Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 9. Congruenze lineari. Teorema Cinese del Resto."

Transcript

1 Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote a traformazo algebrche aaloghe a quelle vale per le uguaglaze. Queta lezoe è ecata alla roluzoe e problem che oo ell'ambto ella cogrueza moulo l'equvalete elle equazo lear. Defzoe 9. Sa u tero potvo. S ce cogrueza leare (moulo l problema trovare tutt umer ter x che ofao ua relazoe cogrueza ella forma ove a b Z e a. ax b (mo Propozoe 9.2 (Rolubltà cogrueze lear Sa u tero potvo e ao a b Z ove a. Sa oltre MCD( a. Allora la cogrueza leare ax b (mo ( ammette oluzoe e e olo e b. I tal cao etta x ua oluzoe partcolare le oluzo oo tutt e ol umer ter x x + (2 co Z. Dmotrazoe: Suppoamo apprma che va b. Allora ha b q per qualche q Z. I bae al Lemma Bézout (Propozoe 6.5 etoo t Z tal che a + t. D coegueza aq + tq q b. Pertato aq b tq e qu aq b (mo. Cò prova che x q è ua oluzoe (. Vcevera uppoamo che la ( ammetta oluzoe. Allora etta x ua ua oluzoe ve ax b qu ete y Z tale che ax b y oa ax y b. Poché ve ax e y egue che ve b. Sa ora x u'arbtrara oluzoe ella (. Eeo x ua oluzoe ha ax b (mo e qu ax ax (mo. Pertato ete q Z tale che a( x x q a cu euce che a ( x x q coì che l'tero ve l'tero a ( x x. Eeo a e coprm vrtù el Corollaro 6.25 alla Propozoe 6.24 egue che ve x x. Qu per qualche Z

2 x x oa x x +. Cò prova che og oluzoe ella ( è ata alla formula (2. Vcevera ha che per og Z a ax ax + a ax + ax b (mo e qu x è oluzoe ella (. Eempo 9.3 (a La cogrueza leare 24x 7 (mo 356 o è roluble: fatt MCD(35624 è par e qu o ve 7. (b La cogrueza leare 3x 2 (mo 29 è roluble: fatt MCD(3 29 poché 3 e 29 oo umer coprm. I geerale og cogrueza leare ( cu a e oo coprm è roluble. (c La cogrueza leare 2x 9 (mo 75 è roluble: fatt MCD( ve 9. Oervazoe 9.4 Suppoamo che la cogrueza leare ( abba oluzoe oa che va b. a b Allora ve ax b x e e olo e ve a x b. Qu tal cao la cogrueza ( equvale alla cogrueza leare a b x (mo (3 ove a e oo coprm. Ua oluzoe partcolare ella (3 trova el moo eguete. Prma etermao coeffcet u'ettà Bézout a + t b e qu pree x. Eerczo 9.5 Rolvere la cogrueza leare 2x 9 (mo 75. Come tablto ell'eempo 9.3 (c la cogrueza è roluble e 3. Ea equvale qu bae all'oervazoe 9.4 alla cogrueza leare 4x 3 (mo 25 S ha l'ettà Bézout 4 ( qu ua oluzoe partcolare è x 3( 6 8. Qu la oluzoe geerale è x co Z. U'altra oluzoe partcolare (che vua mmeatamete è x 7. Qu la formula per la oluzoe geerale può ache crvere ella forma x co Z. Oervazoe 9.6 La cogrueza leare ( equvale alla eguete equazoe Z : cu cercao le oluzo z Z. [ a] z [ b] (4

3 Corollaro 9.7 Se l'equazoe (4 è roluble ea ha eattamete MCD( a oluzo e precamete: z [ x ] z x + z x z x + (. 2 Dmotrazoe: I bae alla Propozoe 9.2 e la (4 è roluble la ua oluzoe geerale è z [ x ] x + ove Z. Famo u ce Z. Sao q e r l quozete e l reto r... e ella voe per. Allora { } z x + x + ( q + r x + q + r x + r zr e cò prova che og oluzoe ella (4 è comprea fra quelle elecate ell'eucato. Reta a provare che quete ultme oo a ue a ue tte. Sao h e umer ter tal che < h. Allora < x + h x + ( h < a cu egue che o ve x + h x + oa xh x (mo oa zh z. Nota L'eucato el Corollaro 9.7 può raumere ceo che la cogrueza ( ha oluzo a ue a ue o cogrue moulo che oo x x x2... x. Quete forcoo u tema completo rappreetat per le cla che oo oluzo ell'equazoe (4. Eempo 9.8 Coeramo la cogrueza leare 2x 9 (mo 75 ell'eerczo 9.5. Ea ha 3 oluzo a ue a ue o cogrue moulo 75 e precamete Le oluzo ell'equazoe [ 2] [ 9 ] x 7 x 32 x z Z 75 oo [ ] [ ] [ ] z 7 z 32 z Paamo ora alla roluzoe tem pù cogrueze lear. Teorema 9.9 (Prma formulazoe el Teorema Cee el Reto Sa u tero maggore ao 2... ter potv a ue a ue coprm e ao b b2... b ter. Allora l tema cogrueze lear

4 x b (mo x b2 (mo 2 x b (mo (5 è roluble. Ioltre etta x ua oluzoe partcolare la oluzoe geerale è ( x x + ove Z. 2 N Dmotrazoe: Sa N 2 e per og... a N. Allora per og ce o aveo per og ce alcu fattore prmo comue co egue che o ha fattor prm comue co N oa MCD( N. Pertato alla luce ella Propozoe 9.2 per og... la cogrueza leare ammette ua oluzoe c. Sa ora N x b (mo ( c N c. Famo u ce. Oervamo che per og ve N e qu ache N c. Pertato c N c + N c N c b (mo ove l'ultma cogrueza è ovuta al fatto che c verfca la (. Cò prova che c è ua oluzoe el tema (5. Sa ora Z. Allora eeo N (mo per og.. ha che x x b (mo per og... oa x è oluzoe el tema (5. Sa ora x ua oluzoe (5. Allora per og ce x x (mo qu ve x x. Poché gl oo a ue a ue coprm egue che l loro prootto oa N ve x x : cò è coegueza el Teorema Foametale ell'artmetca (Teorema 7.6. Allora per qualche Z x x N coè x x. Eempo 9. Il tema x x 2 (mo 4 6 (mo 7 è roluble. Ne etermamo la oluzoe geerale ecoo l procemeto cato ella motrazoe el Teorema Cee el Reto. S ha N N 7 N 2 4. Coeramo le cogrueze lear

5 7x 2 (mo 4 4x 6 (mo 7 Ua oluzoe ella prma è c 2 ua oluzoe ella ecoa è c 2 5. Qu la oluzoe geerale el tema è x Nc + N2c2 + N ove Z. La pù pccola oluzoe potva è x

Lezione 14. Polinomi a coefficienti interi

Lezione 14. Polinomi a coefficienti interi Peequt: Nume m Lezo - Lezoe 4 Polom a coeffcet te I queta lezoe tudamo le fattozzazo d olom a coeffcet azoal Cacuo d quet uò eee tafomato u olomo a coeffcet te tamte la moltlcazoe e u umeo teo o ullo Qud

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

ALGEBRA DELLE CLASSI DI RESTO 1 dalle classi di resto al teorema cinese e ai sistemi di congruenze lineari di Leonardo Calconi

ALGEBRA DELLE CLASSI DI RESTO 1 dalle classi di resto al teorema cinese e ai sistemi di congruenze lineari di Leonardo Calconi ALGEBRA DELLE CLASSI DI RESTO 1 alle class resto al teorema cese e a sstem cogrueze lear Leoaro Calco Che cos è ua classe resto? E l seme que umer ter che ao lo stesso resto se vs per uo stesso tero. {...,

Dettagli

Esercitazione V: Sintesi di una variabile quantitativa: variabilità.

Esercitazione V: Sintesi di una variabile quantitativa: variabilità. Eerctazoe V: Ste d ua varable quattatva: varabltà. Eerczo Calcolare lo cotameto emplce medo dalla medaa e dalla meda artmetca, la varaza, lo carto quadratco medo e l coeffcete d varazoe della eguete dtrbuzoe:

Dettagli

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione.

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione. Dvsbltà e umer prm Sao a,b elemet dell seme Z degl ter relatv Dcamo che a dvde b, smbol a b, se b è multplo d a, ossa se esste u tero h Z tale che b ha Og tero a dvde 0 ( 0 0a ), metre l uco tero che dvde

Dettagli

Indici di Posizione: Medie Algebriche

Indici di Posizione: Medie Algebriche ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Lezione 10. Anelli e moduli noetheriani ed artiniani.

Lezione 10. Anelli e moduli noetheriani ed artiniani. Lezoe 0 Aell e modul oethera ed arta. Sa A u aello. Proozoe 0. Sa u A-modulo. Allora le eguet roretà oo equvalet. a) Og catea acedete d ottomodul d è tazoara, coè er og ucceoe d ottomodul d ete u dce tale

Dettagli

Ammortamento americano. Ammortamento americano

Ammortamento americano. Ammortamento americano mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j;

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Lezione 13. Gruppo di Galois di un polinomio.

Lezione 13. Gruppo di Galois di un polinomio. Lezoe Prerequst: Lezo 9, 0,, Gruppo d Galos d u polomo Sa F u campo, sa f ( x) F[ x] o costate d grado, sa K u campo d spezzameto d f (x) su F el quale f (x) possede radc dstte Sa = ( f ) Defzoe Il gruppo

Dettagli

Le strutture in cemento armato. Ipotesi di calcolo

Le strutture in cemento armato. Ipotesi di calcolo Le trutture emeto armato Ipote d alolo Prova d ua trave.a. Feurazoe Servameto ollao 11.118 5 Dagramma Curvatura-ometo Fae III ometo (knm) 15 kn? m 1 5 Fae II Fae I V? 4.56 5.5.5.1.15.? 3.731? 1? 4? Curvatura

Dettagli

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire La meca ow e la aa geealaa o ahalaob. Noe ay Fae. Rcham eoc S ee ule oae qu eguo, vao a e ecfc ca oa 9 ull agomeo alcu cham ulle ae ow e ahalaob. Coeao ue veo-ga a eleme ua mace a quav, a, R, eemo la eguee

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

Lezione 20. Campi numerici ed anelli di Dedekind.

Lezione 20. Campi numerici ed anelli di Dedekind. Lezoe 0 Prerequst: Lezo 9 Dom ad deal prcpal Camp umerc ed aell d Dedekd Defzoe 0 S dce campo umerco og estesoe fta d Q coteuta C Osservazoe 0 Essedo Q u campo perfetto (poché è d caratterstca 0 ved la

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6 73 Sezioe a T a emplice armatura Le travi i ca co ezioe a T o a L, co oletta i compreioe, oo origiate alla collaorazioe tra la trave rettagolare e ua parte ella oletta egli impalcati egli eiici (Fig 76)

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE. Un modello di sopravvivenza selezionato è definito mediante una famiglia di funzioni di sopravvivenza

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE. Un modello di sopravvivenza selezionato è definito mediante una famiglia di funzioni di sopravvivenza Feueze eceo pe tavole elezoate FREQUENZE DI DEESSO PER TAVOLE SELEZIONATE U moello opavvveza elezoato è efto meate ua famgla fuzo opavvveza t S ; t 0 a, a, K ove è l età tea geo acuazoe t è l atuata ell

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore)

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore) /0/00 ANOVA (ANaly Of VArace U cao d tudo Coro d Stattca per l prea I put vedta d u azeda oo clafcat bae all ubcazoe (cetro, ecetro, perfera Prof. A. Regol a.a. 00-0 Sulla bae delle oervazo capoare vuole

Dettagli

Regime di capitalizzazione composta

Regime di capitalizzazione composta Regme d capalzzazoe composa Se s deposa baca, all zo dell ao, ua somma d 000 ad u asso auale uaro =0,05 oppure r=5%, dopo ao ale somma frua u eresse par a I = = 000 0,05 = 50 che aggugedos al capale zale

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1 Facoltà d Ecooma - STATISTICA - Corso d Recupero a.a. 2012-13 Prof.ssa G. Balsamo CONCETTI d BASE Carattere X [o A ] caratterstca quattatva [o qualtatva] rappresetatva d u feomeo sottoposto ad dage Popolazoe

Dettagli

CONDUZIONE TERMICA INSTAZIONARIA IN UN CILINDRO OMOGENEO E ISOTROPO

CONDUZIONE TERMICA INSTAZIONARIA IN UN CILINDRO OMOGENEO E ISOTROPO CONDUZIONE TEMICA INSTAZIONAIA IN UN CIINDO OMOGENEO E ISOTOPO V. D Aleadro Copyrght ADEPON Tutt Drtt ervat - www.adepro.t CONDUZIONE TEMICA INSTAZIONAIA IN UN CIINDO OMOGENEO E ISOTOPO Valero D AESSANDO

Dettagli

FUNZIONE DI TRASFERIMENTO

FUNZIONE DI TRASFERIMENTO FUNZIONE DI TRASFERIMENTO Molt tem damc SISO (Sgle Iput Sgle Output) pooo eere rappreetat da modell lear e tempovarat per mezzo d equazo dfferezal lear e a coeffcet cotat, che eprmoo ua relazoe fra la

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Cristiano Teodoro cristianoteodoro@virgilio.it

Cristiano Teodoro cristianoteodoro@virgilio.it Crstao Teodoro crstaoteodoro@vrglo.t La GENERAZIONE della CHIAVE PRIVATA ell algortmo crttografco RSA a chave pubblca Chave Prvata : 584878980065530830874059935334449334946579553607545068689597997343957974

Dettagli

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A.

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A. Coro di Teia delle Cotruzioi Eerizi Bozza del 1/11/005 Verifihe alle Teioi Ammiibili Verifia a preo-fleioe di ua Trave i C.A. a ura di Ezo Martielli 1 Ao aademio 004/05 Coro di Teia delle Cotruzioi Eerizi

Dettagli

MOMENTI D INERZIA DI SUPERFICI

MOMENTI D INERZIA DI SUPERFICI 1 MOMENTI INERZIA I SUPERFICI (llazoe vercale) OIETTIVO: SAPERE CALCOLARE I MOMENTI INERZIA I FIURE PIANE COMPLESSE. Momeo d erza rpeo ad ua rea (def.) Uà d mura Teorema d rapozoe (eucao + formula) Eemp

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Filtri attivi. (versione del ) Filtri attivi

Filtri attivi.  (versione del ) Filtri attivi Fltr attv www.de.g.ubo.t/per/matr/ddattca.htm veroe del --6 Fltr attv U fltro pavo è u fltro compoto olo da compoet pav I fltr attv fao uo ache d compoet attv d olto amplfcator operazoal A dffereza de

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Capitolo 5: Fattorizzazione di interi

Capitolo 5: Fattorizzazione di interi Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade

Dettagli

STIMA DI MODELLI DI SOPRAVVIVENZA PARAMETRICI

STIMA DI MODELLI DI SOPRAVVIVENZA PARAMETRICI IMA I MOEI I OPRAVVIVENZA PARAMERICI ma moell soravvvea aramerc usce er more e alra causa Moell soravvvea aramerc co comoe regressoe ma moell soravvvea aramerc usce er more e er alra causa IMA I MOEI I

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI CAPITOLO III SISTEMI DI EQUAZIONI LINEARI. GENERALITÀ Sao a,..., a,..., a, b umer real (o compless o elemet d u qualsas campo) ot. Defzoe.. U equazoe della forma: () a x +... + ax +... + a x b dces d prmo

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE aptolo TOR DI VORI VIRTUI R TRVTUR. TOR DI VORI VIRTUI R TRVTUR Il teorema de lavor vrtual, che è tato dmotrato per la trave emplce, può eere eteo n entrambe le ue forme (potament vrtual e fore vrtual

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

1. Il principio di non arbitraggio e prime applicazioni

1. Il principio di non arbitraggio e prime applicazioni . Il rco o arbtraggo e rme alcazo. Itrouzoe. Il rco o arbtraggo è l rco u cu baao qua tutt moell valutazoe Faza Matematca. Oortutà arbtraggo è la obltà realzzare u guaago certo eza alcu mego fo. L'ea equlbro

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico Laboratorio teologio per l eilizia e eeritazioi i topografia PROGETTZONE COSTRUZON E PNT Prof. Stefao Pierri - o Solatio 01-014 etoo Teioi mmiibili - ETODO TELLRE SEZONE N C.. NFLESS Progetto Noti i materiali

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

Rendite a rate costanti anticipate e. differite in regime di interessi composti

Rendite a rate costanti anticipate e. differite in regime di interessi composti Redte a rate costat regme d teress compost Redte a rate costat atcpate e dfferte regme d teress compost 1/21 Redte a rate costat atcpate e dfferte regme d teress compost RENDITE COSTANTI ANTICIPATE R s

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi.

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi. Coro di Teia delle Cotruzioi Eerizi Bozza del 7/10/005 Verifihe alle Teioi Ammiibili Determiazioe del ario utile (o ammiibile) a fleioe i ua trave otiua u tre appoggi. a ura di Ezo artielli Coro di Teia

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli