STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) ="

Transcript

1 STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali che l integrale R reali. Osserviamo che ln t dt. ln t. Per definizione, Dom(f) èl insiemedei g(t) dt esista, eventualmente come integrale improprio, ed assuma valori Dom(g) ={t (0, +) : t 6= 0e t 6=} = t (0, +) : t /{,, 3} = t (0, +) : t/{, p, p 3} =(0, ) [ (, p ) [ ( p, p 3) [ ( p 3, +) echel estremofisso (0, ). Poiché g è continua nel proprio dominio, in quanto rapporto di due funzioni continue (il logaritmo naturale e la funzione composta di un polinomio con il valore assoluto e con il logaritmo naturale), ne segue che (0, ) Dom(f). Si noti anche che, se <0, l integrale R g(t) dt non esiste, neanche come integrale improprio, perché l intervallo di integrazione [, ] contiene un intervallo, con interno non vuoto (ossia non ridotto ad un punto), in cui la funzione g non è definita (e cioè l intervallo [, 0]); perciò Dom(f) [0, +). Si ha dunque che (0, ) Dom(f) [0, +). Ricordiamo anche che, essendo f una funzione integrale, Dom(f) è un intervallo. Stabiliamo innanzitutto se 0 Dom(f); ciò equivale a stabilire se l integrale improprio R 0 g(t) dt converge (o, equivalentemente, se converge l integrale improprio R 0 g(t) dt). Poiché = e ln t =ln(> 0), ne segue che g(t) = ; inoltre, g(t) è infinita, t!0 + t!0 + t!0 + per t! 0 +, dello stesso ordine rispetto a, e quindi di ordine inferiore a per ogni (0, +). In particolare, quindi, g(t) è infinita, per t! 0 +, di ordine inferiore ad (< ); ma allora l integrale improprio R g(t) dt converge, e quindi 0 Dom(f). Perciò 0 [0, ) Dom(f) [0, +). Ora stabiliamo se Dom(f), e cioè se converge l integrale improprio R g(t) dt. Calcoliamo (se esiste) t! Per ogni t [, ), (.) g(t) = g(t). Osserviamo che t! ln t = ln( t ) = ln[ + ( Per un noto ite notevole, otteniamo che Perciò t! t! t! t =0= t! ln t (forma indeterminata 0 0 ). apple t )] = t t t ln( t ) t apple t = t ln( t ). t + =. Inoltre, poiché t! ( t ) =, dallo stesso ite notevole t ln( t ) = ( t ) t! ln( t = ) h t! ln( t ) ( t ) i =. g(t) =, e quindi l integrale improprio R g(t) dt converge; allora Dom(f). Quindi [0, ] Dom(f) [0, +).

2 Ora stabiliamo se Dom(f) contiene punti a destra di. Essendo g continua in (, p ), è verificata una delle due seguenti condizioni: i) l integrale improprio R g(t) dt converge per ogni (, p ); ii) l integrale improprio R g(t) dt non converge per nessun valore di in (, p ). Se è verificata la i), allora Dom(f) (, p ); se invece è verificata la ii), allora Dom(f) non contiene nessun punto di (, p ), e quindi, essendo un intervallo, non contiene punti in (, +). Per capire quale sia verificata tra la i) e la ii), calcoliamo (se esiste) g(t). Scomponendo g(t) (con t! + t (, p )) come in (.), ed utilizzando lo stesso ite notevole, otteniamo che anche t! + g(t) = ; allora l integrale improprio R g(t) dt converge 8 (, p ), e cioè vale la i). Perciò Dom(f) (, p ), e quindi [0, p ) Dom(f) [0, +). Ora stabiliamo se p Dom(f), e cioè se converge l integrale improprio R p g(t) dt. Calcoliamo (se esiste) = ln e t! p t! p g(t). Poiché t! p t! p ln t =, ne segue che g(t) = 0; perciò l integrale improprio R p g(t) dt converge, e quindi p Dom(f). Dunque [0, p ] Dom(f) [0, +). Ora stabiliamo se Dom(f) contiene punti a destra di p. Essendo g continua in ( p, p 3), è verificata una delle due seguenti condizioni: I) l integrale improprio R p g(t) dt converge per ogni ( p, p 3); II) l integrale improprio R p g(t) dt non converge per nessun valore di in ( p, p 3). Se è verificata la I), allora Dom(f) ( p, p 3); se invece è verificata la II), allora Dom(f) non contiene nessun punto di ( p, p 3), e quindi, essendo un intervallo, non contiene punti in ( p, +). È immediato osservare che anche t! p g(t) = 0; ma allora l integrale improprio R p g(t) dt converge + 8 ( p, p 3), e cioè vale la I). Si ha dunque che Dom(f) ( p, p 3), e di conseguenza [0, p 3) Dom(f) [0, +). Ora stabiliamo se p 3 Dom(f), e cioè se converge l integrale improprio R p 3 g(t) dt. Calcoliamo (se esiste) g(t). Poiché = ln 3 (> 0) e ne segue che ln t =ln(t )! g(t) = ; allora determiniamo (se esiste) l ordine di infinito di g per t! p 3. Dal ite notevole (già utilizzato in precedenza) ln y y! y 0, = otteniamo che = ln(t ) (t ) = ln(t ) t 3 = (t ln(t ) p p. 3)(t + 3) Poichè (t + p 3) = p 3( R \{0}), ne segue che ln t è infinitesima di ordine per t! p 3,edi conseguenza g è infinita di ordine per t! p 3. Ma allora l integrale improprio R p 3 g(t) dt non converge. Più precisamente, si ha che (.)! p 3 Z g(t) dt =.

3 Perciò p 3 / Dom(f); essendo Dom(f) un intervallo, ne segue che Dom(f) non contiene punti a destra di p 3. Ma allora. Continuità. Dom(f) =[0, p 3). Essendo una funzione integrale, f è continua nel suo dominio, e quindi in [0, p 3). 3. Limiti negli estremi del dominio che non appartengono a Dom(f). Da (.) otteniamo che 4. Derivabilità.! p 3 f() =. Dato che g è continua nel proprio dominio, ne segue che f è derivabile in Dom(f) \ Dom(g) =(0, ) [ (, p ) [ ( p, p 3); inoltre, f 0 () =g() = ln ln 8 (0, ) [ (, p ) [ ( p, p 3). In realtà la funzione g è di classe C nel proprio dominio, in quanto rapporto di due funzioni di classe C, equindif 0 è di classe C in (0, ) [ (, p ) [ ( p, p 3); ma allora anche f è di classe C in (0, ) [ (, p ) [ ( p, p 3). Ora studiamo la derivabilità di f nei rimanenti punti di Dom(f), e cioè in 0, e p. In ciascuno di questi tre punti, la funzione f è continua (cf. punto ). Poiché g = f 0, per quanto provato al punto si ha inoltre che f 0 () =, f 0 () =!0 +! e! p f 0 () =0. Da un noto corollario del teorema di Lagrange segue allora che f non è derivabile in 0, mentre è derivabile sia in che in p ; inoltre, f 0 () = e f 0 ( p ) = 0. Quindi, ricapitolando: f è derivabile in (0, p 3) (anzi, f è di classe C in (0, p 3), visto che f 0 è continua anche in e in p ) e non è derivabile in 0; inoltre, >< (4.) f 0 () = 5. Monotonia ed estremi relativi e assoluti. 8 >: ln ln( ) se (0, ) [ (, p ) se = 0 se = p ln ln( ) se ( p, p 3). Osserviamo che: (0, ) =) < =) > =) ln( ) > 0=) ln ln( ) (, p ) =) > =) < =) ln( ) < 0=) ln ln( ) ( p, p 3) =) < 3=) < =) ln( ) < 0=) ln ln( ) < 0 (dato che ln <0); < 0 (dato che ln >0); < 0 (dato che ln >0). Da (4.) segue allora che f 0 () < 0 8 (0, p ) [ ( p, p 3). Perciò f è strettamente decrescente in [0, p 3). Di conseguenza, f ammette massimo assoluto e l unico punto di massimo assoluto è 0; non esistono altri punti di estremo relativo. In particolare, f non ammette minimo assoluto. 6. Zeri e segno di f. È immediato osservare che f( ) = 0. Essendo f strettamente decrescente, è anche l unico zero di f; inoltre, f() > 0 8 [0, ) f() < 0 8 (, p 3). 7. Derivabilità fino all ordine. Come già osservato al punto 4, f è di classe C, e cioè ammette derivate di ogni ordine, in (0, ) [ (, p ) [ ( p, p 3). Da (4.) si ricava che

4 8 >< (7.) f 00 () = >: ln( ) ln + [ln( )] = ln( ) ln [ln( )] = ln( ) + ln ( )[ln( )] se (0, ) [ (, p ) ln( ) ln ( )[ln( )] se ( p, p 3). Ovviamente, in 0 la funzione f non ammette derivata seconda, visto che non ammette neanche la derivata prima; studiamo allora l esistenza della derivata seconda in ed in p. In ciascuno dei due punti f 0 è continua (cf. punto 4), e quindi può essere utile studiare il ite di f 00 (per applicare il corollario del teorema di Lagrange che abbiamo già utilizzato al punto 4). Calcoliamo (se esiste)! f 00 (). Per ogni (0, ) [ (, p ), si ha che f 00 () = ( )ln( )+ ln ( )[ln( )] (forma indeterminata 0 0 per! ). Poiché! ( ) =, ne segue che (7.)! f 00 () 9 () 9! ( )ln( )+ ln [ln( )] ; inoltre, in tal caso, i due iti coincidono. Vediamo se la regola di De L Hôpital è applicabile alla forma indeterminata ( )ln( )+ ln [ln( )] (del tipo 0 0,per! ). Siano rispettivamente N, D :(0, p )! R il numeratore ed il denominatore di quest ultima frazione. Allora N() =( )ln( )+ ln, D() =[ln( )] 8 (0, p ). Osserviamo che N e D sono entrambe infinitesime per! e derivabili in (0, p ); inoltre, per ogni (0, p ) si ha che N 0 () = ln( )+( ) +4ln + e D 0 () =ln( ) Pertanto N 0 () ln( D 0 () =( )+4ln ) 4 ln( ) Essendo! ln! ln( ) = ( )ln( )+ ln = ln( ) +4 ln + = ln( )+4 ln = 4 ln( ) (6= 0se 6= ). =( ) ln ln( ) 8 (0, ) [ (, p ). N (cf. punto ), ne segue che 0 ()! D 0 () = e quindi, per la regola di De L Hôpital, f 00 () =. Perciò, per il corollario! =. Da (7.) otteniamo che allora anche [ln( )] di cui sopra del teorema di Lagrange, f ammette derivata seconda in e f 00 () =. Ora calcoliamo (se esiste) f 00 (). Osserviamo che!! p! p 0 + equindi! p Dal ite notevole t!0 + t =0(per >0) segue inoltre che ( )[ln( )] = ln( )= ; di conseguenza,! p h ( ) ln( )i! 0 +! p ln( ) = 0.

5 e quindi, dato che che! p! p ln = p ln(> 0),! p ln ( )[ln( )] =+. Da(7.) otteniamo dunque f 00 () =+. Dal corollario del teorema di Lagrange segue allora che f 0 non ammette derivata destra in p ; perciò f 0 non è derivabile in p, e cioè f non ammette derivata seconda in p. Quindi, ricapitolando: f ammette derivata seconda in (0, p ) [ ( p, p 3) (anzi, f è di classe C in (0, p ) [ ( p, p 3), visto che f 00 è continua anche in ) e non ammette derivata seconda né in 0 (punto in cui non è neanche derivabile) né in p ; inoltre, 8 ( )ln( )+ ln >< ( )[ln( )] se (0, ) [ (, p ) (7.3) f 00 () = se = ( >: ) ln( ) ln ( )[ln( )] se ( p, p 3). 8. Convessità, concavità e flessi. Studiamo il segno di f 00 in (0, p ). Da (7.3) segue che f 00 N() () = per ogni (0, ) [ (, p ), dove N :(0, p )! R è l a ( )[ln( )] funzione definita al punto 7. Poiché ( )[ln( )] > 0 8 (0, ) [ (, p ), se (0, ) [ (, p ) il segno di f 00 () coincide con quello di N(). Come osservato al punto 7, N è derivabile in (0, p ) e N 0 () = ln( )+4ln 8 (0, p ). Allora N 0 (0) = 0; inoltre: ln <0 (0, ) =) ln( ) > 0 =) N 0 () < 0; (, p ln >0 ) =) ln( ) < 0 =) N 0 () > 0. Perciò N è strettamente decrescente in (0, ] e strettamente crescente in [, p ), e quindi ha un unico punto di minimo assoluto in ; poiché N() = 0, ne segue che N() > 0 8 (0, ) [ (, p ), e quindi f 00 () > 0 8 (0, ) [ (, p ). Essendo f 00 () =, si ha allora che f 00 () > 0 8 (0, p ); pertanto f è convessa in (0, p ). Ora studiamo il segno di f 00 in ( p, p 3). Poiché, 8 ( p, p 3), si ha che > 0equindi( )[ln( )] > 0, da (7.3) segue che, se ( p, p 3), il segno di f 00 () coincide con quello di ( ) ln( ) ln. Osserviamo che ( p, p 3) =) 8 >< (0, ) ln( ) < 0 >: ln >0 =) ( ) ln( ) ln <0. Pertanto f 00 () < 0 8 ( p, p 3), e quindi f è concava in ( p, p 3). Infine, dato che f è derivabile in (0, p 3), convessa in (0, p ) e concava in ( p, p 3), si ha che p èun punto di flesso discendente per f. 9. Asintoti. Dal punto 3 segue che la retta di equazione = p 3 è un asintoto verticale (sinistro) per f. Dato che Dom(f) è itato, ovviamente non possono esservi né asintoti orizzontali né asintoti obliqui.

6 Il grafico di f,6, 0,8 0,4 / 3 -,6 -, -0,8-0,4 0 0,4 0,8,,6,4,8-0,4-0,8 -,

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010 Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Esercitazioni di Analisi Matematica 1

Esercitazioni di Analisi Matematica 1 Esercitazioni di Analisi Matematica Corso di laurea in Ingegneria Clinica. A.A. 2008-2009 Soluzioni Foglio 2 Buona lettura. Un caffè a chi trova degli errori nelle mie correzioni o chi apporta delle migliorie

Dettagli

07 - Derivate ed applicazioni del calcolo differenziale

07 - Derivate ed applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 07 - Derivate ed applicazioni del calcolo differenziale Anno Accademico

Dettagli

Lezione 3 (2/10/2014)

Lezione 3 (2/10/2014) Lezione 3 (2/10/2014) Esercizi svolti a lezione Esercizio 1. Tracciando un grafico approssimativo, discutere qualitativamente l esistenza di radici reali dei seguenti polinomi, al variare del parametro

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di Analisi Matematica I a.a. -4. Prove scritte e risoluzioni. Pro. Paola Loreti e Daniela Sforza - Determinare il dominio di denizione e calcolare la derivata della funzione f() = e ; + log(log ) Per determinare

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

5.1 Derivata di una funzione reale di variabile reale

5.1 Derivata di una funzione reale di variabile reale CAPITOLO 5 Calcolo differenziale 5.1 Derivata di una funzione reale di variabile reale Sia data la funzione f : X Y, e sia 0 X. Se la variabile indipendente passa dal valore 0 al valore 0 +, con molto

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 15-16) 11 novembre 2015 Compito ) L'insieme evidenziato in rosso nella figura che segue è. ). Posto si ha che può

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: DISCIPLINA: MATEMATICA ORE SETT.LI: 4 CLASSE: IV SIA

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: DISCIPLINA: MATEMATICA ORE SETT.LI: 4 CLASSE: IV SIA ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Applicazioni delle derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Esercizio Un area rettangolare deve essere recintata usando

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Funzioni: studio di funzione e grafico

Funzioni: studio di funzione e grafico Capitolo Funzioni: studio di funzione e grafico Esercizi Esercizio.. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti condizioni: Il dominio di f è l i n s i e m e A =(, )

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( + e) se e < < 0 f ( ) = ( + b) e + a se

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale.

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale. DERIV AT E Il concetto di derivata di una funzione, è scaturito dal celebre problema della ricerca delle tangenti ad una curva in un suo punto, che ha lungamente impegnato i matematici prima di Newton

Dettagli

ORDINAMENTO 2001 QUESITO 1 QUESITO 2

ORDINAMENTO 2001 QUESITO 1 QUESITO 2 www.matefilia.it ORDINAMENTO 2001 QUESITO 1 Indicata con f(x) una funzione reale di variabile reale, si sa che f(x) l per x a, essendo l ed a numeri reali. Dire se ciò è sufficiente per concludere che

Dettagli

5. Massimi, minimi e flessi

5. Massimi, minimi e flessi 1 5. Massimi, minimi e flessi Funzioni crescenti e decrescenti A questo punto dovremmo avere imparato come si calcolano le derivate di una funzione razionale fratta, ma dobbiamo capire in che modo queste

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Equazioni e disequazioni polinomiali

Equazioni e disequazioni polinomiali Equazioni e disequazioni polinomiali Esercizio. Risolvere la seguente equazione: 3 5 + =. Svolgimento. Poiché il discriminante è positivo esistono due soluzioni distinte. Applicando la formula per le equazioni

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Soluzioni Analisi Matematica

Soluzioni Analisi Matematica Soluzioni Analisi Matematica Avvertenze per l uso Queste soluzioni vengono fornite in un documento a parte, perché vanno usate nella maniera giusta. Maniera giusta significa che gli esercizi vanno fatti

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Derivate. Capitolo Cos è la derivata?

Derivate. Capitolo Cos è la derivata? Capitolo 8 Derivate 8.1 Cos è la derivata? Consideriamo una funzione y f(x) e disegnamo il suo grafico. Sia x 0 nel dominio di f e consideriamo il punto (x 0, f(x 0 )) del grafico. Vogliamo determinare

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE Classe V H INSEGNANTE: Marco Cerciello Testo: Matematica a colori vol. 5 ed. Petrini Concetto di unzione di variabile reale FUNZIONI REALI DI VARIABILE REALE Rappresentazione analitica di una unzione,

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Funzioni convesse su intervallo

Funzioni convesse su intervallo Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico

Dettagli