i gestori finanziari

Dettagli

continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II Testi di riferimento PROGRAMMA Parte relativa alla gestione dei rischi bancari

continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II Testi di riferimento PROGRAMMA Parte relativa alla gestione dei rischi bancari continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II 3) Rischi e redditività ruolo del capitale allocazione del capitale valutazione della performance della banca e dei singoli centri operativi

Dettagli

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema

Dettagli

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri IL TASSO DI CAMBIO Anno Accademico 2013-2014, I Semestre (Tratto da: Feenstra-Taylor: International Economics) Si propone, di seguito, una breve

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio: TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione

Dettagli

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI PERCORSI ABILITANTI SPECIALI 014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI A cura Dott.ssa Federica Miglietta ESERCITAZIONE CALCOLO FINANZIARIO: Nel caso degli investimenti si parla genericamente

Dettagli

CONTRATTI E TASSI SWAP

CONTRATTI E TASSI SWAP CONTRATTI E TASSI SWAP FLAVIO ANGELINI Sommario. In queste note vengono definite, analizzate e valutate le tipologie più comuni di contratti interest rate swap e si discute l importanza che i tassi swap

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo Università degli Studi di Perugia Laurea specialistica in Finanza a.a. 2009-10 Corso di Laboratorio di calcolo finanziario prof. Franco Moriconi Esperienza MBG Il moto browniano geometrico. Proprietà teoriche

Dettagli

Finanza Aziendale. Misura e valutazione del

Finanza Aziendale. Misura e valutazione del Teoria della Finanza Aziendale Misura e valutazione del rischio 7 1- Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio Il rischio

Dettagli

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20 Finanza Aziendale Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale BMAS Capitolo 20 1 Le opzioni nei mercati reali e finanziari Si dicono opzioni i contratti finanziari

Dettagli

Valutazione di attività reali in condizioni di incertezza e flessibilità 1

Valutazione di attività reali in condizioni di incertezza e flessibilità 1 Valutazione di attività reali in condizioni di incertezza e flessibilità 1 Andrea Gamba (andrea.gamba@univr.it) Dipartimento di Scienze Economiche e Finanziarie Università di Verona Via Giardino Giusti,

Dettagli

Fronteggiamento dei rischi della gestione

Fronteggiamento dei rischi della gestione Fronteggiamento dei rischi della gestione Prevenzione (rischi specifici) Impedire che un determinato evento si manifesti o limitare le conseguenze negative Assicurazione (rischi specifici) Trasferimento

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Capitolo 1. Profilo finanziario degli investimenti 1

Capitolo 1. Profilo finanziario degli investimenti 1 Indice Prefazione Introduzione XIII XV Capitolo 1. Profilo finanziario degli investimenti 1 1.1 Definizione e tipologie di investimento 1 1.1.1 Caratteristiche degli investimenti produttivi 3 1.1.2 Caratteristiche

Dettagli

Ambiente di riferimento

Ambiente di riferimento Ambiente di riferimento Cosideriamo un mercato finanziario di una sola azione (investimento a rischio), un titolo obbligazionario (investimento senza rischio) e un contingent claim. La dinamica dei prezzi

Dettagli

19-2 Argomenti trattati

19-2 Argomenti trattati Principi di finanza aziendale Capitolo 19-20 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Introduzione alle opzioni e cenni al problema della valutazione 19-2 Argomenti trattati Call,

Dettagli

Economia monetaria e creditizia. Slide 4

Economia monetaria e creditizia. Slide 4 Economia monetaria e creditizia Slide 4 Le teorie diverse che spiegano come di determina la domanda di moneta possono essere ricondotte alle due funzioni di mezzo di pagamento e di riserva di valore la

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Derivati: principali vantaggi e utilizzi

Derivati: principali vantaggi e utilizzi Derivati: principali vantaggi e utilizzi Ugo Pomante, Università Commerciale Luigi Bocconi Trading Online Expo Milano 28, Marzo 2003 CONTENUTI In un mondo senza derivati I futures Le opzioni Strategie

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi Corso tecnico - pratico MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI Calcolo del fair value e misurazione dei rischi Modulo 1 (base): 22-23 aprile 2015 Modulo 2 (avanzato):

Dettagli

Separazione in due fondi Security Market Line CAPM

Separazione in due fondi Security Market Line CAPM Separazione in due fondi Security Market Line CAPM Eduardo Rossi Economia dei mercati monetari e finanziari A.A. 2002/2003 1 Separazione in due fondi Un vettore di rendimenti er può essere separato in

Dettagli

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Vaalore della call/azione al 15 marzo 2014 Ipotizziamo di aver acquistato 1 azione FIAT al prezzo di 5,5.

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni PROGRAMMA 1) Nozioni di base di finanza aziendale 2) Opzioni 3) Valutazione delle aziende 4) Finanziamento tramite debiti 5) Risk management Introduzione alle opzioni 6) Temi speciali di finanza aziendale

Dettagli

GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari

GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari SULLA STRUTTURA FINANZIARIA DI CONTRATTI ASSICURATIVI LINKED CON MINIMO GARANTITO SOMMARIO 1. Introduzione

Dettagli

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15 FINANZA AZIENDALE AVANZATO Le opzioni e l option theory Lezioni 14 e 15 I derivati asimmetrici ono contratti/prodotti che fissano le condizioni a cui POTRA aver luogo la compravendita futura dell attività

Dettagli