SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1"

Transcript

1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero

2 ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar o fezo attve vral. A tal fe è stato msurato l lvello d terlucha (IL) quattro grupp d pazet ( dat soo presetat ella paga successva).. Verfcare se lvell d terlucha dfferscoo sgfcatvamete e quattro grupp sa co l metodo parametrco (..a) che o parametrco (..b).. Effettuare cofrot multpl co metod a vo ot se l cofroto tra grupp d tpo parametrco è rsultato statstcamete sgfcatvo.3 Verfcare se esste ua dffereza sgfcatva e lvell d IL tra soggett sa e soggett co depressoe maggore seza melacoa, sa co l metodo parametrco (.3.a) che o parametrco (.3.b) Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero

3 Sa Depressoe more Depressoe maggore seza melacoa Depressoe maggore co melacoa Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 3

4 ..a N40 T y j j T /N S j y j S T T T , 8 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 4

5 ..a Calcolo delle devaze DEVIANZA TOTALE æ ç y j è y ö ø S T N DEVIANZA ENTRO GRUPPI æ ç y j è y ö ø S æ ç ç ç è T ö ø DEVIANZA TRA GRUPPI ( y y) æ ç ç ç è T ö ø T N Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 5

6 ..a Statstca test A N O V A Sorget d DEVIANZE G.L. VARIANZE F CAL varazoe TRA GRUPPI ENTRO GRUPPI TOTALE Dove FVaraza tra grupp/varaza etro grupp 8.74 Poché F cal 8.74 F tab.9, rfuto l potes ulla e cocludo che almeo due grupp dfferscoo tra loro Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 6

7 ..a Cofrot multpl LSD t α/ Ö ( Var Resdua/) t α/ Valore della tstudet co grad d lbertà Nk t α/.03 LSD.03 Ö x / Mede Dff > 83.0 Þ mede dfferet Dff > 83.0 Þ mede dfferet Dff > 83.0 Þ mede ugual Dff > 83.0 Þ mede dfferet Dff > 83.0 Dff > 83.0 Þ mede ugual Þ mede dfferet Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 7

8 ..b é ê ê ë S s a m g. l. r s r s + t resdua ( y y )t m m ( y y ) r Cofrot multpl, a m, g. l. S resdua ù ú ú û Mede α/ t.7 It 4 0. ±.7 x ± It 4 3. ±.7 x ± It ±.7 x ± It ±.7 x ± It ±.7 x ± It 88.0 ±.7 x ± Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 8

9 ..b METODO NON PARAMETRICO Kruskall Walls Sa R Dep.M R D.mags mel R3 D.Mag co mel R Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 9

10 ..b Statstca test e svolgmeto H ( + ) k j R j j 3 ( + ) Dove: K umero de campo j umero d osservazo el jesmo campo umero totale delle osservazo Rj somma de ragh el jesmo campo Per l ostro seme d dat: H ( ) é70 ê ë ù ú û 3 ( 40+ ). 03 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 0

11 ..b Decsoe Per a0,05 e g.l k3 c 7.8 Rfuto l potes ulla lvell d terlucha dfferscoo sgfcatvamete e quattro grupp Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero

12 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero Pochè c soo osservazo co l medesmo valore (tes ) bsoga correggere la statstca H t t T T 3 3 ø ö ç ç è æ T H H corr 3..b Correzoe della statstca H

13 ..b Correzoe della Statstca H Tt 3 t 3 6 Correzoe ( 6/ ) 0,999 H corr H 3 T Rfuto l potes ulla lvell d terlucha dfferscoo sgfcatvamete Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 3

14 .3.a Cofroto tra campo dpedet Verfcare ad u lvello d sgfcatvtà α0.05 se le mede delle due popolazo soo ugual oppure dverse: H 0 : m m H : m ¹m ( x x ) / S ( x x ) x ( x ) / Gruppo Sa: 0 Σx 979 Σx 4307 x 97.9 S Gruppo depressoe Maggore seza melacoa : 0 Σx 859 Σx x 85.9 S 7.33 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 4

15 .3.a Cofroto tra campo dpedet omogetà delle varaze H 0 : s s H : s ¹s FS /S / Poché F tab F 9,9, > F cal.09 Varaze soo omogeee E possble calcolare la varaza comue S ( ) + S ( ) S p Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 5

16 .3.a Cofroto tra campo dpedet Statstca test t ( x x) ( mm ) S p + S p t calc t tab t 8.0 < t cal 4.3 ð rfuto H 0 ð le mede de due grupp soo dverse Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 6

17 .3.b Cofroto tra campo dpedet test della somma de ragh Se la dstrbuzoe o è gaussaa utlzzamo l metodo o parametrco della Somma de Ragh Gruppo Sa Gr. Depr.Mag seza mela R R Σ R sa 63 Σ R patologc 47 Per α 0.05 Itervallo de ragh 78 3 Rfuto l uguaglaza de due grupp Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 7

18 ESERCIZIO. Soo stat utlzzat due metod per determare 5 soggett l effcaca d u atbotco per l trattameto della tubercolos. I logartm de ttol otteut co due metod soo seguet: Metodo A Metodo B Determare la retta d regressoe potzzado che l metodo A è affetto da errore trascurable. Verfcare l potes ulla b0 co tutt metod cooscut.3 Calcolare l coeffcete d determazoe.4 Studare la relazoe esstete tra le due metodche co l metodo parametrco (.4.a) e o parametrco (.4.b), potzzado che etramb metod o sao affett da errore trascurable.5 Verfcare se esste ua dffereza sgfcatva tra le due metodche sa co l metodo parametrco (.5.a) che o parametrco (.5.b) Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 8

19 . Calcol ecessar per lo svolgmeto x 36. x 89.7 y 49.7 y x y.90 x y Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 9

20 . Determazoe de parametr effettuado cot s ha: bˆ (x (x x )(y x ) x 36./5.4 y 49.7/5 3.3 x y y) é ê êë x x ( ) x y ù ú úû ( ) (36. ) / 5 / aˆ y bˆ x Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 0

21 ..a Calcolo delle devaze Per l ostro esempo DEV. TOTALE ( y y) y ( y ) /5.38 DEV. REGRESSIONE ( yˆ y) b ( x x) [ ( )( )] x x y y ( x x).64 DEV. RESIDUA TOTALE REGRES Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero

22 ..a Nell esempo A N O V A Sorget d DEVIANZE G.L. VARIANZE F CAL varazoe REGRESSIONE RESIDUA TOTALE.38 4 Essedo F tab F, < F cal 8.8 rfuto H 0 Dove F cal Varaza Regressoe/Varaza resdua.64/ Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero

23 ..b Verfca d potes su b test t H 0 : b 0 H : b ¹ 0 ES ( b) varres devx ( y yˆ ) ( x x) N 0.6 T bb ES 0 ( b) Poché T cal5.5 > T tab.6 s rfuta l potes ulla e qud l coeffcete d regressoe è sgfcatvamete dverso da zero Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 3

24 .3 Coeffcete d determazoe R devregr devtot ( yˆ ) y ( y y) La regressoe spega crca l 69% de dat osservat Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 4

25 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 5 ( ) ( ) ) ( ) ( ) )( ( ú ú û ù ê ê ë é ú ú û ù ê ê ë é y y x x y x y x y y x x y y x x r.4.a COEFFICIENTE DI CORRELAZIONE DI PEARSON

26 .4.a Verfca d potes per l dpedeza IPOTESI H 0 : r 0 H : r¹0 STATISTICA TEST T r r Essedo t 5.36 > t tab.60 s rfuta H 0 Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 6

27 .4.b Metodo o parametrcocoeffcete d correlazoe d Spearma A B RA RB d d Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 7

28 .4.b Coeffcete d correlazoe d Spearma r s 6 d ( ) (5 ) ,83 Essedo r s cal0.83 > r s tab0.55 ulla, due test soo correlat s rfuta l potes Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 8

29 .5.a S valut l essteza d ua dffereza sgfcatva tra due metod Metodo parametrco A Σ B d Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 9 d H 0 : m d 0 H : m d >0

30 .5.a Cofroto tra campo appaat test t studet d S d t d ( d d) d ( ) d (3.5) d m 0.9 d t calc Sd Poché t tab.6 < t cal 4.59, rfuto l potes ulla, le due metodche soo sgfcatvamete dfferet Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 30

31 .5.b S valut l essteza d ua dffereza sgfcatva tra due metod Metodo o parametrco Ragh co sego A B d Rdf Σ R 0 Itervallo tabulato 5 95 I due metod soo sgfcatvamete dfferet Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 3

32 Al fe d valutare la relazoe tra radoesposzoe e patologe trodee ua popolazoe d lavorator ospedaler, soo stat reclutat 304 dpedet radoespost e 383 dpedet o radoespost. I rsultat soo espost ella tabella: Nodul ESERCIZIO 3. Rx Esp. 53 No Rx Esp. 0 Totale 73 Trodte Sa Totale S valut l essteza d ua relazoe tra esposzoe e patologa trodea. 3. Lmtado l attezoe a soggett co patologa odulare e sa s verfch co tutt metod cooscut la sgfcatvtà della relazoe e s determ l odds rato (3.3) e l suo tervallo d cofdeza (3.3.a). Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 3

33 3. Tabella de valor attes Rx Esp. No Rx Esp. Totale Nodul 76,55 96,45 73,00 Trodte 6,37 0,63 37,00 Sa,07 65,93 477,00 Totale 304,00 383,00 687,00 E j * j / N 304*73/ G.l.(r)*(c) Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 33

34 3. STATISTICA TEST C æ ö ç O è j E j ø j E j ( ) ( ) Poché c cal9.33 < c tab5.99 s coclude che c è legame tra esposzoe e patologa trodea Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 34

35 3..a Cofroto della proporzoe d patologa odulare tra espost e o espost tabella x. Rx Esp. No Rx Esp. Totale Nodul Sa Totale c N( adbc) ( a+ b)( c+ d)( a+ c)( b+ d) ( ) Poché c cal8.64 < c tab3.84 s coclude che c è legame tra esposzoe e patologa odulare trodea Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 35

36 3..b Cofroto della proporzoe d patologa odulare tra espost e o espost test z. 90 x x 0 p p 0.8 p 0.33 q p 0.74 z ( ) ( ) pˆ pˆ p p æ p qç ç è + ö ø æ ç è ö ø 4.3 Essedo z4.3 >.96 s rfuta l potes ulla ð le due proporzo soo dfferet Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 36

37 3.3.a Determazoe dell Odds Rato OR ad / bc 53*40 / 0*37 70 / La radoesposzoe o è fattore d rscho per la patologa odulare trodea 3.3.b Itervallo d cofdeza dell Odds Rato z.96 c preso dal test d sgfcatvtà (ved pag. 35) é æ ê± ç ê ç ë è z c öù ú øú û OR Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero 37

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione

Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione Obettv Statstca Itroduzoe Scopo d quest lucd è d forre cocett base d statstca utl azeda per: la raccolta de dat, la progettazoe degl espermet, l terpretazoe de rsultat. Spazo d probabltà Spazo d probabltà:

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

DISTRIBUZIONE DI STUDENT

DISTRIBUZIONE DI STUDENT Laboratoro d Fsca ( Meccaca e Termodamca a.a. 007/08 F.Balestra PICCOLI CAMPIONI. TET d TUDENT. INTERVALLI d CONFIDENZA: DITRIBUZIONE DI TUDENT 0.4 0. N N N5 N0 N5 N50 0. - 4-4 Itervall cofdeza P[ - μ

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Il modello di regressione multipla

Il modello di regressione multipla S. Borra A. D Cacco Statstca metodologe per le sceze ecoomche e socal McGraw Hll 4 ISBN 88-386-66-6 9 Il modello d regressoe multpla Relazoe statstca modello d regressoe leare multpla omoschedastctà superfce

Dettagli

CONFRONTI TRA RETTE, CALCOLO DELLA RETTA CON Y RIPETUTE, CON VERIFICA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA

CONFRONTI TRA RETTE, CALCOLO DELLA RETTA CON Y RIPETUTE, CON VERIFICA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA APITOLO VII ONFRONTI TRA RETTE, ALOLO DELLA RETTA ON Y RIPETUTE, ON VERIFIA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA 7.. ofroto tra due rette d regressoe co l test t d Studet e calcolo

Dettagli

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA Captolo 9 - Il modello d regressoe leare multpla 9 - IL MODELLO DI REGRESSIONE LINEARE MULTIPLA 9 9. Itroduzoe 9. Il modello d regressoe leare multpla 9.3 Il modello d regressoe leare multpla forma matrcale

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA

RISOLUZIONE ENO 10/2005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA RISOLUZIONE ENO 0/005 GUIDA PRATICA PER LA CONVALIDA, IL CONTROLLO QUALITÀ, E LA STIMA DELL INCERTEZZA DI UN METODO ALTERNATIVO DI ANALISI ENOLOGICA L ASSEMBLEA GENERALE, Vsto l artcolo paragrafo v dell

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche.

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche. I molte crcostaze l rcercatore s trova a dover decdere quale, tra le dverse stuazo possbl rferbl alla popolazoe, è quella meglo sosteuta dalle evdeze emprche. Ipotes statstca: supposzoe rguardate: u parametro

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Il campionamento e l inferenza

Il campionamento e l inferenza e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Statistica per le ricerche di mercato. 10. La regressione lineare semplice

Statistica per le ricerche di mercato. 10. La regressione lineare semplice Statstca per le rcerche d mercato A.A. 0/3 Dr. Luca Secod 0. La regressoe leare semplce Il terme regressoe fu trodotto verso la metà dell Ottoceto dall glese Sr Fracs Galto (8-9) che, e suo stud d eugeetca,

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Capitolo 13 Il modello di regressione lineare

Capitolo 13 Il modello di regressione lineare Captolo 3 Il modello d regressoe leare La fase pù operatva della statstca è dretta alla costruzoe d modell e coè d rappresetazo semplfcate, aalogche e ecessare della realtà attraverso le qual provare a

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale UNIVERSITA DEGLI STUDI DI PERUGIA Dpartmeto d Chmca, Bologa e Botecologe Va Elce d Sotto, 0613 Peruga Corso d Laurea d Sceze bomolecolar e ambetal Laurea magstrale Corso d ANALISI DEI SISTEMI ECOLOGICI

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

CALCOLO DEGLI INDICI STATISTICI

CALCOLO DEGLI INDICI STATISTICI CALCOLO DEGLI INDICI STATISTICI Premessa Le formule d calcolo de prcpal dc statstc (parlamo sostazalmete d meda campoara e varaza campoara) dpedoo dal caso esame qud zamo col fare luce sulla possble casstca.

Dettagli

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Lezioni del Corso di Fondamenti di Metrologia

Lezioni del Corso di Fondamenti di Metrologia Uverstà degl Std d Casso Facoltà d Igegera Lezo del Corso d Fodamet d Metrologa 3. L Icertezza d Msra Uverstà degl Std d Casso Corso d Fodamet d Metrologa Idce. Icertezza d Msra. Propagazoe delle Icertezze

Dettagli

METODOLOGIA SPERIMENTALE IN AGRICOLTURA

METODOLOGIA SPERIMENTALE IN AGRICOLTURA METODOLOGIA SPERIMENTALE IN AGRICOLTURA LABORATORIO DI BIOMETRIA CON R (http://www.r-project.org/) APPUNTI DALLE LEZIONI (bozze Settembre 005) DOCENTE Adrea Oofr Dpartmeto d Sceze Agroambetal e della Produzoe

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb

Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb dage Spermetale d Calrazoe del Metodo Comato Soe Maurzo Lez, Dalo ersar, oerta Zamr 3 Premessa Nell amto delle prove o dstruttve utlzzal per l otrollo opera del alestruzzo trova da tempo mpego l metodo

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA.

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. TE11_st fb - 5/10/007 5/10/007 XI - 1 CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. 11.1 - Itroduzoe. I geerale, parametr caratterstc d ua v.a. (che per o soo l suo valore medo e la sua varaza

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Note di Statistica. ultimo aggiornamento: 15 ottobre CdS in Scienze e Tecniche Psicologiche. a cura di Bruno Bertaccini

Note di Statistica. ultimo aggiornamento: 15 ottobre CdS in Scienze e Tecniche Psicologiche. a cura di Bruno Bertaccini Note d Statstca ultmo aggorameto: 15 ottobre 017 segameto d Statstca (L-Z) CdS Sceze e Tecche Pscologche a cura d Bruo Bertacc Materale ddattco a dsposzoe degl studet, scarcable all drzzo http://local.dsa.uf.t/bertacc

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale .09.06 Statstca Maura Mezzett maura.mezzett@uroma.t Soo dpedet caratter X e? A B Totale X 0 0 0 0 0 0 3 0 0 0 Totale 40 0 50 .09.06 Soo dpedet caratter X e? A B C Totale X 40 0 0 40 0 40 0 60 Totale 40

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli