Modello di crescita tumorale di Gompertz

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modello di crescita tumorale di Gompertz"

Transcript

1 LINDA CATTANEO SUSANNA VILLANI Modello di crescita tumorale di Gompertz Studiamo la versione deterministica e stocastica di un modello che descrive la crescita di una popolazione di cellule tumorali: il modello di Gompertz. I modelli stocastici in medicina si rendono necessari per tener conto delle varie aleatorietà da cui è inuenzato il comportamento dei fenomeni, concretizzate attraverso uttuazioni imprediciili dei vari parametri rilevanti. Le uttuazioni da cui il modello deterministico è aetto danno luogo ad un comportamento aleatorio che va a sovrapporsi e sommarsi alla traiettoria deterministica. Il modello gompertziano deterministico, introdotto da Benjamin Gompertz nel 1825, è un modello a tempo continuo particolarmente adatto a descrivere la dinamica di crescita delle popolazioni. La crescita Gompertziana è descritta dall'equazione dierenziale dx(t) dt = ax(t) x(t) ln x(t) in cui la variaile x(t) rappresenta il volume del tumore al tempo t > mentre a e sono parametri positivi che rappresentano rispettivamente il tasso di crescita intrinseco del tumore, correlato al tasso mitotico cellulare, e il fattore di decelerazione della crescita, riguardante i processi antiangiogenici. Integrando a partire dalla condizione iniziale x() = x, otteniamo { a } x(t) = exp (a ln x )e t La curva cresce con un tasso che aumenta no al punto di esso (x = e a/ 1 ), per poi continuare a crescere ma con tasso di crescita che va via via diminuendo no ad esaurirsi, raggiungendo un valore asintotico ( x( ) = e a/ ). Le neoplasie raggiungono grosse dimensioni ma hanno tasso di crescita asso e minima frazione di accrescimento. Infatti, con l'aumentare del volume (1) 1

2 Figura 1: a = 4, = 1, x = 1 tumorale, la vascolarizzazione diventa inadeguata soprattutto al centro della neoplasia, con conseguente morte cellulare. Assumendo che il fattore a suisca variazioni nel tempo, l'equazione (1) diventa: { dx(t) = [ax(t) x(t) ln x(t)]dt + σx(t)dw (t), x() = x (2) dove σ > è un coeciente di diusione e dw (t) il dierenziale stocastico. La soluzione di (2) è { x(t) = exp x e t + a σ2 /2 (1 e t ) + σ } e (t s) dw (s) 2

3 Figura 2: soluzione vera stocastica: a = 4, = 1, x = 1, σ =.3 Figura 3: soluzione vera stocastica: a = 1, = 4, x = 1, σ =.1 3

4 Figura 4: soluzione vera stocastica: a = 4, = 1, x = 1, σ = 1 Figura 5: a =.8, =.2, x = 1, σ =.1 4

5 Figura 6: a = 4, = 1, x = 1, σ =.3 L'errore massimo sup t [,4] X em (t) X vera (t) è: errmax = Per comodità, al posto di studiare il processo (2) consideriamo il processo: { dy(t) = [a σ 2 /2 y(t)]dt + σdw (t), y() = ln x = y (3) ottenuto tramite la sostituzione y(t) = ln x(t) e applicando la formula generale di Ito. Si tratta dell'sde di un processo di Ornstein-Uhleneck della quale sappiamo trovare la soluzione: y(t) = y e t + a σ2 /2 (1 e t ) + σ e (t s) dw (s) (4) Riusciamo così facilmente a calcolare il valore atteso e la varianza del processo {y(t)} t R +: E[y(t)] = E[y e t + a σ2 /2 (1 e t )] + E[σ 5 e (t s) dw (s)]

6 = E[y e t + a σ2 /2 (1 e t )] = y e t + a σ2 /2 (1 e t ) V ar[y(t)] = V ar[y e t + a σ2 /2 (1 e t ) + σ = V ar[σ = σ 2 e 2t E[( e (t s) dw (s)] = σ 2 e 2t V ar[ e (t s) dw (s)] e s dw (s)] e s dw (s)) 2 ] = σ 2 e 2t E[e 2s ]ds = σ2 2 (1 e 2t ) Figura 7: andamento medio di 1 simulazioni: a = 4, = 1, x = 1, σ =.6 Nella gura (8) è rappresentata la distriuzione dei valori di 1 simulazioni al tempo ssato t = 1 insieme a quella di una normale di media E[y(t)] e varianza V ar[y(t)]. Per varicare che i dati sono veramente distriuiti come una normale aiamo fatto il test statistico di Kolmogorov- Smirnov: 6

7 Figura 8: a = 4, = 1, x = 1, σ =.3 H = P =.8296 Osserviamo che E[y(t)] t a σ2 /2 V ar[y(t)] t σ2 2 =: E[ ] =: V ar[ ] Ci chiediamo se questo processo ammette una distriuzione di proailità invariante; ovviamente ci aspettiamo che sia distriuita come N(E[ ], V ar[ ]). Cerchiamo una funzione di distriuzione f(y), indipendente dal tempo, che soddis l'equazione di Fokker-Planck: f t = y [(a σ2 /2 y)f] + σ2 2 f 2 y 2 Sappiamo che la generica soluzione stazionaria è della forma f(y) = k exp{φ(y)} σ 2 con Φ(y) = y 2A(z) dz σ 2 dove, nel nostro caso, A(z) = a σ 2 /2 z e 7

8 = R 1 1 k otteniamo: e Quindi Φ(y) = σ 2 exp(φ(y))dy, costante di normalizzazione. y 2 (a σ 2 /2 z) σ 2 1 k = 1 σ 2 R σ 2 Svolgendo i calcoli [ = ( ) ] a σ 2 /2 a σ 2 2 /2 y σ 2 [ a σ 2 /2 ( a σ2 /2 π σ exp((a σ2 /2) 2 ) 2 σ 2 f(y) = πσ 2 e σ 2 (y a σ2 /2 ) 2 y) 2 ] = che è proprio la funzione di distriuzione di una N(E[ ], V ar[ ]). Figura 9: a = 4, = 1, x = 1, σ =.3, t = 1 H = P =

9 Figura 1: a = 4, = 1, x = 1, σ =.3, t = 2 H = P =.517 9

10 Figura 11: a = 4, = 1, x = 1, σ =.3, t = 5 H = P =

11 Figura 12: anda di condenza a livello.95 per la media E[y(t)] con a = 4, = 1, x = 1, σ =.3 11

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Esercizi su formula di Itô

Esercizi su formula di Itô Esercizi su formula di Itô 1. Scrivere il differenziale stocastico dei seguenti processi: (i) X t = B t (ii) X t = t + e B t (iii) X t = B 3 t 3tB t (iv) X t = 1 + t + e B t (v) X t = [B 1 (t)] + [B (t)]

Dettagli

Verso l integrale stocastico

Verso l integrale stocastico Verso l integrale stocastico Una versione più corretta di è la sua forma integrale ds(t) = σs(t)dx(t) + µs(t)dt S(t) = S() + σs(u)db(u) + µs(u)du Ricordando che S è un processo che descrive la dinamica

Dettagli

Processi decisionali e modelli di simulazione

Processi decisionali e modelli di simulazione Anno accademico 2008/09 Il Processo decisionale Realtà Sistema Modello Simulazione Decisioni Il sistema e i suoi confini Modelli I modelli sono lo strumento normale con cui interagiamo con la realtà, la

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t:

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: CRESCITA DI POPOLAZIONI Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: n : R N Questa è una funzione costante a tratti, cioè una

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) MEDIA aritmetica semplice

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Dinamiche stocastiche Iniziamo la seconda parte del corso, non più dedicata a metodi statistici ma ad alcuni esempi di dinamiche stocastiche. Esse potrebbero

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Lezione 5: Processi Stocastici - Analisi in frequenza

Lezione 5: Processi Stocastici - Analisi in frequenza ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 5: Processi Stocastici - Analisi in frequenza Motivazioni Spettro e densità spettrale TD Proprietà formali Esempi Trasformata inversa Spettro e

Dettagli

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

7.6 Esercizi svolti Trasformata di Fourier

7.6 Esercizi svolti Trasformata di Fourier 78 7 Trasformata di Fourier 7.6 Esercizi svolti Esercizio 7. Determinare la trasformata di Fourier delle seguenti funzioni : a x(t =u(t e t + u(t u(t + ; b x(t =e i3t p (t + ; c x(t =p (t ; ( d x(t =p

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

La logistica: una curva semplice con molte applicazioni

La logistica: una curva semplice con molte applicazioni La logistica: una curva semplice con molte applicazioni Francesco Galvagno Relatore: Franco Pastrone Università degli studi di Torino Scuola di Studi Superiori di Torino Torino, 27 giugno 2017 Francesco

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita:

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Project Scheduling: PERT. Il PERT ha potenzialità superiori rispetto a quelle di un semplice mezzo per la pianificazione ed il controllo.

Project Scheduling: PERT. Il PERT ha potenzialità superiori rispetto a quelle di un semplice mezzo per la pianificazione ed il controllo. 1. Introduzione Project Scheduling: PERT Il PERT è una tecnica introdotta per la pianificazione ed il controllo di progetti in cui le durate t ij delle singole attività sono delle variabili aleatorie.

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Esercizi su equazioni differenziali stocastiche e teorema di Girsanov (con soluzioni)

Esercizi su equazioni differenziali stocastiche e teorema di Girsanov (con soluzioni) Esercizi su equazioni differenziali stocastiche e teorema di Girsanov con soluzioni). Moto Browniano geometrico Per r, σ >, si consideri l EDS lineare con coeff. costanti: dx t rx t dt + σx t db t, X x

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

Convergenza non condizionata

Convergenza non condizionata Economia Internazionale Economia dello Sviluppo Lezione 5 La convergenza nelle dinamiche di crescita A.A 2007-2008 Stefano Usai Convergenza non L ipotesi di convergenza non e basata sull assunzione che

Dettagli

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy.

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy. Analisi Matematica II Integrali curvilinei svolgimenti Svolgimento esercizio Si ha, successivamente, t t, t, t 9t 4 + 4t t 9t + 4, l t dt t 9t + 4 dt a 8 dove in a si è usata la sostituzione 9t + 4 8t

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

Rischi di mercato. Francesco Menoncin

Rischi di mercato. Francesco Menoncin Rischi di mercato Francesco Menoncin 6-0-0 Sommario Le risposte devono essere C.C.C (Chiare, Concise e Corrette). Il tempo a disposizione è di (due) ore. Esercizi. Su un mercato completo con tre stati

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Ripasso segnali e processi casuali. Trasmissione dell Informazione

Ripasso segnali e processi casuali. Trasmissione dell Informazione Ripasso segnali e processi casuali 1 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

1 Equazioni differenziali

1 Equazioni differenziali 1 Equazioni differenziali Un equazione del tipo F(t, y, y,...,y (n) ) = 0 (1) con una funzione incognita y dipendente dalla variabile indipendente t, assieme alle sue derivate fino all ordine n, viene

Dettagli

ANALISI DELLE SERIE STORICHE

ANALISI DELLE SERIE STORICHE ANALISI DELLE SERIE STORICHE De Iaco S. s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di

Dettagli

' $ Teoria del traffico & % 1

' $ Teoria del traffico & % 1 Teoria del traffico Andamento della distribuzione di Poisson P(k) = (λt)k k! e λt 1 k=0 k=1 k=2 k=3 0.8 0.6 P(k) 0.4 0.2 0 0 1 2 3 4 5 λt Proprietá La sovrapposizione di h processi di Poisson aventi frequenze

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Esercitazione in vista della terza prova matematica

Esercitazione in vista della terza prova matematica Esercitazione in vista della terza prova matematica In vista dell Esame di stato è caldamente consigliato rifare le simulazioni già affrontae durante l anno. ) Stampa le pagine del testo ) Rifare gli esercizi,

Dettagli

Macroeconomia. - Curva di Phillips; - Inflazione, produzione e crescita della moneta.

Macroeconomia. - Curva di Phillips; - Inflazione, produzione e crescita della moneta. Dipartimento di Economia, Statistica e Finanza Corso di Laurea in ECONOMIA Macroeconomia - Curva di Phillips; - Inflazione, produzione e crescita della moneta. Esercitazione del 21.04.2016 (+ soluzioni)

Dettagli

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI Appello Febbraio 995 ( F (( + y i y (( + y j. ( Stabilire se F è conservativo e in caso affermativo trovarne un ( Calcolare il lavoro compiuto dal campo

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler 3 Relazioni e funzioni M. Simonetta Bernabei & Horst Thaler Relazioni e funzioni Una relazione è un insieme di coppie ordinate (x,y). Animali Vita media (anni) x Tempo massimo di vita (anni) y Gatto 12

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

La media e la mediana sono indicatori di centralità, che indicano un centro dei dati.

La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. Un indicatore che sintetizza in un unico numero tutti i dati, nascondendo quindi la molteplicità dei dati. Per esempio,

Dettagli

3. Determinare i massimi e i minimi (relativi e assoluti) della funzione f (x; y) = x 4 + y 4 2(x y) 2 + 2: 4. Consideriamo il solido V intersezione d

3. Determinare i massimi e i minimi (relativi e assoluti) della funzione f (x; y) = x 4 + y 4 2(x y) 2 + 2: 4. Consideriamo il solido V intersezione d Analisi Matematica 2, Scritto Generale, 5-5-1995 1. Consideriamo la serie di potenze ( 2z) n 3n + log n : a. Calcolare il raggio di convergenza R. b. Determinare gli insiemi di convergenza semplice ed

Dettagli

Stima di parametri per una risposta funzionale non lineare in un sistema preda-predatore stocastico

Stima di parametri per una risposta funzionale non lineare in un sistema preda-predatore stocastico V Giornate di Studio GRIMPP - Piacenza, 29 p. 1/19 Stima di parametri per una risposta funzionale non lineare in un sistema preda-predatore stocastico Sara Pasquali CNR - Istituto di Matematica Applicata

Dettagli

Modello Black-Scholes

Modello Black-Scholes Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1 1 Il modello Black Scholes

Dettagli

Spazio di probabilità

Spazio di probabilità Spazio di probabilità Uno spazio di probabilità è una terna (Ω, A, P), dove Ω è un insieme qualunque (in genere pensato come l insieme dei risultati possibili di un esperimento casuale), A è detta σ-algebra,

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

I a settimana di novembre

I a settimana di novembre L. Seta I a settimana di novembre Metodi Matematici per l Economia 2016 2 Settimana 1 Successioni e dinamica di popolazione 1.1 I concetti chiave di questa settimana... 1.1.1 Scoprire uno schema in una

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

1 Portofoglio autofinanziante

1 Portofoglio autofinanziante 1 Portofoglio autofinanziante Supponiamo che l evoluzione del titolo A 1 sia S 1 t) e l evoluzione del titolo A sia S t). Supponiamo che al tempo 0 io abbia una somma X0) che voglio investire parte in

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

La famiglia delle distribuzioni GEV - I

La famiglia delle distribuzioni GEV - I La famiglia delle distribuzioni GEV - I La distribuzione generalizzata degli eventi estremi (GEV) è la distribuzione teoricamente attesa per i massimi all interno di blocchi temporali di dimensione molto

Dettagli

Stochastic diffusion processes with jumps for cancer growth and neuronal activity models

Stochastic diffusion processes with jumps for cancer growth and neuronal activity models Università degli Studi di Salerno DIPARTIMENTO DI MATEMATICA Scuola Dottorale in Scienze Matematiche, Fisiche e Naturali Ciclo XIII ABSTRACT Stochastic diffusion processes with jumps for cancer growth

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

SIMULAZIONE - 25 FEBBRAIO PROBLEMA 1

SIMULAZIONE - 25 FEBBRAIO PROBLEMA 1 www.matefilia.it SIMULAZIONE - 5 FEBBRAIO 015 - PROBLEMA 1 1) Il grafico della velocità in funzione del tempo è una parabola con asse di simmetria t = 5, vertice V = (5; 30) e passante per A = (0; 5).

Dettagli

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

CAPITOLO 1 LA FUNZIONE DI PRODUZIONE E LA CRESCITA ECONOMICA

CAPITOLO 1 LA FUNZIONE DI PRODUZIONE E LA CRESCITA ECONOMICA CAPITOLO 1 LA FUZIOE DI PRODUZIOE E LA CRESCITA ECOOMICA 11 La funzione di produzione Data una funzione di produzione in cui la quantità prodotta () dipende dalla quantità di capitale () e di lavoro ()

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Capitolo 5. Variabili casuali discrete

Capitolo 5. Variabili casuali discrete Capitolo 5 Variabili casuali discrete Come già anticipato nel paragrafo 3, nella teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable) può essere

Dettagli

Esercizi su leggi condizionali e aspettazione condizionale

Esercizi su leggi condizionali e aspettazione condizionale Esercizi su leggi condizionali e aspettazione condizionale. Siano X, Y, Z v.a. a valori in uno spazio misurabile (E, E) e tali che le coppie (X, Y ) e (Z, Y ) abbiano la stessa legge (in particolare anche

Dettagli