RISOLUZIONE DI SISTEMI LINEARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RISOLUZIONE DI SISTEMI LINEARI"

Transcript

1 RISOLUZIONE DI SISTEMI LINEARI

2 Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione di un sistema di equazioni lineari, è necessario disporre di metodi, algoritmi e software efficienti

3 Algebra lineare numerica 2 Esempio Risolviamo il sistema: 10x 1 +x 2 5x 3 = 1 20x 1 +3x 2 +20x 3 = 2 5x 1 +3x 2 +5x 3 = 6 Uno dei metodi di risoluzione piú noti è il metodo di Cramer passo 1: calcolo di = = 10 ( )+20 ( )+5 ( ) = 125 =

4 Algebra lineare numerica 3 passo 2: calcolo della soluzione: x 1 = = 1 x 2 = = 2 x 3 = = 1.4

5 Algebra lineare numerica 4 Calcolo delle operazioni effettuate M = numero di moltiplicazioni A = numero di addizioni passo 1 (calcolo di un determinante di ordine 3): 9M + 5A passo 2 (calcolo di 3 determinanti di ordine 3 ed esecuzione di 3 divisioni): ( )M + (3 5)A TOTALE = 39M + 20A

6 Algebra lineare numerica 5 In generale: la risoluzione di un sistema lineare di ordine n con il metodo di Cramer richiede il calcolo di n+1 determinanti di ordine n, ciascuno dei quali richiede la somma di n termini, ciascuno a sua volta costruito mediante 1+(n-1)! moltiplicazioni (n + 1)[n(1 + (n 1)!)] = = (n + 1)n(n 1)! + (n + 1)n moltiplicazioni T Cramer (n) = O((n + 1)!)

7 Algebra lineare numerica 6 Numero di operazioni e tempo di calcolo per la risoluzione di un sistema lineare di ordine n con il metodo di Cramer su una ws IBM RS6000 F50 con velocità operativa pari a 317 Mflops: 1 n (n + 1)! = # operazioni Tempo di calcolo (317 Mflops) secondi secondi ora giorni anni secoli 1 Mflops= Milioni di operazioni floating-point (cioè fra numeri reali) al secondo

8 Algebra lineare numerica 7 pur utilizzando un elaboratore con elevata potenza di calcolo, il tempo richiesto per risolvere un sistema di ordine basso (fino a 14) è eccessivo, mentre per ordini maggiori la risoluzione del problema diventa impossibile. Il metodo di Cramer non è utilizzabile nella risoluzione di problemi concreti Illustreremo di seguito alcuni dei metodi piú utilizzati per la risoluzione dei sistemi lineari, iniziando da quelli per sistemi con matrice dei coefficienti di forma particolare: diagonale triangolare superiore triangolare inferiore

9 Algebra lineare numerica 8 D = d 1,1 d 2,2 d 3,3... d n,n matrice diagonale U = u 1,1 u 1,2 u 1,3... u 1,n u 2,2 u 2,3... u 2,n u 3,3... u 3,n... u n,n u i,j = 0 per i > j matrice triangolare superiore L = l 1,1 l 2,1 l 2,2 l 3,1 l 3,2 l 3, l n,1 l n,2 l n,3... l n,n l i,j = 0 per i < j matrice triangolare inferiore

10 Algebra lineare numerica 9 Risoluzione di un sistema diagonale Esempio 7x 1 = 3 6.5x 2 = 2 8x 3 = 1.4 sistema diagonale La forma del sistema suggerisce il metodo di risoluzione: x 1 = 3 7 x 2 = x 3 = operazioni effettuate: 3M

11 Algebra lineare numerica 10 In generale: a 1,1 x 1 = b 1 a 2,2 x 2 = b 2 a 3,3 x 3 = b a n,n x n = b n sistema diagonale (compatibile e determinato a i,i 0) metodo di risoluzione: x i = b i /a i,i, i = 1,..., n (a i,i 0) operazioni effettuate: nm T diag (n) = O(n)

12 Algebra lineare numerica 11 Risoluzione di un sistema triangolare Esempio 2x 1 +2x 2 +4x 3 = 5 7x 2 +11x 3 = 8 2x 3 = 2 sistema triangolare superiore La forma del sistema suggerisce il metodo di risoluzione: x 3 = 2 2 = 1 x 2 = 8 11x 3 7 = = 3 7 x 1 = 5 2x 2 4x 3 2 = 5 2 ( 3/7) = metodo di back-substitution (sostituzione all indietro) operazioni effettuate: 3A + 6M

13 Algebra lineare numerica 12 In maniera analoga: 2x 1 = 4 3x 1 +2x 2 = 5 x 1 +2x 2 3x 3 = 1 sistema triangolare inferiore x 1 = 4 2 = 2 x 2 = 5 3x 1 2 = = 1 2 x 3 = 1 x 1 2x 2 3 = ( 1/2) 3 = 0 metodo di forward-substitution (sostituzione in avanti) operazioni effettuate: 3A + 6M

14 Algebra lineare numerica 13 In generale: u 1,1 x 1 +u 1,2 x 2 +u 1,3 x u 1,n x n = b 1 u 2,2 x 2 +u 2,3 x u 2,n x n = b 2 u 3,3 x u 3,n x n = b u n,n x n = b n sistema triangolare superiore (compatibile e determinato u i,i 0) metodo di back-substitution x n = b n /u n,n x i = (b i u i,i+1 x i+1 u i,i+2 x i+2... u i,n x n )/u i,i = (b i ( n k=i+1 u i,k x k )) /u i,i i = n 1, n 2,..., 1

15 Algebra lineare numerica 14 Analogamente: l 1,1 x 1 = b 1 l 2,1 x 1 +l 2,2 x 2 = b 2 l 3,1 x 1 +l 3,2 x 2 +l 3,3 x 3... = b 3. l n,1 x 1 +l n,2 x 2 +l n,3 x l n,n x n = b n sistema triangolare inferiore (compatibile e determinato l i,i 0, i) metodo di forward-substitution x 1 = b 1 /l 1,1 x i = (b i l i,1 x 1 l i,2 x 2... l i,i 1 x i 1 )/l i,i = ( b i ( i 1 k=1 l i,k x k )) /li,i i = 2, 3,..., n

16 Algebra lineare numerica 15 Algoritmo B-S (Back-Substitution) versione 1 Ux = b U triangolare superiore. x n := b n /u n,n for i = n 1 to 1 by 1 x i := b i for j = i + 1 to n x i := x i u i,j x j endfor x i := x i /u i,i endfor.

17 Algebra lineare numerica 16 Algoritmo F-S (Forward-Substitution) Lx = b L triangolare inferiore. x 1 := b 1 /l 1,1 for i = 2 to n x i := b i for j = 1 to i 1 x i := x i l i,j x j endfor x i := x i /l i,i endfor.

18 Algebra lineare numerica 17 Numero di operazioni effettuate dall algoritmo B-S 1 M per x n 1 A + 2 M per x n 1 2 A + 3 M per x n 2 (n i)a + (n i + 1)M per x i, i = n 3,..., 1 n(n + 1) ( (n 1)+n) M = M 2 n(n 1) ( (n 2)+(n 1)) A = 2 A Analogamente: T B S (n) = O( n2 2 ) T F S (n) = O( n2 2 )

19 Algebra lineare numerica 18 Si ha: OSSERVAZIONE (n 1)+ n+ n+ (n 1)+ (n 2) = (n + 1)+ (n + 1)+ (n + 1) (n + 1)+ (n + 1) = = n(n + 1) ( (n 1) + n) = = n(n + 1) 2

20 Algebra lineare numerica 19 x i = OSSERVAZIONE 2 b i n k=i+1 u i,kx k u i,i i = n 1,..., 1 (back-substitution) n u i,kx k = (u i,i+1 u i,i+2... u i,n ) k=i+1 prodotto scalare di due vettori i+1 x i+1 x i+2. x n i i+1 n la quantità u ikx k può essere calcolata k=i+1 mediante la function dot(u n i, x n i ) di BLAS, u n i = (u i,i+1,..., u i,n ), x n i = (x i+1,..., x n )

21 Algebra lineare numerica 20 OSSERVAZIONE 3 Negli algoritmi di back e forwardsubstitution ad ogni passo si effettua una divisione per un elemento diagonale condizione di applicabilità: elementi diagonali 0

22 Algebra lineare numerica 21 U triangolare superiore con u i,i = 0 0x i +u i,i+1 x i+1 +u i,i+2 x i u i,n x n = b i (i-ma equazione) r i = b i n u i,kx k = 0 k=i+1 (resto i-ma equazione)

23 Algebra lineare numerica 22 1 caso: r i 0 sistema incompatibile: l algoritmo termina Esempio: x 1 +x 2 +x 3 +x 4 = 6 0x 2 +3x 3 +x 4 = 5 3x 3 +x 4 = 2 0x 4 = 1 r 4 = 1 sistema incompatibile

24 Algebra lineare numerica 23 2 caso: r i = 0 sistema incompatibile o indeterminato: l algoritmo termina Esempio: a) x 1 +x 2 +x 3 +x 4 = 6 0x 2 +3x 3 +x 4 = 5 3x 3 +x 4 = 2 0x 4 = 0 r 4 = 0 scelta arbitraria di x 4 r 2 = 5 (3x 3 + x 4 ) MA 3x 3 + x 4 = 2 (terza equazione) sistema incompatibile.

25 Algebra lineare numerica 24 b) x 1 +x 2 +x 3 +x 4 = 6 0x 2 +2x 3 +x 4 = 5 3x 3 +x 4 = 2 0x 4 = 0 r 4 = 0 scelta arbitraria di x 4 r 2 = 5 (2x 3 + x 4 ) = 5 2 (2 x 4) 3 x 4 = = x 4 3 r 2 = 0, per x 4 = 11 verificato per x 1 = 2 x 2, x 4 = 11, x 3 = 3 e x 2 sistema indeterminato

26 Algebra lineare numerica 25 Algoritmo B-S versione 2 (con controllo esistenza soluzioni). l :=.true. indica sistema determinato calcolo di x n e controllo compatibilità sistema if (U(n, n) 0) then x(n) := b(n)/u(n, n) elseif (b(n) = 0) then sistema incompatibile o indeterminato l :=.false. else sistema incompatibile l :=.false. endif ciclo per il calcolo degli x i i := n 1 while (l.and.i 0) calcolo della somma dei termini u i,k x k le istruzioni successive realizzano il prodotto scalare dei due vettori (u i,i+1 u i,i+2... u i,n )(x i+1 x i+2... x n ) T cont.

27 Algebra lineare numerica 26 sum := 0 for k = i + 1 to n sum := sum + U(i, k)x(k) endfor calcolo resto i-ma equazione r := b(i) sum controllo compatibilità sistema if (U(i, i) 0) then calcolo finale di x i x(i) := r/u(i, i) elseif (r = 0) then sistema incompatibile o indeterminato l :=.false. else sistema incompatibile l :=.false. endif i := i 1 endwhile.

28 Algebra lineare numerica 27 OSSERVAZIONE 4 Nel caso in cui la memorizzazione della matrice avviene per colonne, si può ottenere una implementazione del metodo di back-substitution piú efficiente. Essa viene realizzata nella seguente versione dell algoritmo B-S, dove si accede agli elementi di U procedendo per colonne: ad ogni passo, ai termini noti si sottrae l ultimo valore calcolato, x i+1, moltiplicato per il relativo coefficiente in tutte le righe dalla prima alla (i) ma, con i = n 1,..., 1.

29 Algebra lineare numerica 28 Algoritmo B-S versione 3 (accesso per colonne). l :=.true. indica sistema determinato calcolo di x n e controllo compatibilità sistema if (U(n, n) 0) then x(n) := b(n)/u(n, n) elseif (b(n) = 0) then sistema incompatibile o indeterminato l :=.false. else sistema incompatibile l :=.false. endif ciclo per il calcolo degli x i i := n 1 while (l.and.i 0) aggiornamento dei termini noti cont.

30 Algebra lineare numerica 29 for k = 1 to i b(k) := b(k) U(k, i + 1)x(i + 1) endfor controllo compatibilità sistema if (U(i, i) 0) then calcolo di x i x(i) := b(i)/u(i, i) elseif (b(i) = 0) then sistema incompatibile o indeterminato l :=.false. else sistema incompatibile l :=.false. endif i := i 1 endwhile.

31 Algebra lineare numerica 30 In generale, per risolvere un sistema qualsiasi Ax = b con A matrice n n non singolare, si può sviluppare l idea seguente: Ax = b viene trasformato in un sistema equivalente Ux = b con U almeno triangolare (equivalente: ammette stessa soluzione) In tal modo, una volta effettuata la trasformazione, il sistema può essere risolto con uno dei metodi illustrati in precedenza.

32 Algebra lineare numerica 31 Esempio Consideriamo il sistema: 2x + y = 4 x 0.5y = 1 la cui soluzione è (1.5,1). Un sistema ad esso equivalente è dato dal sistema triangolare: 2x + y = 4 y = 1

33 Algebra lineare numerica 32 Questo sistema si può ottenere algebricamente con una opportuna combinazione lineare dei vettori riga associati alle due equazioni del sistema: Dunque l equazione: ( ) 1 2 ( ) y = 1 diventa la nuova seconda equazione che dà luogo al sistema equivalente: 2x + y = 4 y = 1

34 Algebra lineare numerica 33 Seguendo questa idea, si arriva al metodo di eliminazione di Gauss Obiettivo: trasformare Ax = b in Ux = b triangolare superiore equivalente Esempio Dato il sistema: 2x 1 +2x 2 4x 3 = 4 3x 1 +6x 2 +3x 3 = 3 5x 1 8x 2 x 3 = 9 ad esso è associata la matrice: A b =

35 Algebra lineare numerica 34 passo 1 scopo: eliminare x 1 dalla seconda e terza equazione procedimento: 1) moltiplicare per 3/2 la prima riga della matrice A b e sottrarla dalla seconda: II riga ( ) 3 2 I riga 3 2 ( ) nuova II riga ( ) = moltiplicatore relativo alla II riga 2) moltiplicare per 5/2 la prima riga e sottrarla dalla terza: III riga ( ) 5 2 I riga 5 2 ( ) nuova III riga ( ) = moltiplicatore relativo alla III riga

36 Algebra lineare numerica 35 Al termine del passo 1, il sistema equivalente ottenuto è: 2x 1 +2x 2 4x 3 = 4 3x 2 +9x 3 = 3 3x 2 11x 3 = 1 passo 2 scopo: eliminare x 2 dalla terza equazione procedimento: moltiplicare per 3/3 = 1 la seconda riga della matrice aumentata e sottrarla dalla terza: III riga ( ) II riga 1( ) nuova III riga ( ) 1 = moltiplicatore relativo alla III riga

37 Algebra lineare numerica 36 Al termine del passo 2, il sistema equivalente ottenuto è: 2x 1 +2x 2 4x 3 = 4 3x 2 +9x 3 = 3 2x 3 = 2 sistema triangolare superiore questo sistema è risolubile con il metodo di back-substitution x 3 = 2 2 = 1 x 2 = 1 3 (3 9 ( 1)) = 4 x 1 = 2 1 ( ( 1)) = 8

38 Algebra lineare numerica 37 RISOLUZIONE DI Ax = b metodo di eliminazione di Gauss (triangolarizzazione) + back-substitution (risoluzione sistema triangolare)

39 Algebra lineare numerica 38 eliminazione di Gauss caso generale passo 1 passo 2 A b A (1) b (1)... passo n-1 A (2) b (2) A (n 1) b (n 1)

40 Algebra lineare numerica 39 Passo 1 scopo annullare tutti gli elementi della prima colonna di A tranne a 11 procedimento per i = 2,..., n sottrarre dalla i-ma riga della matrice aumentata A b, la prima riga moltiplicata per m i1 = a i1 a 11 Ciò significa che ciascuna riga della matrice aumentata A b, a partire dalla seconda, viene sostituita con una combinazione lineare della riga stessa e della prima moltiplicata per un opportuno scalare (moltiplicatore m i1 ): m 21 = a 21 a 11. m n 1 1 = a n 1 1 a 11 m n1 = a n1 a 11 a 11 a a 1n b 1 a 21 a a 2n b a n 1 1 a n a n 1 n b n 1 a n1 a n2... a nn b n

41 Algebra lineare numerica 40 La matrice A b diventa: a 11 a a 1n b 1 0 a 22 a 21 a 11 a a 2n a 21 a 11 a 1n b 2 a 21 a 11 b a n 1 2 a n 1 1 a 11 a a n 1 n a n 1 1 a 11 a 1n b n 1 a n 1 1 a 11 b 1 0 a n2 a n1 a 11 a a nn a n1 a 11 a 1n b n a n1 a 11 b 1 Al termine del passo 1, si ottiene il sistema equivalente: A (1) x = b (1)

42 Algebra lineare numerica 41 con: A (1) = a 11 a a 1n 0 a (1) a (1) 2n a (1) n a(1) n 1 n 0 a (1) n2... a (1) nn ; dove: b (1) = b 1 b (1) 2. b (1) n a (1) ij = a ij m i1 a 1j ; i, j = 2, 3,..., n b (1) i = b i m i1 b 1 ; i = 2, 3,..., n m i1 = a i1 a 11 ; i = 2, 3,..., n (moltiplicatori)

43 Algebra lineare numerica 42 Passo 2 scopo annullare tutti gli elementi della seconda colonna di A (1) a partire da a (1) 32 procedimento per i = 3,..., n sottrarre dalla i-ma riga della matrice aumentata A (1), la seconda riga moltiplicata per m i2 = a(1) i2 a (1) 22 b Al termine del passo 2 si ottiene il sistema equivalente: A (2) x = b (2)

44 Algebra lineare numerica 43 con: A (2) = a 11 a 12 a a 1n 0 a (1) 22 a (1) a (1) 2n 0 0 a (2) a (2) 3n a (2) n a(2) n 1 n 0 0 a (2) n3... a (2) nn ; b (2) = b 1 b (1) 2 b (2) 3. b (2) n 1 b (2) n dove: a (2) ij = a(1) ij m i2a (1) 2j ; i, j = 3,..., n b (2) i = b (1) i m i2 b (1) 2 ; i = 3,..., n m i2 = a(1) i2 a (1) 22 ; i = 3,..., n (moltiplicatori)

45 Algebra lineare numerica 44 Al generico passo k, con k < n: inalterati riga pivot k 0 matrice attiva vet to re at ti vo m ik k n k modificare

46 Algebra lineare numerica 45 Passo k: scopo annullare tutti gli elementi della k-ma colonna di A (k 1) a partire da a (k 1) k+1 k procedimento per i = k + 1,..., n sottrarre dalla i-ma riga della matrice aumentata A (k 1) b, la k-ma riga moltiplicata per m ik = a(k 1) ik a (k 1) kk Al termine del generico passo k si ottiene il sistema equivalente: A (k) x = b (k)

47 Algebra lineare numerica 46 con: A (k) = a 11 a a 1k a 1 k+1... a 1n 0 a (1) a(1) 2k a (1) 2 k+1... a (1) 2n a (k 1) kk a (k 1) k k a (k)... a (k 1) kn.... k+1 k+1... a(k) k+1 n a (k) n 1 k+1... a(k) n 1 n a (k) n k+1... a (k) nn b (k) = (b 1 b (1) 2... b (k 1) k dove: b (k) k+1... b(k) n 1 b(k) n ) T a (k) ij = a (k 1) ij m ik a (k 1) kj ; i, j = k + 1,..., n b (k) i = b (k 1) i i = k + 1,..., n m ik b (k 1) k ; m ik = a(k 1) ik ; a (k 1) kk

48 Algebra lineare numerica 47 Il procedimento si ripete fino ad ottenere il sistema equivalente: con: A (n 1) = A (n 1) x = b (n 1) a 11 a 12 a a 1n 0 a (1) 22 a(1) a(1) 2n 0 0 a (2) a(2) 3n a (n 1) nn (triangolare superiore) b (n 1) = (b 1 b (1) 2 b (2) 3... b (n 1) n ) T il metodo di Gauss termina dopo n 1 passi

49 Algebra lineare numerica 48 Ax = b A (1) x = b (1).. A (n 1) x = b (n 1) A (n 1) = U b (n 1) = b Ux = b equivalente ad Ax = b Per il ruolo svolto nel metodo di eliminazione, gli elementi a (k 1) k k pivot (cardini) sono detti

50 Algebra lineare numerica 49 Algoritmo di Gauss Schema:. per k = 1 fino a n 1 per i = k + 1 fino a n calcolo moltiplicatori m ik modifica riga i ma matrice e vettore attivi.

51 Algebra lineare numerica 50 Algoritmo di Gauss versione 1. ciclo sui passi for k = 1 to n 1 cicli per ottenere A (k) e b (k) for i = k + 1 to n moltiplicatore i-ma riga m ik := a ik /a kk ; a ik := 0; modifica elementi matrice attiva for j = k + 1 to n a ij := a ij m ik a kj ; endfor modifica vettore termini noti b i := b i m ik b k ; endfor endfor.

52 Algebra lineare numerica 51 Calcolo del numero delle operazioni effettuate dall algoritmo di Gauss passo k calcolo di n k moltiplicatori k riga k k n-k costo per 1 moltiplicatore m ik = a i,k a k,k : 1M costo totale moltiplicatori: (n k)m

53 Algebra lineare numerica 52 modifica matrice e vettore attivi k in al te ra ta inalterata riga k matrice attiva k vet to re at ti vo n-k modificare costo per 1 elemento matrice attiva a i,j = a i,j m ik a k,j : 1M + 1A costo per 1 elemento vettore attivo b i = b i m ik b k : 1M + 1A numero totale di elementi =(n k) 2 +(n k) costo totale modifica: (n k)(n k +1)M +(n k)(n k +1)A

54 Algebra lineare numerica 53 Eseguendo tutti i passi dell algoritmo, si ha in definitiva: Costo globale = calcolo moltiplicatori (n 2 n) M 2 + modifica matrici e vettori attivi 2 (n 3 n) (A + M) 3 2 n 1 k=1 = n 1 (n k)(n k + 1) = n 1 (n k) 2 + n 1 (n k) = k=1 k 2 + n 1 k=1 k=1 k=1 k = 1 6 n(n 1)(2n 1) + 1 n(n 1) = 2 = 1 3 n(n 1)(n + 1) = 1 3 (n3 n)

55 Algebra lineare numerica 54 Algoritmo di Gauss T Gauss (n) = n3 n 3 (A+M)+ n2 n 2 M = = O n 3 3 Risoluzione del sistema (Gauss + Back-substitution) T Gauss+Back (n) = O n n2 2 = O n 3 3

56 Algebra lineare numerica 55 Numero di operazioni e tempo di calcolo per la risoluzione di un sistema lineare di ordine n con l algoritmo di Gauss e di back-substitution, su una workstation IBM RS6000 F50 con velocità operativa pari a 317 Mflops: = # operazioni Tempo di calcolo (317 Mflops) secondi n n secondi secondi secondi secondo minuti Il metodo di Gauss è utilizzabile per la risoluzione di sistemi lineari

57 Algebra lineare numerica 56 Complessità di spazio algoritmo di Gauss Al passo k la costruzione di A (k) e b (k) richiede solo A (k 1) e (b (k 1) a (k) i,j b (k) i possono essere memorizzati su a(k 1) i,j può essere memorizzato su b (k 1) i algoritmo in place

58 Algebra lineare numerica 57 Inoltre a (k) i,k, i = k + 1,..., n sono eliminati m ik, i = k + 1,..., n possono essere memorizzati su a (k) i,k, i = k + 1,..., n complessità di spazio algoritmo di Gauss S Gauss (n) = n 2 + n = O(n 2 )

59 Algebra lineare numerica 58 OSSERVAZIONE Una implementazione del metodo di Gauss che risulta piú efficiente nel caso in cui la memorizzazione della matrice avviene per colonne, viene realizzata nella seguente versione dell algoritmo, dove si accede agli elementi della matrice attiva per colonne, calcolando, ad ogni passo k, prima tutti i moltiplicatori e poi modificando gli elementi procedendo sulle colonne invece che sulle righe (semplicemente scambiando le iterazioni su i e su j).

60 Algebra lineare numerica 59 Algoritmo di Gauss versione 2 (accesso per colonne). ciclo sui passi for k = 1 to n 1 cicli per ottenere A (k) e b (k) for i = k + 1 to n moltiplicatori di tutte le righe a ik := a ik /a kk ; endfor modifica matrice attiva e vettore termini noti for j = k + 1 to n for i = k + 1 to n a ij := a ij m ik a kj ; b i := b i m ik b k ; endfor endfor endfor.

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

Introduzione alle macchine a stati (non definitivo)

Introduzione alle macchine a stati (non definitivo) Introduzione alle macchine a stati (non definitivo) - Introduzione Il modo migliore per affrontare un problema di automazione industriale (anche non particolarmente complesso) consiste nel dividerlo in

Dettagli

Progettazione logica

Progettazione logica Progettazione logica Progettazione Logica Il prodotto della progettazione logica è uno schema logico che rappresenta le informazioni contenute nello schema E- R in modo corretto ed efficiente. Richiede

Dettagli

Il calcolatore. Architettura di un calcolatore (Hardware)

Il calcolatore. Architettura di un calcolatore (Hardware) Il calcolatore Prima parlare della programmazione, e' bene fare una brevissima introduzione su come sono strutturati i calcolatori elettronici. I calcolatori elettronici sono stati progettati e costruiti

Dettagli

Metodi matematici 2 9 giugno 2011

Metodi matematici 2 9 giugno 2011 Metodi matematici giugno 0 TEST 6CFU Cognome Nome Matricola Si indichi la soluzione senza procedimento. Nel caso si intenda annullare una risposta crocettare la risposta ritenuta errata. Risultati corretti

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

Matematica con il foglio di calcolo

Matematica con il foglio di calcolo Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO Parte II: Applicazioni a Matrici e Sistemi Lineari Prof. L. Pareschi Dott. Giacomo Dimarco Applicazioni a Matrici e Sistemi Lineari Operazioni matriciali

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Progetto NoiPA per la gestione giuridicoeconomica del personale delle Aziende e degli Enti del Servizio Sanitario della Regione Lazio

Progetto NoiPA per la gestione giuridicoeconomica del personale delle Aziende e degli Enti del Servizio Sanitario della Regione Lazio Progetto NoiPA per la gestione giuridicoeconomica del personale delle Aziende e degli Enti del Servizio Sanitario della Regione Lazio Pillola operativa Presenze Rilevazione timbrature Versione 1.1 del

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico ISTITUTO TECNICO STATALE MARCHI FORTI Viale Guglielmo Marconi n 16-51017 PESCIA (PT) - ITALIA PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico Docente PARROTTA GIOVANNI

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Informatica Teorica. Macchine a registri

Informatica Teorica. Macchine a registri Informatica Teorica Macchine a registri 1 Macchine a registri RAM (Random Access Machine) astrazione ragionevole di un calcolatore nastro di ingresso nastro di uscita unità centrale in grado di eseguire

Dettagli

La in verifica forma teoria normale della normalizzazione fornisce comunque uno strumento di già

La in verifica forma teoria normale della normalizzazione fornisce comunque uno strumento di già Le dati Presenza Complicazioni forme relazionale normaliverificano di ridondanze la qualitàdi uno schema di una base di Forme La forma normalizzazionepermette nella gestione di degli ottenere aggiornamenti

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Immagini satellitari ad alta risoluzione

Immagini satellitari ad alta risoluzione Immagini satellitari ad alta risoluzione Caratteristiche dei prodotti disponibili Possibile utilizzo per scopi cartografici Cenno al procedimento di ortorettifica in collaborazione con Università degli

Dettagli

Esercitazione 10. 21 Dicembre 2010 (2 ore)

Esercitazione 10. 21 Dicembre 2010 (2 ore) Esercitazione 10 21 Dicembre 2010 (2 ore) Riassunto Nell'esecitazione di oggi abbiamo lavorato ancora sulle funzioni. Abbiamo inoltre introdotto alcune delle seguenti funzioni per tracciare i grafici.

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI

PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI Già da qualche anno sono stati cambiati i parametri con i quali i pensionati possono ottenere le prestazioni pensionistiche legate al reddito.

Dettagli

Note_Batch_Application 04/02/2011

Note_Batch_Application 04/02/2011 Note Utente Batch Application Cielonext La Batch Application consente di eseguire lavori sottomessi consentendo agli utenti di procedere con altre operazioni senza dover attendere la conclusione dei suddetti

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO %

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % 1 U.D. 1 CALCOLI PERCENTUALI A PPLICATI A LLE A ZIENDE SVOLGIMENTO DEGLI ESERCIZI I passaggi per impostare e risolvere

Dettagli

RIDUZIONE DELLE DISTANZE

RIDUZIONE DELLE DISTANZE RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo E s p a n s i o n e d e l l ' U n i v e r s o e l e g g e d i H u b b l e La legge di Hubble Studiando distanze e moto delle galassie si trova che quelle più vicine

Dettagli

1 Esercizi di Riepilogo sui piani di ammortamento

1 Esercizi di Riepilogo sui piani di ammortamento 1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

Banchi ortogonali Casi importanti

Banchi ortogonali Casi importanti anchi ortogonali anchi ortogonali Casi importanti Trasformata a blocchi (JPEG, MPEG) anchi a due canali (JPEG 000) anchi modulati Trasformata di Fourier a blocchi (OFDM) anchi coseno-modulati (AC3, MUSICAM)

Dettagli

Convenzione per la realizzazione dei servizi relativi al Processo Civile Telematico a favore dell Ordine dei Chimici della Provincia di Modena

Convenzione per la realizzazione dei servizi relativi al Processo Civile Telematico a favore dell Ordine dei Chimici della Provincia di Modena Convenzione per la realizzazione dei servizi relativi al Processo Civile Telematico a favore dell Ordine dei Chimici della Provincia di Modena Visura Spa presenta la convenzione per conto della società

Dettagli

ESERCIZI DEL CORSO DI INFORMATICA

ESERCIZI DEL CORSO DI INFORMATICA ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente

Dettagli

VALORE PIÙ CONVENIENTE DEL RENDIMENTO

VALORE PIÙ CONVENIENTE DEL RENDIMENTO VALORE PIÙ CONVENIENTE DEL RENDIENTO In una macchina elettrica ad un rendimento più elevato corrisponde un minor valore delle perdite e quindi un risparmio nelle spese di esercizio (in quanto minori risultano

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Organizzazione della presentazione. Nell analisi economica quindi: (Markandya, Harou, Bellù e Cistulli, 2002):

Organizzazione della presentazione. Nell analisi economica quindi: (Markandya, Harou, Bellù e Cistulli, 2002): Progetto Fuoco Corso intensivo Verona, 5 gennaio 8 STRUMENTI DI SUPPORTO ALLA VALUTAZIONE ECONOMICA Davide Pettenella DITESAF Università di Padova Organizzazione della presentazione Analisi finanziaria

Dettagli

Specifiche tecniche e di formato www.impresainungiorno.gov.it Presentazione comunicazione unica per la nascita d impresa

Specifiche tecniche e di formato www.impresainungiorno.gov.it Presentazione comunicazione unica per la nascita d impresa Specifiche tecniche e di formato www.impresainungiorno.gov.it Presentazione comunicazione unica per la nascita d impresa Struttura pratica SUAP e integrazione della SCIA in ComUnica Versione: 1.0 Data

Dettagli

CONVENZIONE INTERCOMUNALE INERENTE LA COSTRUZIONE E LA GESTIONE IN COMPROPRIETA DELL ACQUEDOTTO INTERCOMUNALE DEL BELLINZONESE

CONVENZIONE INTERCOMUNALE INERENTE LA COSTRUZIONE E LA GESTIONE IN COMPROPRIETA DELL ACQUEDOTTO INTERCOMUNALE DEL BELLINZONESE CONVENZIONE INTERCOMUNALE INERENTE LA COSTRUZIONE E LA GESTIONE IN COMPROPRIETA DELL ACQUEDOTTO INTERCOMUNALE DEL BELLINZONESE PREMESSE Premesso che i Comuni di Bellinzona, Claro, Gorduno, Gnosca, Lumino,

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Guida alla compilazione

Guida alla compilazione Guida alla compilazione Per accedere alla Banca dati formatori occorre collegarsi al sito internet di Capitale Lavoro S.p.A., all indirizzo: http://formatori.capitalelavoro.it. Verrà visualizzata la seguente

Dettagli

Laboratorio di Programmazione Lezione 1. Cristian Del Fabbro

Laboratorio di Programmazione Lezione 1. Cristian Del Fabbro Laboratorio di Programmazione Lezione 1 Cristian Del Fabbro Reperibilità homepage corso: https://users.dimi.uniud.it/~cristian.delfabbro/teaching.php email: cristian.delfabbro@uniud.it telefono: 0432 558676

Dettagli

DESCRIZIONE CREAZIONE APP Si suddivide in 4 fasi di lavoro: 1. PIANIFICAZIONE; 2. PROGETTAZIONE; 3. SVILUPPO; 4. DISTRIBUZIONE.

DESCRIZIONE CREAZIONE APP Si suddivide in 4 fasi di lavoro: 1. PIANIFICAZIONE; 2. PROGETTAZIONE; 3. SVILUPPO; 4. DISTRIBUZIONE. DESCRIZIONE CREAZIONE APP Si suddivide in 4 fasi di lavoro: 1. PIANIFICAZIONE; 2. PROGETTAZIONE; 3. SVILUPPO; 4. DISTRIBUZIONE. PIANIFICAZIONE La pianificazione è la prima fase. Questa è la più delicata

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

SOMMARIO SEZIONE IV. Cantiere: Completamento spartitraffico in Via Nazioni Unite Seregno (MB)

SOMMARIO SEZIONE IV. Cantiere: Completamento spartitraffico in Via Nazioni Unite Seregno (MB) SOMMARIO SEZIONE IV 6 Prescrizioni operative, misure preventive e protettive ed i dispositivi di protezione individuale in riferimento alle interferenze tra le lavorazioni (Allegato XV punto 2.1.2 lettera

Dettagli

SPECIALE CODIFICA CHIAVI

SPECIALE CODIFICA CHIAVI Data 01/10/2012 TECHNEWS-241-IT-D SPECIALE CODIFICA CHIAVI Gentile cliente, a partire dall aggiornamento CD 134 di Settembre 2012, sarà disponibile la funzione codifica chiavi nelle vetture: gruppo Vag

Dettagli

Il sistema informativo deve essere di tipo centralizzato e accessibile mediante un computer server installato nella rete locale dell albergo.

Il sistema informativo deve essere di tipo centralizzato e accessibile mediante un computer server installato nella rete locale dell albergo. PROBLEMA. Un albergo di una grande città intende gestire in modo automatizzato sia le prenotazioni sia i soggiorni e realizzare un database. Ogni cliente viene individuato, tra l altro, con i dati anagrafici,

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Integrazione al Manuale Utente 1

Integrazione al Manuale Utente 1 CONTABILITA PROFESSIONISTI La contabilità dei professionisti di Picam (criterio di cassa, registro cronologico, registro incassi e/o pagamenti) è utilizzabile solamente nella versione Picam.com e Picam.com

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

UD4 - MATLAB. M-file. Efficienza degli algoritmi. Formati d uscita

UD4 - MATLAB. M-file. Efficienza degli algoritmi. Formati d uscita UD4 - MATLAB M-file. Efficienza degli algoritmi. Formati d uscita M-files In MatLab è possibile eseguire istruzioni contenute in file esterni; Tali file sono chiamati M-file perché devono avere estensione.m

Dettagli

LA MOLE LA MOLE 2.A PRE-REQUISITI 2.3 FORMULE E COMPOSIZIONE 2.B PRE-TEST

LA MOLE LA MOLE 2.A PRE-REQUISITI 2.3 FORMULE E COMPOSIZIONE 2.B PRE-TEST LA MOLE 2.A PRE-REQUISITI 2.B PRE-TEST 2.C OBIETTIVI 2.1 QUANTO PESA UN ATOMO? 2.1.1 L IDEA DI MASSA RELATIVA 2.1.2 MASSA ATOMICA RELATIVA 2.2.4 ESERCIZI SVOLTI 2.3 FORMULE E COMPOSIZIONE 2.4 DETERMINAZIONE

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

VALORIZZAZIONE MOVIMENTI DI SCARICO E VALORIZZAZIONE TRASFERIMENTO COSTI DI ANALITICA

VALORIZZAZIONE MOVIMENTI DI SCARICO E VALORIZZAZIONE TRASFERIMENTO COSTI DI ANALITICA VALORIZZAZIONE MOVIMENTI DI SCARICO E VALORIZZAZIONE TRASFERIMENTO COSTI DI ANALITICA Riportiamo di seguito i vari passaggi per poter gestire la rivalorizzazione, sui documenti di scarico, del costo di

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione

Dettagli

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi 7 Disegni sperimentali ad un solo fattore Giulio Vidotto Raffaele Cioffi Indice: 7.1 Veri esperimenti 7.2 Fattori livelli condizioni e trattamenti 7.3 Alcuni disegni sperimentali da evitare 7.4 Elementi

Dettagli

il costo in contabilità generale

il costo in contabilità generale il costo in contabilità generale costi di acquisto di fattori produttivi e valori di diversa natura (tributi, permute, apporti, ammortamenti, ecc.) C.E. (-) valori classificati per origine costo calcolato

Dettagli

ISTRUZIONI PER L AGGIORNAMENTO DA FPF 3.1.32 o precedente

ISTRUZIONI PER L AGGIORNAMENTO DA FPF 3.1.32 o precedente ISTRUZIONI PER L AGGIORNAMENTO DA FPF 3.1.32 o precedente Le riportiamo di seguito le istruzioni per aggiornare la versione attualmente in uso di FPF 3 alla nuova versione FPF 5 2013 Edition. La versione,

Dettagli

1 Considerare la seguente descrizione del processo di prestito dei libri di una biblioteca, per il quale si vuole progettare un software:

1 Considerare la seguente descrizione del processo di prestito dei libri di una biblioteca, per il quale si vuole progettare un software: 1 Considerare la seguente descrizione del processo di prestito dei libri di una biblioteca, per il quale si vuole progettare un software: Un testo può essere composto da uno o più tomi. Ogni tomo ha una

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

GUIDA RAPIDA PER LA GESTIONE DELLE ADOZIONI LIBRI DI TESTO 2016/2017

GUIDA RAPIDA PER LA GESTIONE DELLE ADOZIONI LIBRI DI TESTO 2016/2017 GUIDA RAPIDA PER LA GESTIONE DELLE ADOZIONI LIBRI DI TESTO 2016/2017 Questo manuale ha lo scopo di spiegare in modo dettagliato tutte le operazioni da eseguire per la corretta gestione delle adozioni 2016/2017

Dettagli

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche

Dettagli

4 Le liste collegate 4.0. Le liste collegate. 4 Le liste collegate Rappresentazione di liste 4.1 Rappresentazione di liste

4 Le liste collegate 4.0. Le liste collegate. 4 Le liste collegate Rappresentazione di liste 4.1 Rappresentazione di liste 4 Le liste collegate 4.0 Le liste collegate c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 2001/2002 4.0 0 4 Le liste collegate Rappresentazione di liste 4.1

Dettagli

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti Problemi con effetti differiti sono quelli per i quali tra il momento di sostentamento dei costi ed il momento di realizzo dei ricavi intercorre un certo lasso di tempo. Nei casi in cui il vantaggio è

Dettagli

EcoRemote SISTEMA DI GESTIONE DI UNA STAZIONE DI MONITORAGGIO DELLA QUALITÀ DELL ARIA. Ingegneria dei sistemi

EcoRemote SISTEMA DI GESTIONE DI UNA STAZIONE DI MONITORAGGIO DELLA QUALITÀ DELL ARIA. Ingegneria dei sistemi Sistema per l acquisizione, l elaborazione e la gestione delle apparecchiature di una stazione di monitoraggio della qualità dell aria sviluppato da Project Automation S.p.A. è il sistema periferico per

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Gravidanza o no? Patient Diagnostics Test Rapidi della Progettazione Familiare

Gravidanza o no? Patient Diagnostics Test Rapidi della Progettazione Familiare Gravidanza o no? Patient Diagnostics Test Rapidi della Progettazione Familiare Gli unici test a domicilio per la pianificazione familiare Test di ovulazione Test precoce di gravidanza Test di gravidanza

Dettagli

E un trasduttore digitale in grado di fornire una indicazione binaria della. Non sfruttano alcun principio fisico. Nei trasduttori lineari a principio

E un trasduttore digitale in grado di fornire una indicazione binaria della. Non sfruttano alcun principio fisico. Nei trasduttori lineari a principio TRASDUTTORI: ENCODER (detto anche CODIFICATORE OTTICO) E un trasduttore digitale in grado di fornire una indicazione binaria della grandezza fisica oggetto di misura ENCODER ASSOLUTO DI POSIZIONE Non sfruttano

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

COMUNE DI SANT ANNA ARRESI

COMUNE DI SANT ANNA ARRESI COMUNE DI SANT ANNA ARRESI AREA AMMINISTRATIVA UFFICIO SEGRETERIA UFFICIO PROTOCOLLO PRODUZIONE E CONSERVAZIONE DEL REGISTRO GIORNALIERO DI PROTOCOLLO 1. Introduzione e breve inquadramento normativo Dal

Dettagli

L indagine statistica

L indagine statistica 1 L indagine statistica DEFINIZIONE. La statistica è quella disciplina che si occupa della raccolta di dati quantitativi relativi a diversi fenomeni, della loro elaborazione e del loro utilizzo a fini

Dettagli

PROTOCOLLO ITACA PUGLIA 2011 - RESIDENZIALE Istruzioni d'uso del software Versione 1.0

PROTOCOLLO ITACA PUGLIA 2011 - RESIDENZIALE Istruzioni d'uso del software Versione 1.0 PROTOCOLLO ITACA PUGLIA 2011 - RESIDENZIALE Istruzioni d'uso del software Versione 1.0 1/10 Indice 1 Premessa...3 2 Fogli di calcolo del framework...5 2.1 Foglio "Progetto"...5 2.2 Fogli "ATTESTATO" e

Dettagli

Modellazione Poligonale Avanzata

Modellazione Poligonale Avanzata Informatica Grafica I Modellazione Poligonale Avanzata Il (FFD) inserisce un oggetto in una gabbia (a forma di parallelepipedo o di cilindro). Spostando i vertici della gabbia si deforma il solido in esso

Dettagli

Esercizio: memoria virtuale

Esercizio: memoria virtuale Siano dati un indirizzo logico con la struttura ed il contenuto mostrati in figura, dove è anche riportata la funzione di rilocazione. Si indichi l indirizzo fisico corrispondente all indirizzo logico

Dettagli

Manuale Utente CMMG Corso Medici Medicina Generale

Manuale Utente CMMG Corso Medici Medicina Generale CMMG- Manuale Utente CMMG Aprile 2014 Versione 1.1 Manuale Utente CMMG Corso Medici Medicina Generale CMMG-Manuale Utente.doc Pagina 1 di 14 CMMG- Manuale Utente AGGIORNAMENTI DELLE VERSIONI Versione Data

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

Il Principio dei lavori virtuali

Il Principio dei lavori virtuali Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.

Dettagli

PIANO DI LAVORO. a.s. 2015 / 2016

PIANO DI LAVORO. a.s. 2015 / 2016 PIANO DI LAVORO a.s. 2015 / 2016 Materia: INFORMATICA Classe: terza informatica- sez. A Data di presentazione: 15/10/2015 DOCENTI FIRMA Cerri Marta Bergamasco Alessandra Posta elettronica: itisleon@tin.it

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

(1) (2) (3) (4) 11 nessuno/a 9 10. (1) (2) (3) (4) X è il minore tra A e B nessuno/a X è sempre uguale ad A X è il maggiore tra A e B

(1) (2) (3) (4) 11 nessuno/a 9 10. (1) (2) (3) (4) X è il minore tra A e B nessuno/a X è sempre uguale ad A X è il maggiore tra A e B Compito: Domanda 1 Per l'algoritmo fornito di seguito, qual è il valore assunto dalla variabile contatore quando l'algoritmo termina: Passo 1 Poni il valore di contatore a 1 Passo 2 Ripeti i passi da 3

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Corso di Informatica

Corso di Informatica CdLS in Odontoiatria e Protesi Dentarie Corso di Informatica Prof. Crescenzio Gallo crescenzio.gallo@unifg.it Immagini in movimento 2 Immagini in movimento Memorizzazione mediante sequenze di fotogrammi.

Dettagli

IM-6145. Un sistema di misurazione completamente nuovo. p osi z iona re e. Sistema di misurazione dimensionale tramite immagini. Esempi di misurazione

IM-6145. Un sistema di misurazione completamente nuovo. p osi z iona re e. Sistema di misurazione dimensionale tramite immagini. Esempi di misurazione IM-6145 Un sistema di completamente nuovo È su ffi c iente p osi z iona re e preme re Sistema di dimensionale tramite immagini Esempi di Panoramica del sistema di dimensionale tramite immagini Obiettivo

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 12: Introduzione alla Teoria dei Giochi (part 3) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli