1 REGOLE DI INTEGRAZIONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 REGOLE DI INTEGRAZIONE"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x) g(x)df(x) dove nell second espressione bbimo uso l simbologi del differenzile: df(x) = f (x)dx dg(x) = g (x)dx. L regol di inegrzione per pri discende dll regol di derivzione del prodoo di due funzioni e dll linerià dell inegrle indefinio: (fg) (x) = f (x)g(x) + g (x)f(x) g (x)f(x) = (fg) (x) f (x)g(x) d cui, inegrndo g (x)f(x)dx = (fg) (x)dx f (x)g(x)dx Per rrivre ll regol di inegrzione per pri bs or osservre che f(x)g(x) è un primiiv di (fg) (x), d cui g (x)f(x)dx = f(x)g(x) f (x)g(x)dx. ESEMPIO ln(x)dx = x ln(x) x + C L precedene uguglinz si può fcilmene verificre semplicemene derivndo le funzioni x ln(x) x+c e conrollndo che l deriv è esmene ln(x). Tuvi queso non spieg come si può rrivre rovre ques formul. In queso compio ci iu l regol di inegrzione per pri. Infi prendendo f(x) = ln(x) e g(x) = x si oiene ln(x)dx = x ln(x) x d ln(x)dx = x ln(x) dx = x ln(x) dx = x ln(x) x + C x x dx OSSERVAZIONE, in effei vremmo dovuo scrivere che le relzione vle per x (, + ) infi per x non h senso clcolre ln(x).

2 Inolre possimo clcolre, d esempio, il seguene inegrle definio e ln(x)dx = x ln(x) x e = e ln(e) e ( ln() ) = e e ( ) = ESEMPIO ln( + x )dx = x ln( + x ) x + rcn(x) + C L precedene uguglinz si può fcilmene verificre semplicemene derivndo le funzioni x ln( + x ) x + rcn(x) + C e conrollndo che l deriv è esmene ln( + x ). Tuvi queso non spieg come si può rrivre rovre ques formul. In queso compio ci iu l regol di inegrzione per pri. Infi prendendo f(x) = ln( + x ) e g(x) = x si oiene ln( + x )dx = x ln( + x ) x d dx ln( + x )dx = x ln( + x ) x + x xdx = x ln( + x x ) + x dx per proseguire v osservo che d cui x + x = x + x + + x + x = x + + x + x = + x ln( + x x )dx = x ln(x) + x dx [ ( = x ln( + x ) ) + x [ = x ln( + x ) dx ] dx + x dx = x ln( + x ) [x rcn(x) + C] = x ln( + x ) x + rcn(x) + C ] Inolre possimo clcolre, d esempio, il seguene inegrle definio ln( + x )dx = x ln( + x ) x + rcn(x) = ln( + ) + rcn() [ ln( + ) + rcn() ] = ln + π 4 = ln + π

3 ESEMPIO 3 xe x dx = (x + ) e x + C L precedene uguglinz si può fcilmene verificre semplicemene derivndo le funzioni (x+) e x + C e conrollndo che l deriv è esmene xe x. Tuvi queso non spieg come si può rrivre rovre ques formul. In queso compio ci iu l regol di inegrzione per pri. Infi prendendo f(x) = x e g(x) = e x di modo che f (x) = e g (x) = e x si oiene xe x dx = x( e x ) ( e x )dx = xe x + e x dx = xe x + ( e x ) + C = (x + ) e x + C Inolre possimo clcolre, d esempio, il seguene inegrle definio xe x dx = (x + ) e x ) = ( + ) e [ ( + ) e ] = e +. È ineressne nore che, nell inervllo [, ], l funzione xe x è sempre mggiore o ugule e minore o ugule e quindi ci speimo che l inegrle xe x dx veng un numero compreso r ed. A riprov osservimo che il numero che ci è venuo di clcoli è /e che effeivmene è un numero compreso r e. Ovvimene queso fo d solo NON GARANTISCE che il cono effeuo si giuso, MA, IMPORTANTE, se ci fosse venuo un numero mggiore di OPPURE un numero minore di vremmo pouo ffermre che vevmo fo un qulche errore. IMPORTANTE: se durne un esme vi dovesse cpire un siuzione simile, cerce di rovre dove s l errore, m se non lo rove, vi prego di scrivere un frse simile ll seguene: in queso momeno non cpisco dove è l errore, m ci deve essere un errore perché il risulo non è plusibile.. REGOLA DI INTEGRAZIONE PER SOSTITUZIONE Si F un primiiv di f, ossi F () = f(), e si g(x) un funzione derivbile, con deriv g (x) coninu, llor F (g(x)) è un primiiv di f(g(x))g (x), OSSIA se f(x), dx = F (x) + C llor f(g(x))g (x) dx = F (g(x)) + C

4 IMPORTANTE ricordndo che g (x)dx = dg(x) è il DIFFERENZIALE DI g(x) SI USA SCRIVERE f(g(x))g (x) dx = f(g(x)) dg(x) = F (g(x)) + C SCHEMA DI DIMOSTRAZIONE: BASTA VERIFICARE CHE F (g(x)) si un primiiv di f(g(x))g (x), ossi bs verificre che l deriv di F (g(x)) + C si ugule f(g(x)) g (x) e ciò segue immedimene dll formul di derivzione dell funzione compos: (d/dx)f (g(x)) + C = F (g(x)) g (x) + = f(g(x))g (x). ESEMPIO DI APPLICAZIONE sin(x)(cos(x)) dx = ( cos(x)) cos (x) dx = cos (x) d cos(x) Poiché d = 3 /3 + C con l formul di inegrzione per sosiuzione possimo ffermre che sin(x) cos (x) dx = ( cos(x)) cos (x) dx = cos (x) d cos(x) = cos 3 (x)/3 + C e quindi, d esempio, π sin(x) cos (x) dx = cos 3 (x)/3 π = cos 3 (π)/3 ( cos 3 ()/3) = ( ) 3 /3 + 3 /3 = /3 OSSERVAZIONE IMPORTANTE: Se vese dimenico il segno nell primiiv, vi srebbe venuo /3. M un inegrle negivo srebbe so un risulo impossibile, in quno l funzione f(x) = sin(x) cos (x) [, ] per x nell inervllo di inegrzione [, π] e, quindi, ANCHE PRIMA DI ESEGUIRE I CALCOLI, SAPPIAMO CHE l inegrle deve essere un numero in [, π]. IMPORTANTE: se durne un esme vi dovesse cpire un siuzione simile, cerce di rovre dove s l errore, m se non lo rove, vi prego di scrivere un frse simile ll seguene: in queso momeno non cpisco dove è l errore, m ci deve essere un errore perché il risul- o non è plusibile. Esercizi dl Foglio 7 dell Esercizirio in pricolre: D. 4 L re compres r l funzione y = sin(x) e l cord pssne per i suoi puni di sciss e π/ vle:

5 4A π/4 4B π/ 4C 4D π/4 4E / Prim di uo v osservo che l formulzione più corre, m sicurmene più lung, dell esercizio srebbe l seguene L re compres r il grfico dell funzione f(x) = sin(x) e l cord pssne per i suoi puni di sciss e π/ vle: In ogni cso per inizire clcolimo gli esremi dell cord ossi i puni P = (, f() ) = (, sin() ) = (, ) P = ( π/, f(π/) ) = ( π/, sin(π/) ) = (, ), e subio dopo l equzione dell cord pssne per quesi due puni: y y y y = x x x x ossi y = x π/ ossi y = x Figure : Osservre che il grfico dell funzione f(x) = sin(x) è sempre l di soo dell cord in quno per x [, π/] si h sin(x) x e quindi sin(x) x. Per clcolre l re richies bs quindi clcolre π/ π/ [ ( x) ( sin(x))] [ dx = π x) + sin(x))] dx π [ ] π/ = π x / cos(x) = π (π/) ( ) = π/4

6 Infi v osservo che il grfico dell funzione f(x) = sin(x), per x [, π/] è sempre l di soo dell cord in quno l funzione f(x) = sin(x) è convess nell inervllo [, π/], come si deduce immedimene dl fo che ( come si vede subio d f (x) = sin(x) per x [, π/] d dx f(x) = d dx ( sin(x)) = ( cos(x)) = cos(x) e quindi d dx f(x) = d ) dx ( cos(x)) = ( sin(x)) = sin(x) e quindi è chiro che per clcolre l re bs clcolre l differenz r l re dell regione r l cord e l sse x: e l re dell regione r y = sin(x) e l sse x, come illusro nell seguene figur: ATTENZIONE: in genere qundo si prl di re di un regione si inende l re fisic: MA È IMPORTANTE RICORDARE CHE b rppresen l re lgebric, ossi, AD ESEMPIO, [ f() g() ] d Nell figur precedene, l re lgebric corrisponde ll re fisic dell pre color in blu meno l re fisic color in rosso. Se si volesse oenere invece l re fisic dell regione delimi di grfici delle funzioni f e g e dlle ree x = ed x = b si dovrebbe clcolre invece b x f() g() d = [f() g()] d + b x [g() f()] d

7 dove x è il puno (unico nel cso dell figur) in cui f(x) = g(x) ALTRI ESERCIZI SVOLTI (sempre dl Foglio 7) D. Il vlore medio che l funzione x + ssume nell inervllo (, ) è circ A, B, C,4 D,8 E,5 Si r di clcolre il vlore medio di f(x) = x b b f() d = + d = = + d( ) = [( + ) ] (/)+ = (/) + +, ossi + d + d( + ) = ( ) / + d( + ) = 3/ 3/ 3/ 3/ = ( 3/ ) =, = (circ), 3 D. Un primiiv di y = x 3 + 4x pssne per il puno di coordine (; ) è A y = x x3 B y = 4 x4 + 3 x3 5 C y = x 3 + 4x 5 D y = x4 + x 3 E nessun primiiv può pssre per (, ) ATTENZIONE srebbe più correo, m più lungo, scrivere Un primiiv di f(x) = x 3 + 4x il cui grfico pss per il puno di coordine (; ) è Si r di rovre, r ue le primiive F (x) di f(x) = x 3 + 4x, quell per cui F () =. Sppimo che ue le primiive di f(x) = x 3 + 4x sono del ipo e quindi cerchimo C in modo che e quindi l soluzione è x x3 3 + C C = C = + 4 x ALTERNATIVAMENTE SOLUZIONE PIU SEMPLICE x 4 ( + 4 ) = = 5 6 si r di individure quli r le funzioni de sono primiive di f(x) = x 3 + 4x conrollre se F () =. e per quese

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Capitolo 3 - Trasformata di Fourier (I)

Capitolo 3 - Trasformata di Fourier (I) Appuni di Teori dei Segnli Cpiolo 3 - Trsform di Fourier (I Definizione... Proprieà generli...3 Osservzione: nlogie con lo sviluppo in serie di Fourier...4 Esempio: rsform del rengolo...5 Esempio: rsform

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

22.1. Analisi asintotica: il metodo della fase stazionaria.

22.1. Analisi asintotica: il metodo della fase stazionaria. .. Anlisi sinoic: il meodo dell fse szionri.... Nozioni sndrd dell nlisi sinoic. I simboli O, o e sono definii nel modo seguene. Supponimo che f(z) e g(z) sino funzioni complesse definie in qulche regione

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) Fisic Generle A. Esercizi di Cinemic hp://cmpus.cib.unibo.i/57/ Esercizio 1 Un puno merile è incolo muoersi luno un uid reiline. Al empo il puno merile si ro in quiee. Il puno merile cceler con ccelerzione:

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Clcolo Integrle Nello studio del clcolo differenzile si è visto come si può ssocire d un funzione l su derivt. Il clcolo integrle si occup del problem inverso: dt un funzione f è possibile determinre

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Lezione 16 Derivate ed Integrali

Lezione 16 Derivate ed Integrali Lezione 16 Derivte ed Integrli Frnk Sullivn 1 Dicembre 11 1 Prim Or Compiti di letture ed esercizi per 3 Dicembre Durnte l lezione di oggi pplicheremo le regole per differenzire funzioni l clcolo di integrli.

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

Trasformate di Laplace nel campo reale

Trasformate di Laplace nel campo reale Trsformte di Lplce nel cmpo rele Funzioni generlmente continue Definizione. Un funzione f si dice generlmente continu in (, b) se esistono un numero finito di punti x = < x < < x n = b tli che f è definit

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Clcolo Integrle Nello studio del clcolo differenzile si è visto come si può ssocire d un funzione l su derivt. Il clcolo integrle si occup del problem inverso: dt un funzione f è possibile determinre

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici 8 Sollecizioni semplici TORSIONE SEMPLICE 1 1 Anlisi dell orsione semplice Si verific l sollecizione di orsione semplice qundo l risulne delle forze eserne reliv qulunque sezione è null e le forze eserne

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

Domande. 1. Sì. v x 12 x 23

Domande. 1. Sì. v x 12 x 23 Cpiolo Il moo reilineo Domnde. Sì.. Consider i quro semfori (e le loro disnze relive) mosri in figur. Supponi che ll isne 0 s il semforo diveni verde, menre gli lri sono ncor rossi. Il semforo deve divenre

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

x Interpolazione polinomiale, la matrice di Vandermonde

x Interpolazione polinomiale, la matrice di Vandermonde 4.. INTEROLZIONE 4. Inerpolzione Il problem generle è quello di deerminre un espressione nliic o grfic per un funzione fx) di cui si conoscono un numero finio di puni del grfico x i, y i ). Quindi si cerc

Dettagli

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato.

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato. MULIIBRAORI i dice muliirore un circuio che può ere solo due possiili si dell usci. li si possono essere di due ipi: so sile, so qusi sile. o sile: il circuio rimne in queso so finché non si ineriene dll

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

3. Velocità istantanea

3. Velocità istantanea 3. Velocià isnne E possibile ssocire un velocià d ogni singolo isne? Immginimo un uo che rversi il cenro cidino ed osservimone il chimero sul cruscoo: qundo dimo gs l lnce si spos indicndo vlori grndi,

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Prima parte (Argomenti di Analisi Matematica 1)

Prima parte (Argomenti di Analisi Matematica 1) Registro delle lezioni del corso di Anlisi Mtemtic 2 Università di Firenze - Fcoltà di Ingegneri Corso di Lure in Ingegneri Meccnic M Z.. 20/202 - Prof. M.Ptrizi Per Prim prte (Argomenti di Anlisi Mtemtic

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 23 Ottobre 2013 1 Spzio L 2 Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s Eercizione n 3 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gbriele F)A.A. 1/11 Cinemic (b) 1. Un rzzo eore, lncio in ericle, le per 1 min con ccelerzione cone = m/, dopodiché, conumo uo il combuibile,

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli