Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice"

Transcript

1 Esercitazioe 12 Alfoso Iodice D Eza Uiversità degli studi di Cassio () 1 / 15

2 Outlie 1 () 2 / 15

3 Outlie 1 2 () 2 / 15

4 Outlie () 2 / 15

5 Outlie () 2 / 15

6 Outlie () 2 / 15

7 Importati disuguagliaze Variabili casuali co distribuzioi o ote Le disuguagliaze e Chebyshev soo due risultati importati perchè cosetoo di porre ua soglia superiore alle probabilità di eveti rari che riguardao variabili casuale di cui o si coosce la distribuzioe, ma solo valore atteso oppure valore atteso e. Sia X ua variabile casuale mai egativa, allora per qualuque valore a > 0 P (X a) E [X] a Sia X ua variabile casuale di cui si cooscoo solo la µ e σ 2, allora dato u qualuque valore k > 0, vale la seguete relazioe P ( X µ k) σ2 k 2 () 3 / 15

8 Importati disuguagliaze Sia X ua variabile casuale mai egativa, allora per qualuque valore a > 0 dimostrazioe P (X a) E [X] a Si suppoga che la v.c. X si distribuisca secodo ua fuzioe di desità icogita f a E [X] = xf(x)dx = xf(x)dx + xf(x)dx 0 0 } {{ } a } {{ } 0 0 xf(x)dx af(x)dx = a f(x)dx = a P (X a) a } {{ a } } a {{ } perchè x [a, ] quidi x a a è ua costate duque E [X] ap (X a) P (X a) E [X] a () 4 / 15

9 Importati disuguagliaze Sia X ua variabile casuale di cui si cooscoo solo la µ e σ 2, allora dato u qualuque valore k > 0, vale la seguete relazioe P ( X µ k) σ2 k 2 dimostrazioe Si cosideri l eveto per cui vale X µ k: i valori di X, µ e k per cui vale la soo gli stessi per cui vale la (X µ) 2 k 2. La probabilità che si verifichi ua delle disuguagliaze precedeti è duque la stessa. Ioltre la variabile casuale (X µ) 2 è o egativa (essedo u quadrato), duque si può applicare la, co a = k 2, quidi otare che = σ 2 {}}{ E [(X µ) 2] P ( X µ k) = P ((X µ) 2 k 2 ) } {{ k 2 } che verifica la P ( X µ k) σ2 k 2 () 5 / 15

10 Esercizio Il umero di automobili prodotte da ua fabbrica i ua settimaa si distribuisce secodo ua variabile casuale X co pari a 50. svolgimeto Qual è la probabilità che la produzioe superi occasioalmete le 75 auto? Qual è la probabilità che la produzioe sia compresa tra 40 e 60 pezzi, sapedo che la della distribuzioe è pari a 25? Poichè l uica coosceza della distribuzioe di X è che E [X] = 50, per calcolare P (X 50) si ricorre alla. P (X a) E [X] a P (X 75) = 0.67 I questo caso, oltre alla µ = 50, è ota ache la σ 2 = 25. Si vuole la probabilità che 40 X 60, quidi = = 10 = k, duque P ( X 50 10) rappreseta la probabilità che la produzioe si discosti di più di 10 uità dalla. P ( X 50 10) = 0.25 duque la probabilità che la produzioe si discosti di meo di 10 uità dalla è P (40 X 60). () 6 / 15

11 Distribuzioe delle statistiche Popolazioe e campioe La popolazioe è u isieme molto grade di oggetti a cui soo associate delle quatità misurabili. Il campioe è u sottoisieme ridotto della popolazioe. L obiettivo dell approccio statistico è aalizzare il campioe per trarre da esso iformazioi circa la popolazioe. campioe casuale Per effettuare ifereze sulla popolazioe i base al campioe, si assume che vi sia la popolazioe segua ua distribuzioe di probabilità F. Estraedo casualmete degli oggetti dalla popolazioe per formare il campioe, si assume che ciascu valore ad essi associato sia ua variabile casuale caratterizzata dalla distribuzioe F della popolazioe. defiizioe U isieme di X 1, X 2,..., X di variabili aleatorie idipedeti e distribuite secodo ua distribuzioe F, si defiisce campioe casuale della distribuzioe F. () 7 / 15

12 Distribuzioe delle statistiche Ifereza parametrica e o parametrica La distribuzioe F della popolazioe è o ota. I alcui casi è tuttavia possibile che si coosca la famiglia di distribuzioi di variabili casuali a cui F appartiee, e duque si utilizza il campioe per fare ifereza sui parametri che idetificao F : è il caso dell ifereza parametrica. I altri casi o si ha alcua iformazioe su F : i questi casi si fa ricorso a teciche di ifereza o parametrica. La statistica Uo stimatore è ua fuzioe dei dati campioari. Poichè le osservazioi soo v.c., e poichè ua fuzioe di v.c. è a sua volta ua v.c., allora lo stimatore è ua v.c. fuzioe dei dati campioari. Ua statistica è uo stimatore che utilizza i dati campioari per otteere la stima di u parametro della distribuzioe F. () 8 / 15

13 Distribuzioe della Distribuzioe della Si cosideri ad esempio ua popolazioe - ad esempio i lavoratori dipedeti - su cui sia misurata ua quatità umerica - ad esempio il reddito auo percepito -; il campioe casuale estratto da tale popolazioe è X 1, X 2,..., X, i valori associati agli elemeti del campioe soo v.c. idipedeti e ideticamete distribuite (i.i.d.), tutte caratterizzate dalla stessa distribuzioe F i cui parametri soo µ e σ 2 ( e ). La statistica X := X 1 + X X fuzioe delle v.c. X 1, X 2,..., X del campioe: si tratta di ua variabile casuale. () 9 / 15

14 Distribuzioe della La statistica X := X 1 + X X fuzioe delle v.c. X 1, X 2,..., X del campioe: si tratta di ua variabile casuale. valore atteso di X E [ [ ] X1 + X X X] = E = = E [X 1] + E [X 2 ] E [X ] = µ + µ µ = µ = µ = di X var ( ( ) X1 + X X X) = var = ( ) ( ) ( ) X1 X2 X = var + var var = = σ2 2 + σ σ 2 2 = σ 2 = σ 2 ota La distribuzioe di X risulta quidi cetrata su µ, metre la sua dimiuisce all aumetare di. () 10 / 15

15 Teorema del limite cetrale Teorema del limite cetrale (TLC) Tale teorema è u risultato molto importate della teoria della probabilità: esso afferma che la somma di u umero elevato di v.c. idipedeti si distribuisce approssimativamete secodo ua ormale. TLC: Se si cosiderao le v.c. X 1, X 2,..., X idipedeti e ideticamete distribuite, tutte co µ e σ 2, allora X 1 + X X N(µ, σ 2 ) Se alla somma i questioe si sottrae la µ e si divide per lo scarto quadratico medio σ 2 = σ si ottiee la relazioe precedete i versioe stadardizzata X 1 + X X µ σ N(0, 1) () 11 / 15

16 Ua compagia di assicurazioe ha polizze attive. Ciascu assicurato percepisce u risarcimeto auo che rappreseta ua v.c. che si distribuisce co pari a 320 euro e scarto quadratico medio pari a 540 euro. Qual è la probabilità che la compagia paghi complessivamete euro? Svolgimeto Il risarcimeto di ciascu cliete è X i co i = 1,..., ed = La richiesta complessiva di risarcimeto da parte di tutti i clieti è X = i=1 X i. Poichè X è la somma delle v.c. X i che soo i.i.d., per il teorema del limite cetrale risulta che X si distribuisce come ua ormale co µ = = e scarto quadratico medio σ = Si vuole duque P (X > ). I uità stadard, il valore i questioe è duque Z = X µ σ = = 3.51 P (X > ) = P (Z > 3.51) 0. () 12 / 15

17 Il umero ideale di studeti di u corso del primo ao di uiversità è 150. Il maagemet didattico dell uiversità sa che, i base agli ai precedeti, solo il 30% degli iscritti frequeta effettivamete i corsi, duque decide di accettare fio a 450 uove iscrizioi. Qual è la probabilità che il umero di studeti frequetati sia superiore a 150? Svolgimeto Si defiisca la v.c. X come il umero di studeti che frequetao, ciascuo studete iscritto corrispode ad ua prova Berulliaa il cui esito può essere frequeta o o frequeta. X si distribuisce pertato secodo ua distribuzioe biomiale di parametri = 450 e la probabilità di successo (lo studete iscritto frequeta) è p = 0.3. Per il teorema del limite cetrale, poichè X è la somma di v.c. Beroulliae X i, ciascua co E [X i ] = p e pari a var (X i ) = p(1 p), allora X si distribuisce approssimativamete come ua ormale co µ = p e pari a σ 2 = p(1 p). (Si tratta dell approssimazioe della biomiale alla ormale). La probabilità cercata è duque P (X > 150.5) (lo +0.5 i aggiuta è dovuto alla correzioe di cotiuità). Stadardizzado il problema si ha Z = X p = = = 1.59 p(1 p) da cui P (X > 150.5) = P (Z > 1.59) () 13 / 15

18 Variaza Variaza Dato u campioe casuale X 1, X 2,..., X proveiete da ua distribuzioe co µ e σ 2. Sia X la. La statistica è valore atteso della S 2 = 1 ( Xi X ) 2 1 i=1 Ricordado la relazioe per la quale i=1 (x i x) 2 = i=1 x 2 i x2, dove x = i=1 x i / duque S 2 = 1 ( Xi X ) ( 2 1 ) = X 2 i 1 i=1 1 X 2 da cui i=1 ( 1)S 2 = X 2 i X 2 i=1 adado ad effettuare il valore atteso di etrambi i lati dell equazioe si ha [ [ ] ( 1)E S 2] = E X 2 [ ] i E X2 i=1 () 14 / 15

19 Variaza valore atteso della (secoda parte) [ [ ] ( 1)E S 2] = E X 2 [ ] [ i E X2 = E X 2 ] [ ] 1 E X2 i=1 [ poichè per qualuque v.c. Y vale la relazioe E Y 2] = var(y ) + E [Y ] 2 allora [ ( 1)E S 2] [ = E X 2 ] 1 E [ ] X2 = var(x 1 ) + E [X 1 ] 2 }{{} [ E X 1 2 ] ( var( X) + E [ ) 2 X] }{{} [ ] E X2 poichè sappiamo che E [X 1 ] = µ, var(x 1 ) = σ 2, E [ X] = µ, var( X) = σ 2, quidi ( 1)E [S 2] = σ 2 + µ 2 σ2 µ2 = σ 2 σ 2 = σ 2 [ ( 1) E S 2] = σ 2 il valore atteso della è uguale alla della popolazioe (ota: ecco perchè il deomiatore di S 2 è ( 1) e o...) () 15 / 15

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 29 Outlie 1 2 3 4 5 6 () Statistica 2 / 29 Importati disuguagliaze Variabili casuali co distribuzioi o

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Esercitazione 6 del corso di Statistica 2

Esercitazione 6 del corso di Statistica 2 Esercitazioe 6 del corso di Statistica Dott.ssa Paola Costatii 7 marzo Decisioe vera falsa è respita Errore di I tipo Decisioe corretta o è respita Probabilità = Decisioe corretta Probabilità = - Probabilità

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

INTRODUZIONE ALLA INFERENZA STATISTICA

INTRODUZIONE ALLA INFERENZA STATISTICA INTRODUZIONE ALLA INFERENZA STATISTICA 1) CONCETTO DI INFERENZA STATISTICA E SCOPI : L ifereza statistica è il procedimeto iduttivo che, avvaledosi del calcolo delle probabilità, cosete di estedere all

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Uiversità degli Studi di Padova Corso di Laurea i Medicia e Chirurgia - A.A. 015-16 Corso Itegrato: Statistica e Metodologia Epidemiologica Disciplia: Statistica e Metodologia Epidemiologica Doceti: prof.ssa

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Statistica Matematica: Cocetti Fodametali Nell esperieza quotidiaa e ella pratica della professioe dell igegere occorre: predere decisioi e ciò ormalmete richiede la dispoibilità di specifiche iformazioi

Dettagli

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati:

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati: Esercizio 1 Si suppoga di aver assegato ad ua popolazioe di N = 4 dattilografe u test e di aver otteuto i segueti risultati: Dattilografa N. Errori A 3 B C 1 D 4 La variabile, il umero di errori commessi

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

STATISTICA A K (63 ore)

STATISTICA A K (63 ore) STATISTICA A K (63 ore) Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto =400 X =34.000 Km; s cor =9000 Km Calcolare l

Dettagli

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

4. Proprietà degli stimatori

4. Proprietà degli stimatori Uiversità degli Studi di Basilicata Facoltà di Ecoomia Corso di Laurea i Ecoomia Aziedale - a.a. 0/03 lezioi di statistica del 0, e 3 giugo 03 - di Massimo Cristallo - 4. Proprietà degli stimatori Si è

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE.

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE. DISTRIBUZIONE LOG-NORMALE. La variabile si dice log-ormalmete distribuita se: l è ormalmete distribuita g( l g ( e 0 +. uzioe di desità di probabilità: f ( d d f ( dg( d f (g( dg( d f (. & ep$ - / $ %,

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

PROBLEMI DI INFERENZA SU MEDIE

PROBLEMI DI INFERENZA SU MEDIE PROBLEMI DI INFERENZA SU MEDIE STIMA PUNTUALE Il problema della stima di ua media si poe allorchè si vuole cooscere, sulla base di osservazioi campioarie, il valore medio μ che u dato carattere preseta

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Appunti per l Orale di Statistica

Appunti per l Orale di Statistica Apputi per l Orale di Statistica Matteo Giaello 6 ottobre 2011 1 Idice 1 Media e variaza campioaria 3 1.1 Media campioaria............................... 3 1.2 Variaza campioaria.............................

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

La correlazione e la regressione. Antonello Maruotti

La correlazione e la regressione. Antonello Maruotti La correlazioe e la regressioe Atoello Maruotti Outlie 1 Correlazioe 2 Associazioe tra caratteri quatitativi Date due distribuzioi uitarie secodo caratteri quatitativi X e Y x 1 x 2 x y 1 y 2 y associate

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n

ES 1.3. Data la distribuzione unitaria di una variabile quantitativa X. la media aritmetica di X è data dal rapporto tra il totale n ES 1.3 1 Media e variaza Data la distribuzioe uitaria di ua variabile quatitativa X x 1... x i... x, la media aritmetica di X è data dal rapporto tra il totale x i e il umero delle uità rilevate: x = 1

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek TEORIA DEI CAMPIONI Psicometria 1 - Lezioe 10 Lucidi presetati a lezioe AA 000/001 dott. Corrado Caudek 1 Nella teoria statistica per popolazioe si itede la totalità delle uità poteziali d'osservazioe.

Dettagli

1 Statistica Inferenziale

1 Statistica Inferenziale 1 Statistica Ifereziale Cosideriamo u tipico problema che coduce a cosiderazioi di tipo statistico: Problema: Ua moeta, di cui si igora l oestà, viee laciata 1000 volte otteedo 447 teste. Si può affermare

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Convergenza di variabili aleatorie

Convergenza di variabili aleatorie Covergeza di variabili aleatorie 1 Covergeza quasi certa Ua successioe (X ) 1 di v.a. coverge quasi certamete alla v.a. X se: X X (P-q.c.), cioè P(X X) = 1, ove {X X} = {ω : X (ω) X(ω)} è l issieme di

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

****** FUNZIONI MISURABILI E INTEGRAZIONE ******

****** FUNZIONI MISURABILI E INTEGRAZIONE ****** ****** FUNZIONI MISURABILI E INTEGRAZIONE ****** 1 2 1. Fuzioi misurabili. I questo umero estediamo la ozioe di misurabilità alle fuzioi. Defiizioe 1. Siao u isieme o vuoto, Y uo spazio topologico e µ

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

versione

versione versioe 3-06-2004 37 La seguete Lezioe 4 riguarda pricipalmete la legge dei gradi umeri ed il teorema cetrale del limite. Iclude ache la geeralizzazioe del cocetto di idipedeza completa per successioi

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 4 Teoremi limite classici I Teoremi limite classici, la Legge dei Gradi Numeri e il Teorema Limite Cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL.

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL. versioe 28-05-2004 0 Variabili aleatorie i casi più geerali: idipedeza, LGN e TCL.. Variabili aleatorie idipedeti Molte delle defiizioi e delle proprietà delle variabili aleatorie i spazi fiiti valgoo

Dettagli

CAPITOLO 10. Funzione Caratteristica, Normale multivariata, convergenze

CAPITOLO 10. Funzione Caratteristica, Normale multivariata, convergenze CAPITOLO 0 Fuzioe Caratteristica, Normale multivariata, covergeze 5 0. Fuzioe caratteristica 53 0.. Fuzioe caratteristica La fuzioe caratteristica è uo strumeto teorico utile sotto diversi aspetti per

Dettagli

VERIFICA DI IPOTESI STATISTICHE

VERIFICA DI IPOTESI STATISTICHE VERIFICA DI IPOTESI STATISTICHE La proedura della VERIFICA DI IPOTESI STATISTICHE, o proedura dei test statistii, riguarda il problema di voler avere maggiori iformazioi sul valore di u erto parametro

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

PROPRIETA DELLE FUNZIONI ARMONICHE

PROPRIETA DELLE FUNZIONI ARMONICHE CAPITOLO PROPRIETA DELLE FUNZIONI ARMONICHE - Defiizioi ed esempi Le fuzioi armoiche vegoo defiite ello spazio euclideo; i questa tesi sarà cosiderato u umero itero positivo maggiore di metre Ω sarà u

Dettagli