Compressione Dati. Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compressione Dati. Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p."

Transcript

1 Compressione Dati Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p.1/21

2 Compressione Dati Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente. Risultato non pratico risultati valgono per n codifica basata su insieme sequenze tipiche. p.1/21

3 Compressione Dati Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente. Risultato non pratico risultati valgono per n codifica basata su insieme sequenze tipiche Vedremo: limite teorico è raggiunto da codici di uso comune.. p.1/21

4 Notazione Assumiamo per semplicità la seguente notazione : D = {0, 1,..., D 1} D : insieme di tutte le possibili sequenze finite sull alfabeto D D = D D 2 D 3... C : codice C(x) : parola codice associata al simbolo x X l(x) : lunghezza della parola x. p.2/21

5 Codici a lunghezza variabile Def. Un codice sorgente D-ario per una v.c. X è una funzione da X in D. Esempio X = ( testa 1 2 croce C(testa) = 00, C(croce) = 11, l(testa) = 2, l(croce) = ), D = {0, 1}. p.3/21

6 Lunghezza media di un codice Def. La lunghezza media L(C) di un codice C per una v.c. X con d.d.p. P (x) è data da L(C) = x X p (x) l (x) = E[l(X)] Esempio X v.c. con valori in {1, 2, 3, 4}, D = {0, 1}, P (X = 1) = 1/2 C(1) = 0 P (X = 2) = 1/4 C(2) = 10 P (X = 3) = 1/8 C(3) = 110 P (X = 4) = 1/8 C(4) = 111 L(C) = = 1.75 = H(X). p.4/21

7 Nell esempio precedente si ha H(X) = L(C) ma questa uguaglianza non è vera in generale. Esempio X v.c. con valori in {1, 2, 3}, D = {0, 1}, P (X = 1) = 1/3 C(1) = 0 P (X = 2) = 1/3 C(2) = 10 P (X = 3) = 1/3 C(3) = 11 H(X) = log 3, L (C) = ( ) = 5 3 = p.5/21

8 Codici non singolari Def. Un codice è detto non singolare se ad ogni x X viene assegnata una diversa stringa in D, cioè x i x j C (x i ) C (x j ) I codici presentati negli esempi precedenti sono tutti non singolari.. p.6/21

9 Estensione di un codice Def. L estensione k ma C k di un codice C è una funzione che associa ad ogni x 1... x k X la stringa in D C k (x 1,..., x k ) = C(x 1 )C(x 2 )... C(x k ), L estensione C di C associa a ciascuna sequenza x 1... x n di lunghezza finita su X una stringa in D : C = C 1 C 2 C 3... Esempio C(x 1 ) = 00, C(x 2 ) = 11 C (x1x2) = p.7/21

10 Codici univocamente decodificabili Osservazione: Associare a parole sorgente diverse parole codice diverse non garantisce che il codice sia univocamente decodificabile: Può succedere C (x 1,..., x m ) = C (x 1,..., x n) nonostante si abbia C(x i ) C(x j ) per ogni i e j. Es. C = {10, 100, 01, 101} = = p.8/21

11 Codici univocamente decodificabili Osservazione: Associare a parole sorgente diverse parole codice diverse non garantisce che il codice sia univocamente decodificabile: Può succedere C (x 1,..., x m ) = C (x 1,..., x n) nonostante si abbia C(x i ) C(x j ) per ogni i e j. Es. C = {10, 100, 01, 101} = = Def. Un codice si dice univocamente decodificabile se la sua estensione è non singolare.. p.8/21

12 Codici prefissi Osservazione: Puó accadere che occorre attendere che la sequenza codificata sia trasmessa quasi interamente prima di poter iniziare la decodifica Es. C = {10, 100, 01, } = ? = p.9/21

13 Codici prefissi Osservazione: Puó accadere che occorre attendere che la sequenza codificata sia trasmessa quasi interamente prima di poter iniziare la decodifica Es. C = {10, 100, 01, } = ? = Def. Un codice si dice prefisso se nessuna parola di codice è prefissa di un altra.. p.9/21

14 Codici prefissi Osservazione: Puó accadere che occorre attendere che la sequenza codificata sia trasmessa quasi interamente prima di poter iniziare la decodifica Es. C = {10, 100, 01, } = ? = Def. Un codice si dice prefisso se nessuna parola di codice è prefissa di un altra. Un codice prefisso é univocamente decodificabile con ritardo finito. p.9/21

15 . p.10/21

16 Esempi di codici X Singolare Non Singolare U.D. non prefisso Prefisso Ambiguo Ambiguo Per decodificare Es. occorre scandire l intera sequenza Es Si det. I simbolo solo alla fine. p.11/21

17 Alberi e Codici Prefissi Dato un codice D-ario C prefisso è possibile associare a C un albero D-ario: i rami dell albero sono etichettati con le lettere dell alfabeto D-ario {0,..., D 1} ciascuna parola di C possa essere ottenuta leggendo le etichette dei rami lungo il percorso dalla radice ad una certa foglia dell albero.. p.12/21

18 Esempio Dato il codice {111, 110, 10, 0} sull alfabeto D = {0, 1}, possiamo costruire l albero D-ario:. p.13/21

19 Disuguaglianza di Kraft La disuguaglianza di Kraft lega la lunghezza delle parole codice alla cardinalità dell alfabeto. (Parte Diretta) Per ogni codice prefisso D-ario, le lunghezze delle parole codice l 1,..., l m devono soddisfare la seguente disugluaglianza: m D l i 1 i=1 (Parte Inversa) Se l 1,..., l m soddisfano la disuguaglianza di Kraft, allora esiste un codice prefisso D-ario le cui parole hanno lunghezze l 1..., l m.. p.14/21

20 Dimostrazione parte diretta Dim. C: codice prefisso D-ario con lunghezze delle parole codice l 1,..., l m. l max : lunghezza massima delle parole di C altezza massima dell albero D-ario associato a C T : albero D-ario completo di altezza l max (T ha D l max foglie). Trasformiamo T nell albero associato a C.. p.15/21

21 Esempio. p.16/21

22 per ogni lunghezza l i, i = 1,..., m, dobbiamo eliminare un sottoalbero di altezza l max l i per ogni i = 1,..., m, vengono eliminate D l max l i foglie in totale vengono eliminate i D l max l i foglie poichè il numero di foglie eliminate non può superare il numero totale delle foglie di T si ha D l max l i D l max i i D l i 1. p.17/21

23 Dimostrazione parte inversa Dim. Supponiamo che l 1,..., l m soddisfano la disuguaglianza di Kraft l 1... l m (se così non fosse potremmo sempre riordinarle). Consideriamo l albero D-ario completo di altezza l m e proviamo a trasformarlo in un albero che rappresenta un codice D-ario prefisso: Prima di tutto etichettiamo i rami uscenti da ciascun nodo interno con gli interi 0, 1,..., D 1.. p.18/21

24 Per ogni i = 1,..., m: consideriamo il primo nodo disponibile di profondità l i (primo secondo l ordine lessicografico delle parole che si leggono andando dalla radice ai nodi). Eliminiamo il sottoalbero di questo nodo dall albero ed associamo alla foglia che abbiamo appena creato la parola codice i (vedi esempio). Eliminiamo D l m l i foglie Al passo i-esimo in totale abbiamo eliminato i j=1 Dl m l j foglie.. p.19/21

25 Esempio Lunghezze 1,2,2,2,2,2,3,3,3 che soddisfano la disuguaglianza di Kraft, D = {0, 1, 2}.. p.20/21

26 Il numero di foglie eliminte nei primi i (i < m) passi è i D l m l j = i+1 D l m l j D l m l i+1 D l m m D l j D l m l i+1 j=1 j=1 j=1 Poichè l 1,..., l m soddisfano la dis. di Kraft si ha D l m m j=1 D l j D l m l i+1 D l m D l m l i+1 D l m foglie eliminate al passo i-esimo D l m l i+1 possiamo eseguire il passo (i + 1)-esimo.. p.21/21

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza vale sse D l i = p i.. p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza

Dettagli

Def. La lunghezza media L(C) di un codice C per una v.c. Obiettivo: Codice ottimo rispetto alla lunghezza media. Lunghezza media di un codice

Def. La lunghezza media L(C) di un codice C per una v.c. Obiettivo: Codice ottimo rispetto alla lunghezza media. Lunghezza media di un codice Lunghezza media di un codice Def. La lunghezza media L(C) di un codice C per una v.c. X con d.d.p. P(x) è data da L(C) = x X p (x) l (x) = E[l(X)] Obiettivo: Codice ottimo rispetto alla lunghezza media

Dettagli

Codifica delle sequenze sorgente

Codifica delle sequenze sorgente Codifica delle sequenze sorgente Sorgente emette sequenza di simboli appartenenti ad un alfabeto X che vengono codificati come sequenze di simboli di un alfabeto D-ario.. p.1/?? Codifica delle sequenze

Dettagli

Lezione 4 Ugo Vaccaro

Lezione 4 Ugo Vaccaro Teoria dell Informazione II Anno Accademico 205 206 Lezione 4 Ugo Vaccaro Il risultato principale che abbiamo scoperto nella lezione scorsa è il seguente: data una sorgente DSSM X, X 2,..., X i,... con

Dettagli

carattere a b c d e f cod. var

carattere a b c d e f cod. var Codici prefissi Un codice prefisso è un codice in cui nessuna parola codice è prefisso (parte iniziale) di un altra Ogni codice a lunghezza fissa è ovviamente prefisso. Ma anche il codice a lunghezza variabile

Dettagli

Teoria dell informazione

Teoria dell informazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria dell informazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di

Dettagli

STII. Probabilità e proprietà dei logaritmi

STII. Probabilità e proprietà dei logaritmi STII Durante una trasmissione, il segnale naviga alcuni minuti prima di arrivare a destinazione. Durante il percorso, il segnale è soggetto a rumore, quindi può capitare che il messaggio che è stato inviato

Dettagli

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 Complementi di Algoritmi e Strutture Dati Suffix Trees Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 In generale, possiamo trovare tutte le occorrenze di un pattern y in un testo x in tempo O(

Dettagli

STII/Teoria dell Informazione

STII/Teoria dell Informazione STII/Teoria dell Informazione Docente: Prof. Luisa Gargano Classe: Matricole Pari Testo principale: T. Cover, J. Thomas, Elements of Information Theory, Wiley. p./28 Un pò di storia La Teoria dell informazione

Dettagli

Programmazione Greedy I codici di Huffman

Programmazione Greedy I codici di Huffman Programmazione Greedy I codici di Huffman Codifica dell informazione La rappresentazione ordinaria dell informazione prevede l impiego di un numero costante di bit; per esempio ad ogni carattere del codice

Dettagli

Introduzione alla codifica entropica

Introduzione alla codifica entropica Compressione senza perdite Il problema Introduzione alla codifica entropica Abbiamo un alfabeto di simboli A (nota: non è detto che gli elementi di A siano numeri) Sappiamo che il simbolo a A si presenta

Dettagli

Lezione 4 Ugo Vaccaro

Lezione 4 Ugo Vaccaro Teoria dell Informazione II Anno Accademico 206 207 Lezione 4 Ugo Vaccaro Nella lezione scorsa abbiamo derivato il seguente risultato. Teorema Per ogni codifica UD per una sorgente DSSM con alfabeto sorgente

Dettagli

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i Definizioni X : sorgente di informazione discreta; X k : messaggi prodotti da X ; ogni messaggio è una v.c.d., k è l'indice temporale; alfabeto di X : insieme {x,..., x } degli messaggi che la sorgente

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Linguaggi e Grammatiche Liberi da Contesto

Linguaggi e Grammatiche Liberi da Contesto N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica

Dettagli

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 2014/15 1 a prova in itinere 13 gennaio 2015 ESERCIZIO 1 Si risolva l equazione di ricorrenza al variare del parametro reale a>1. T (n) = 27 n a T + n 2 log n a ESERCIZIO 2 Si ordinino

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

Algoritmi e Strutture Dati Laboratorio 15/12/2008. Daniele Loiacono

Algoritmi e Strutture Dati Laboratorio 15/12/2008. Daniele Loiacono Algoritmi e Strutture Dati Laboratorio 15/12/2008 Problema della compressione Rappresentare i dati in modo efficiente Impiegare il numero minore di bit per la rappresentazione Goal: risparmio spazio su

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

15 Informazione e Predizione

15 Informazione e Predizione (FX) Teoria dell Informazione e della Trasmissione 5 Informazione e Predizione Docente: Nicolò Cesa-Bianchi versione 4 maggio 03 Consideriamo una sorgente X, p. Dallo studio della codifica sorgente, sappiamo

Dettagli

Codifica di Huffman e Lempel-Ziv-Welch A L B E R T O B E L U S S I A N N O A C C A D E M I C O /

Codifica di Huffman e Lempel-Ziv-Welch A L B E R T O B E L U S S I A N N O A C C A D E M I C O / Codifica di Huffman e Lempel-Ziv-Welch 1 A L B E R T O B E L U S S I A N N O A C C A D E M I C O 2 0 1 0 / 2 0 1 1 Tipi di compressione Senza perdita (lossless): permettono di ricostruire perfettamente

Dettagli

TRIE (albero digitale di ricerca)

TRIE (albero digitale di ricerca) TRIE (albero digitale di ricerca) Struttura dati impiegata per memorizzare un insieme S di n stringhe (il vocabolario V). Tabelle hash le operazioni di dizionario hanno costo O(m) al caso medio per una

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi Argomenti della Lezione 1) Codici convoluzionali 2) Circuito codificatore 3) Diagramma a stati e a traliccio 4) Distanza libera 5) Algoritmo di Viterbi 1 Codici convoluzionali I codici convoluzionali sono

Dettagli

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Grammatiche Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Esempio dei numeri interi Si consideri il linguaggio

Dettagli

Indice. A Riassunto formule principali sulla Teoria dell Informazione per sorgenti135

Indice. A Riassunto formule principali sulla Teoria dell Informazione per sorgenti135 Indice 8 Teoria dell Informazione per sorgenti 123 8.1 Introduzione.................................... 123 8.2 Codifica di sorgente............................... 123 8.2.1 Classificazione tecniche di

Dettagli

Il teorema di Schwarz

Il teorema di Schwarz Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate

Dettagli

ASPETTI MATEMATICI DI ALCUNI ALGORITMI DI COMPRESSIONE

ASPETTI MATEMATICI DI ALCUNI ALGORITMI DI COMPRESSIONE Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica ASPETTI MATEMATICI DI ALCUNI ALGORITMI DI COMPRESSIONE Tesi di Laurea in Fisica

Dettagli

1 Esercizio - caso particolare di ottimalità

1 Esercizio - caso particolare di ottimalità Corso: Gestione ed elaborazione grandi moli di dati Lezione del: 5 giugno 2006 Argomento: Compressione aritmetica e Tecniche di compressione basate su dizionario Scribes: Andrea Baldan, Michele Ruvoletto

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 09.03.09 1. Sia n in intero positivo fissato, e sia V un sottospazio di R n. Il massimo numero di vettori linearmente indipendenti in V viene detto dimensione di V, e viene

Dettagli

Unità 30. Sommario. Bibliografia. Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi. [Bel] -- [Ros] 9.

Unità 30. Sommario. Bibliografia. Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi. [Bel] -- [Ros] 9. Unità 30 Sommario Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi Bibliografia [Bel] -- [Ros] 9.3 [Pap] -- 1 Auto-informazione di un evento Prima di effettuare un esperimento

Dettagli

APPUNTI DI TEORIA DEI CODICI

APPUNTI DI TEORIA DEI CODICI UNIVERSITÀ DI CATANIA FACOLTÀ DI INGEGNERIA APPUNTI DI TEORIA DEI CODICI Autori: L. Cauchi V. La Terra R. Grasso F. Gullo Coperto da diritti di c copyright Ho letto questi appunti scritti da Lucia Cauchi,

Dettagli

La codifica di sorgente

La codifica di sorgente Tecn_prog_sist_inform Gerboni Roberta è la rappresentazione efficiente dei dati generati da una sorgente discreta al fine poi di trasmetterli su di un opportuno canale privo di rumore. La codifica di canale

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Informazione e sua rappresentazione: codifica

Informazione e sua rappresentazione: codifica Corso di Calcolatori Elettronici I A.A. 2011-2012 Informazione e sua rappresentazione: codifica Lezione 2 Prof. Antonio Pescapè Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica

Dettagli

Esercitazione 4 Algoritmi greedy

Esercitazione 4 Algoritmi greedy Esercitazione 4 Algoritmi greedy Problema 9 (es.2 appello 18/02/2016 modulo 2) Nel museo Tor VerLouvre c è un lungo corridoio rettilineo in cui sono esposti n quadri nelle posizioni 0 q 1 < q 2 < q 3

Dettagli

Dizionari Liste invertite e Trie

Dizionari Liste invertite e Trie Dizionari Liste invertite e Trie Lucidi tratti da Crescenzi Gambosi Grossi, Strutture di dati e algoritmi Progettazione, analisi e visualizzazione Addison-Wesley, 2006 Dizionari Universo U delle chiavi

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Codifica sorgente e canale

Codifica sorgente e canale Codifica sorgente e canale Codifica sorgente Codifica canale in Canale Compressione Codifica Decodifica Decompress. Rumoroso out Codifica sorgente: comprimere i dati per rimuovere ridondanza Codifica canale:

Dettagli

Codici. Introduzione. Sia A un insieme finito di simboli e C=A n l insieme di tutte le parole composte da n simboli di A

Codici. Introduzione. Sia A un insieme finito di simboli e C=A n l insieme di tutte le parole composte da n simboli di A Codici Introduzione Sia A un insieme finito di simboli e C=A n l insieme di tutte le parole composte da n simboli di A Esempio A={0,1}, C=A 2 ={00,01,10,11} Sia C un insieme finito di N oggetti avente

Dettagli

Rappresentazione dei numeri interi in un calcolatore

Rappresentazione dei numeri interi in un calcolatore Corso di Calcolatori Elettronici I Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle

Dettagli

Alberi ed Alberi Binari

Alberi ed Alberi Binari Alberi ed Alberi Binari Il tipo di dato Albero Un albero è una struttura di data organizzata gerarchicamente. È costituito da un insieme di nodi collegati tra di loro: ogni nodo contiene dell informazione,

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Indici multilivello dinamici (B-alberi e B + -alberi) Alberi di ricerca - 1. Un esempio. Alberi di ricerca - 3. Alberi di ricerca - 2

Indici multilivello dinamici (B-alberi e B + -alberi) Alberi di ricerca - 1. Un esempio. Alberi di ricerca - 3. Alberi di ricerca - 2 INDICI MULTILIVELLO DINAMICI Indici multilivello dinamici (B-alberi e B + -alberi) Gli indici multilivello dinamici (B-alberi e B + -alberi) sono casi speciali di strutture ad albero. Un albero è formato

Dettagli

Rappresentazione dei numeri interi in un calcolatore

Rappresentazione dei numeri interi in un calcolatore Corso di Calcolatori Elettronici I A.A. 2012-2013 Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica

Dettagli

1) Probabilità di errore di trasmissione. 2) Capacità di canale. 3) Esempi di calcolo della capacità. 4) Disuguaglianza di Fano

1) Probabilità di errore di trasmissione. 2) Capacità di canale. 3) Esempi di calcolo della capacità. 4) Disuguaglianza di Fano Argomenti della Lezione 1) Probabilità di errore di trasmissione ) Capacità di canale 3) Esempi di calcolo della capacità 4) Disuguaglianza di Fano 5) Teorema inverso della codifica di canale 1 Probabilità

Dettagli

CODIFICA CANALE. Comunicazione con successo: ricevitore ottiene output sorgente. Rumore. Sorgente Cofificatore Canale. Decodificatore.

CODIFICA CANALE. Comunicazione con successo: ricevitore ottiene output sorgente. Rumore. Sorgente Cofificatore Canale. Decodificatore. CODIFICA CANALE Sorgente Cofificatore Canale Decodificatore Ricevitore Rumore Comunicazione con successo: ricevitore ottiene output sorgente. p.1/24 CODIFICA CANALE Sorgente Cofificatore Canale Decodificatore

Dettagli

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemma N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Teorema di Kleene 2 3 o 1 o 3 o 8 Teorema di Kleene Vale la seguente equivalenza: L 3 L FSL L REG Dimostrazione.

Dettagli

Laboratorio di Python

Laboratorio di Python Laboratorio di Python Alberi binari Lab15 12 Maggio 2017 Outline Correzione esercizi per oggi Alberi binari Teoria Esercizi Esercizi per casa Saluti Esercizio 1 per casa Scrivere una funzione palindroma(s)

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Algoritmo per A. !(x) Istanza di B

Algoritmo per A. !(x) Istanza di B Riduzioni polinomiali Una funzione f: T*!T* è detta computabile in tempo polinomiale se esiste una macchina di Turing limitata polinomialmente che la computi. Siano L 1 e L 2 " T* due linguaggi. Una funzione

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

Informatica Generale Homework di Recupero 2016

Informatica Generale Homework di Recupero 2016 Informatica Generale Homework di Recupero 016 docente: Ivano Salvo Sapienza Università di Roma Gruppo 1 Esercizio 1.1 Scrivere un programma C che presi in input due interi positivi a ed b (a, b > 0) calcola

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Argomenti trattati Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Informazione mi dai il numero di Andrea? 0817651831 Il numero

Dettagli

Espressioni aritmetiche

Espressioni aritmetiche Espressioni aritmetiche Consideriamo espressioni costruite a partire da variabili e costanti intere mediante applicazione delle operazioni di somma, sottrazione, prodotto e divisione (intera). Ad esempio:

Dettagli

Tecniche di compressione senza perdita

Tecniche di compressione senza perdita FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Tecniche di compressione senza perdita 2000 Pier Luca Montessoro (si veda la nota di copyright

Dettagli

Algoritmi di Ricerca

Algoritmi di Ricerca Algoritmi e Strutture Dati Autunno 01 Algoritmi di Ricerca Dip. Informatica ed Appl. Prof. G. Persiano Università di Salerno 1 Ricerca esaustiva 1 2 Backtrack 3 2.1 Backtrack per enumerazione......................................

Dettagli

Informazione e sua rappresentazione: codifica

Informazione e sua rappresentazione: codifica Corso di Calcolatori Elettronici I Informazione e sua rappresentazione: codifica ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Il concetto di informazione Qualunque informazione è definita

Dettagli

CODIFICA DI CARATTERI

CODIFICA DI CARATTERI CODIFICA DI CARATTERI Associando un simbolo dell alfabeto ad ogni numero possiamo codificare tutte le lettere Codifica ASCII (American Standard Code for Information Interchange): Caratteri speciali, punteggiatura,

Dettagli

Algoritmi e Strutture Dati. HeapSort

Algoritmi e Strutture Dati. HeapSort Algoritmi e Strutture Dati HeapSort Selection Sort: intuizioni L algoritmo Selection-Sort scandisce tutti gli elementi dell array a partire dall ultimo elemento fino all inizio e ad ogni iterazione: Viene

Dettagli

Comunicazioni Elettriche Esercizi

Comunicazioni Elettriche Esercizi Comunicazioni Elettriche Esercizi Alberto Perotti 9 giugno 008 Esercizio 1 Un processo casuale Gaussiano caratterizzato dai parametri (µ = 0, σ = 0.5) ha spettro nullo al di fuori dellintervallo f [1.5kHz,

Dettagli

Definizioni. Soluzione ottima: migliore soluzione possibile Soluzione ottima localmente: soluzione ottima in un dominio contiguo. Il paradigma greedy

Definizioni. Soluzione ottima: migliore soluzione possibile Soluzione ottima localmente: soluzione ottima in un dominio contiguo. Il paradigma greedy Il paradigma greedy Paolo Camurati, Fulvio Corno, Matteo Sonza Reorda Dip. Automatica e Informatica Politecnico di Torino Definizioni Soluzione ottima: migliore soluzione possibile Soluzione ottima localmente:

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Alberi AVL Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 26/7 Alberi AVL Definizione (bilanciamento in altezza): un albero è bilanciato

Dettagli

Alberi binari (radicati e ordinati) della radice Il padre del nodo 5 e del nodo 3

Alberi binari (radicati e ordinati) della radice Il padre del nodo 5 e del nodo 3 Alberi binari (radicati e ordinati) Il figlio sinistro della radice Il padre del nodo 5 e del nodo 3 4 3 Il figlio sinistro del nodo 2 2 5 1 6 7 8 9 La radice Il figlio destro della radice una foglia Figlio

Dettagli

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco.

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco. Alberi Alberi Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo Fosco Dora Drogo Frodo Dudo Daisy Alberi Gli alberi sono una generalizzazione

Dettagli

1 Entropia: Riepilogo

1 Entropia: Riepilogo Corso: Gestione ed elaborazione grandi moli di dati Lezione del: 30 maggio 2006 Argomento: Entropia. Costruzione del modello di una sorgente. Codifica di Huffman. Scribes: Galato Filippo, Pesce Daniele,

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Lezione 5. Giuditta Franco. 19 Febbraio 2008

Lezione 5. Giuditta Franco. 19 Febbraio 2008 Outline Lezione 5 Dipartimento di Informatica, Università di Verona 19 Febbraio 2008 Talk Outline Outline 1. 2. 3. Come costruire un Un esempio introduttivo L albero dei suffissi di una data stringa è

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione UANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA Fondamenti Segnali e Trasmissione Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo T c. Campioni del

Dettagli

Roberto Maieli La trasmissione dell informazione

Roberto Maieli La trasmissione dell informazione Roberto Maieli La trasmissione dell informazione Corso di AIC Sistema di comunicazione Sorgente messaggio Sistema di trasmissione Trasmettitore Canale di trasmissione segnale Ricevitore rumore messaggio

Dettagli

AUTOMA A STATI FINITI

AUTOMA A STATI FINITI Gli Automi Un Automa è un dispositivo, o un suo modello in forma di macchina sequenziale, creato per eseguire un particolare compito, che può trovarsi in diverse configurazioni più o meno complesse caratterizzate

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Strutture dati per insiemi disgiunti Servono a mantenere una collezione S = {S 1, S 2,..., S k } di insiemi disgiunti. Ogni insieme S i è individuato da un rappresentante che è un particolare elemento

Dettagli

PSPACE completezza. Un linguaggio A è PSPACE completo se. 1. A è in PSPACE, cioè esiste una TM T che accetta A con complessità di spazio polinomiale.

PSPACE completezza. Un linguaggio A è PSPACE completo se. 1. A è in PSPACE, cioè esiste una TM T che accetta A con complessità di spazio polinomiale. Sommario Il problema della verità per formule booleane pienamente quantificate è PSPACE - completo PSPACE come la classe dei giochi. Il gioco geografico generalizzato è PSPACE - completo 1 PSPACE completezza

Dettagli

Conversione Analogico/Digitale

Conversione Analogico/Digitale Conversione Analogico/Digitale 1 Fondamenti di Segnali e Trasmissione Conversione analogico/digitale (A/D) Per rappresentare numericamente un segnale continuo nel tempo e nelle ampiezze è necessario: Campionare

Dettagli

Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe.

Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe. Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe. 1) Comprendere il problema 2) Stabilire quali sono le azioni da eseguire per risolverlo 3) Stabilire la

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=

Dettagli

Alberi e alberi binari I Un albero è un caso particolare di grafo

Alberi e alberi binari I Un albero è un caso particolare di grafo Alberi e alberi binari Un albero è un caso particolare di grafo È costituito da un insieme di nodi collegati tra di loro mediante archi Gli archi sono orientati (ogni arco esce da un nodo origine ed entra

Dettagli

Problema Union-Find. 1. Il problema Union-Find. Problema Union-Find Pag. 1/18

Problema Union-Find. 1. Il problema Union-Find. Problema Union-Find Pag. 1/18 Problema Union-Find Pag. 1/18 Problema Union-Find Introduciamo in questa sezione il problema della Union-Find la cui risoluzione rappresenta un passo propedeutico alla analisi di un altro problema: l albero

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

23/10/2016. gli alberi. alcune definizioni. un esempio. LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica.

23/10/2016. gli alberi. alcune definizioni. un esempio. LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica. gli alberi Un albero è una struttura dati NON LINEARE organizzata gerarchicamente. LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica È costituito da un insieme di nodi collegati tra di loro:

Dettagli