Trasformate al limite

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trasformate al limite"

Transcript

1 Bozza Data 6/0/007 Trasormate al limite La unzione generalizzata delta di Dirac Funzioni, unzionali e distribuzioni Prima di deinire la delta di Dirac conviene ricordare le seguenti deinizioni: unzione ordinaria: associa ad un numero un altro numero ed uno soltanto (ad esempio la unzione coseno); unzionale: associa ad una unzione un numero (ad esempio il valore medio); operatore associa ad una unzione un'altra unzione (ad esempio l operatore derivata). Ciò premesso le distribuzioni, o unzioni generalizzate, sono dei unzionali dotati delle proprietà di essere lineari e continui, operanti su delle unzioni dotate di particolari proprietà di regolarità dette unzioni di prova [,]. Il numero che una distribuzione T associa alla unzione di prova ϕ è indicato con < ϕ,t>. Si noti che < > è lo stesso simbolo utilizzato normalmente per il prodotto scalare, o prodotto interno, di due unzioni ordinarie. Deinizione La distribuzione delta di Dirac, non è unzione ordinaria ma appartiene alla categoria delle distribuzioni, ovvero alle unzioni generalizzate. In particolare, data una unzione x(t) continua in t=0 (unzione di prova), la distribuzione δ associa ad essa il valore x(0), ovvero campiona la unzione x(t) nell origine < x, δ >= x( o) (.) Analogamente si può deinire la distribuzione δ t0 come la distribuzione che associa a x(t) continua in t 0 il valore x(t o ), ovvero che campiona la unzione in t 0 < x, δ >= x( t ) (.) t0 o Le deinizioni ora date risultano utilissime per ricavare in modo rigoroso alcune ondamentali proprietà. Tuttavia, prima di procedere è necessario introdurre una diversa rappresentazione simbolica, utilizzatissima in letteratura per la sua comodità, anche se intrinsecamente ambigua. Rappresentazione simbolica e valutazione come limite in senso integrale Il valore x(0) di una unzione x(t) continua nell origine può essere ricavato anche acendo ricorso a amiglie di unzioni ausiliarie (t). In particolare se vale la seguente espressione x( o) = lim x( t) ( t) (.3)

2 Bozza Data 6/0/007 si suole indicare δ ( t) = lim ( t) (.4) da interpretare non in senso ordinario, ma in senso integrale, ovvero sulla base della seguente δ = x( t) ( t) lim x( t) ( t) (.5) Al contrario, se il limite (.4) osse interpretato in senso ordinario, il primo membro della (.5) si annullerebbe, mentre invece si deve avere x(0) = x( t) δ ( t) (.6) Conrontando inine l espressione sopra con la deinizione di distribuzione delta si ha < x, δ >= x( o) = x( t) δ ( t) (.7) La prima uguaglianza rappresenta la deinizione della distribuzione δ, la seconda un modo alternativo di ottenere il medesimo risultato, utile perché permette di operare con il simbolo δ(t) in modo analogo ad una unzione ordinaria. Si noti inoltre la corrispondenza ormale ra il simbolo <> e l integrale a destra, identico al prodotto interno di due unzioni. Nel seguito utilizzeremo entrambe le uguaglianze a seconda delle convenienza. Quanto detto si estende ovviamente anche alle distribuzioni delta ritardate, per le quali t0 0 δ 0 0 (.8) < x, δ >= x ( t ) = x ( t ) ( t t ) = lim x ( t ) ( t t ) Fra le amiglie di unzioni ausiliarie (t) si ricorda, per il suo immediato signiicato intuitivo, l impulso rettangolare di durata ed ampiezza / (intensità unitaria), nel seguito indicato con D(t, ). Alcune proprietà Parità x( t) δ ( t to) = x( t) δ ( to t) (.9) ( ) ( ) lim ( ) (, ) lim ( ) ( ) to x t δ to t = x t D to t = x t = x to to (.0) Convoluzione La unzione generalizzata delta rappresenta l elemento neutro dell integrale di convoluzione

3 Bozza Data 6/0/007 x( t) = x( τ ) δ ( t τ ) dτ = x( t)* δ ( t) (.) E suiciente sostituire t con τ, e t o con t, nella (.0) Vale anche la seguente x( t t ) = x( t)* δ ( t t ) (.) 0 0 la cui dimostrazione è immediata. Cambio di argomento δ ( t) δ ( αt) = α 0 (.3) α δ ( ξ ) δ ( t) δ ( αt) = dξ = α α (.4) La presente proprietà risulta utile nel passaggio dalle descrizioni nelle pulsazioni a quelle in requenza, o viceversa, per le quali vale la seguente δ ( ) δ ( ω) = δ ( π ) = (.5) π Trasormata di Fourier δ j t ( t) e ω = (.6) Dalla espressione sopra deriva che la trasormata di una delta nell origine dei tempi corrisponde ad una costante nel dominio delle requenze. Immediata dalla deinizione di distribuzione, in quanto la unzione esponenziale campionata nell origine vale. Veriica Si noti, come veriica, che lo steso risultato poteva essere ottenuto utilizzando la unzione ausiliaria D(t, ). Ricordando che ω sin F D t = (.7) j [ (, )] e ω si ha ω 3

4 Bozza Data 6/0/007 [ ] jωt lim D( t, ) e = lim F D( t, ) = (.8) Gradino unitario t U ( t) = δ ( τ ) dτ (.9) La unzione U(t), o gradino unitario è deinita dalla seguente 0 < t U ( t) = 0 0 > t (.0) Una possibile dimostrazione si basa sull introduzione della seguente unzione ausiliaria aux( τ ) = 0 τ < t τ > t (.) che permette di riscrivere la (.9) in modo da avere di nuovo il limite superiore ad ininito, permettendo di dimostrare il risultato t 0 < t δ ( τ ) = aux( τ ) δ ( τ ) dτ = aux(0) = 0 0 > t (.) Altre relazioni con le unzioni a gradino Operando ormalmente sulla (.9), come se rappresentasse un integrale ordinario si ottiene, du ( t) = δ ( t) (.3) Si noti tuttavia che entrambi i membri sono da intendersi nel senso delle distribuzioni, ovvero che du ( t) < x( t), >=< x( t), δ ( t) >= x( o) (.4) Per il gradino ritardato si ha: t t0 ( 0) δ ( τ ) U t t = dτ (.5) du ( t t0) = δ ( t t0) (.6) Proprietà analoghe valgono anche per altri tipi di gradino, ra cui il gradino (t) 4

5 Bozza Data 6/0/ < t ( t) = = U ( t) 0 > t (.7) e la unzione segno + 0 < t sign( t) = = U ( t) = ( t) 0 > t (.8) Trasormata di Fourier di unzioni periodiche La trasormata di Fourier di unzioni periodiche non esiste nell ambito delle unzioni ordinarie, mentre esiste lo sviluppo in serie di Fourier. Sarebbe tuttavia utile, per non dovere duplicare ogni dimostrazione, poter deinire una trasormata di Fourier anche per le unzioni periodiche. Ciò è possibile utilizzando le distribuzioni, o unzioni generalizzate, ed in particolare la distribuzione δ. La trattazione può essere atta utilizzando sia le pulsazioni che le requenze, tuttavia quest ultima è spesso preerita nella redazione di tabelle riassuntive di trasormate notevoli perché consente una maggiore simmetria dei risultati. Trasormate nelle requenze anziché nelle pulsazioni Dato che in letteratura vengono utilizzate sia le rappresentazioni nelle pulsazioni che nelle requenze, conviene avere un minimo di amiliarità con entrambe. A questo scopo si ricordano le deinizioni di trasormata nelle requenze (indicata qui con un pedice ) ed antitrasormata jπ t X ( ) = x( t) e jπ t x( t) = X ( ) e d (.9) Vale la seguente relazione ra trasormate nelle requenze e trasormate nelle pulsazioni X ( ) = X ( π ) = X ( ω) (.30) Trasormate elementari La trasormata di una costante nei tempi è una delta nell origine delle requenze. La trasormata di un esponenziale nei tempi è una delta ritardata. Utilizzando le requenze si ha: F [ ] = δ ( ) F e = δ jπ 0t [ ] ( 0) (.3) Queste proprietà non sono ottenute in modo diretto, applicando la trasormata al primo membro, ma in maniera inversa, cioè inserendo i secondi membri nelle ormule di antitrasormazione: 5

6 Bozza Data 6/0/007 δ e jπ t ( ) δ ( ) d = jπ t jπ 0t 0 e d = e (.3) Allo stesso modo utilizzando le pulsazioni si ha [ ] F = πδ ( ω) F e ω = πδ ω ω j 0t [ ] ( 0) (.33) Inatti: π π + jω t πδ ( ω) e dω = jωt πδ ( ω ω ) e dω = e 0 jω0t (.34) Si noti che le (.33) potevano essere dedotte immediatamente dalle (.3) utilizzando la (.5), e viceversa. Dalla conoscenza delle trasormate elementari si possono ricavare immediatamente le trasormate dei segnali periodici, per cui ci limitiamo a riportare i risultati. Trasormata di un segnale sviluppabile in serie di Fourier jn ot x( t) = c e ω (.35) n= n X ( ω) = c πδ ( ω nω ) n 0 (.36) n= nδ 0 (.37) n= X ( ) = c ( n ) Trasormata del coseno jωot jωot e + e cosω0t = (.38) X ( ω) = δ ( ω ωo) π + δ ( ω + ωo)π (.39) X ( ) = δ ( o) + δ ( + o) (.40) Trasormata del seno jωot jωot e e sinω0t = j (.4) 6

7 Bozza Data 6/0/007 X ( ω) = δ ( ω ωo) π + δ ( ω + ωo)π = j j = j δ ( ω ωo) π + j δ ( ω + ωo)π (.4) X ( ) = j δ ( o) + j δ ( + o) (.43) Trasormata di Fourier delle unzioni gradino A partire dalla trasormata del gradino (t) (ormula non dimostrata) F [ ( t) ] = (.44) jω Dalle deinizioni Errore. L'origine rierimento non è stata trovata. e Errore. L'origine rierimento non è stata trovata. si ha rispettivamente [ ( )] F U t [ ( )] F sign t πδ ( ω) = + (.45) jω = (.46) jω Analogamente per le trasormate nelle requenze si ha (basta sostituire come al solito a ( ω) = ( ) / π ). F F F [ ( t) ] [ U ( t) ] [ sign( t) ] = jπ (.47) δ ( ) = + (.48) jπ = jπ (.49) Trasormata di Fourier di un integrale Poiché t (.50) y( t) = x( ξ ) dξ = x( ξ ) U ( t ξ ) dξ = x( t)* U ( t) Trasormando il prodotto di convoluzione e acendo uso della (.45) si ottiene dalla l espressione generale della trasormata di un integrale, X ( ω) πδ ( ω) X ( ω) X ( ω) πδ ( ω) X (0) Y ( ω) = X ( ω) F[ U ( t)] = jω + = jω + (.5) 7

8 Bozza Data 6/0/007 Si noti che l espressione sopra si riduce alla nota Y ( ω) = X ( ω) / jω per X(0)=0. Analogamente per le trasormate in requenza si ha: X ( ) δ ( ) X (0) Y ( ) = + (.5) jπ Bibliograia [] Gian Carlo Corazza, Campi Elettromagnetici, Zanichelli, [] E.Belardinelli, C. Bonivento, Teoria delle distribuzioni Patron, 968 8

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Introduzione alla δ di Dirac

Introduzione alla δ di Dirac UniPD Facoltà di Ingegneria a.a. 04-05 Insegnamento di SEGNALI E SISTEMI (ALSI - Finesso) Introduzione alla δ di Dirac La δ di Dirac è uno strumento matematico di grande utilità nello studio di segnali

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento

Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento Docente:Alessandra Cutrì Derivata distribuzionale Vogliamo estendere il concetto di derivata alle distribuzioni

Dettagli

LA TRASFORMATA DI FOURIER, PROPRIETA ED ESEMPI (2) 12 Fondamenti Segnali e Trasmissione

LA TRASFORMATA DI FOURIER, PROPRIETA ED ESEMPI (2) 12 Fondamenti Segnali e Trasmissione LA RASFORMAA DI FOURIER, PROPRIEA ED ESEMPI () Fondamenti Segnali e rasmissione Proprieta della DF (5) Moltiplicazione nelle requenze: la DF inversa del prodotto delle DF di due segnali e uguale all integrale

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

Ripasso tramiti esempi - Applicazioni lineari e matrici

Ripasso tramiti esempi - Applicazioni lineari e matrici Ripasso tramiti esempi - Applicazioni lineari e matrici Applicazioni lineari associata ad una matrice Avete imparato che data una matrice A K m,n esiste una applicazione lineare associata ad A. Ma come

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

PDSS Rev0 - Thermidor Technologies - Pagina 1. La dissipazione di un amplificatore

PDSS Rev0 - Thermidor Technologies - Pagina 1. La dissipazione di un amplificatore PDSS Rev0 - Thermidor Technologies - Pagina 1 La dissipazione di un amplificatore PDSS Rev0 - Thermidor Technologies - Pagina 1 INDICE INDICE... 1 1. INTRODUZIONE... 2 2. LA STADIO FINALE... 2 3. Potenza

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE Classe V H INSEGNANTE: Marco Cerciello Testo: Matematica a colori vol. 5 ed. Petrini Concetto di unzione di variabile reale FUNZIONI REALI DI VARIABILE REALE Rappresentazione analitica di una unzione,

Dettagli

Lezione 2: rappresentazione in frequenza

Lezione 2: rappresentazione in frequenza Segnali a potenza media finita e conversione A/D Lezione : rappresentazione in frequenza Generalità Spettro di potenza e autocorrelazione Proprietà dello spettro di potenza Larghezza di banda Spettri mutui

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

( ) = f ( x ) o. ( ) = f ( x ). Per convenzione, davanti al periodo, utilizzeremo sempre il segno +. Il periodo di una funzione. prof. D.

( ) = f ( x ) o. ( ) = f ( x ). Per convenzione, davanti al periodo, utilizzeremo sempre il segno +. Il periodo di una funzione. prof. D. Il periodo di una funzione prof. D. Benetti Definizione 1: Sia f :D R una funzione, D R e sia T un numero reale positivo. Si dice che f è periodica di periodo T se, per ogni x D e per ogni k Z, si ha (

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Esercizi per il corso di Fondamenti di Automatica I

Esercizi per il corso di Fondamenti di Automatica I Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt

Dettagli

= Acos ω 0 t B sinω 0 t (2)

= Acos ω 0 t B sinω 0 t (2) Un vettore complesso è un ente che rappresenta una grandezza vettoriale che varia sinusoidalmente nel tempo. Consideriamo infatti un vettore e(t) che vari sinusoidalmente nel tempo. In tal caso le tre

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

5. Concetto di funzione. Dominio e codominio.

5. Concetto di funzione. Dominio e codominio. 5. Concetto di unzione. Dominio e codominio. Intro (concetto intuitivo) Che cosa e una unzione? Esempi di unzioni? Concetto di unzione Il concetto di unzione è legato all esistenza di una relazione tra

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità.

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità. PROF.SSA MAIOLINO D. TEORIA SULLE DERIVATE SECONDA CONTINUITA DELLE FUNZIONI DERIVABILI Se una unzione y( è derivabile in un punto 0, allora è continua in 0. La condizione di continuità di una unzione

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Risposta al gradino di un sistema del primo ordine

Risposta al gradino di un sistema del primo ordine 0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

CENNI SULLE VARIABILI ALEATORIE INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ

CENNI SULLE VARIABILI ALEATORIE INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ CENNI SULLE VARIABILI ALEATORIE... 1 INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ... APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ... 3.1 Teorema della probabilità dell evento complementare... 3. Teorema

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,.

VETTORI. Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. 2/6 NOTAZIONE DI DIRAC 11/12 1 VETTORI Finora abbiamo considerato uno spazio di Hilbert H con elementi f, g,... tra i quali è definito un prodotto scalare indicato con il simbolo,. È possibile costruire

Dettagli

Trasformata e Antitrasformata di Laplace

Trasformata e Antitrasformata di Laplace March 8, 26 Trasformata e Antitrasformata di Laplace Orlando Ragnisco Dipartimento di Fisica, Università di Roma TRE Via della Vasca Navale 84, I-146-Roma, Italy 1 Trasformata di Laplace: definizione e

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà Circuiti C Carica e scarica del condensatore (solo le formule) Consideriamo un condensatore di capacità C collegato in serie ad una resistenza di valore. I due elementi sono collegati ad una batteria che

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

f h (x) = 1 h χ [0,h) (x). 1 e hs L[f h ](s) = hs

f h (x) = 1 h χ [0,h) (x). 1 e hs L[f h ](s) = hs CAPITOLO 6 Complementi In questo capitolo trovano posto, in maniera sintetica, risultati su vari temi che non rientrano nella linea principale di sviluppo scelta per gli argomenti trattati. Sono comunque

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

CAMPO MAGNETICO ROTANTE

CAMPO MAGNETICO ROTANTE Università degli studi di Pisa FACOLTÀ DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Elettrica DISPENSE DI MACCHINE ELETTRICHE TRATTE DAL CORSO TENUTO DAL PROF. OTTORINO BRUNO CAMPO MAGNETICO ROTANTE

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

1 La funzione logaritmica

1 La funzione logaritmica Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

20 + 2y = 60 2y y = 10

20 + 2y = 60 2y y = 10 Esercizio 7.1 Il testo dell esercizio richiede di calcolare il prezzo ottimale per l impresa in concorrenza monopolistica (noto questo prezzo, è infatti possibile calcolare la variazione di prezzo richiesta).

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

Coseno, seno, e pi greco

Coseno, seno, e pi greco L. Chierchia. Dipartimento di Matematica e Fisica, Università Roma Tre 1 Coseno, seno, e pi greco In queste note daremo una presentazione analitica e autocontenuta della definizione e delle proprietà fondamentali

Dettagli

Il criterio di Nyquist

Il criterio di Nyquist 0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

RM Formazione dell immagine

RM Formazione dell immagine RM Formazione dell immagine Marco Serafini m.serafini@ausl.mo.it FUNZIONE, VARIABILE e DOMINIO Funzione: y = f(x) y = variabile dipendente x = variabile indipendente Esempio: Rappresentazione grafica:

Dettagli

Macchine ricorsive lineari: alcune applicazioni

Macchine ricorsive lineari: alcune applicazioni Macchine ricorsive lineari: alcune applicazioni Marcello Colozzo http://www.extrabyte.info Le macchine ricorsive lineari hanno un costo computazionale molto basso, giacchè il corrispondente sistema dinamico

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

Esercizi svolti di Teoria dei Segnali

Esercizi svolti di Teoria dei Segnali Esercizi svolti di eoria dei Segnali Enrico Magli, Letizia Lo Presti, Gabriella Olmo, Gabriella Povero Versione. Prefazione A partire dall anno accademico 5/6 viene fornita agli studenti dei corsi di eoria

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI

Dettagli

FILTRI ANALOGICI L6/1

FILTRI ANALOGICI L6/1 FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Fondamenti di elaborazione numerica dei segnali

Fondamenti di elaborazione numerica dei segnali Esercizi per la I prova in itinere del corso: Fondamenti di elaborazione numerica dei segnali. Trasformata z di una sequenza illimitata causale Si consideri la sequenza causale ) 3 n x n = e i π 3 n, n

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli