Corso di Calcolo Scientifico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Calcolo Scientifico"

Transcript

1 I Modulo del corso integrato di Calcolo Dott.ssa Maria Carmela De Bonis a.a

2 Approssimazione di Funzioni In molti problemi matematici emerge l esigenza di dover approssimare una funzione f C k ([a, b]), [a, b] R, k 0, (C k ([a, b]) spazio delle funzioni derivabili k volte in [a, b] con derivata k esima continua in [a, b]) con un altra funzione φ n di forma più semplice. Vediamo alcuni esempi.

3 Integrazione numerica Spesso non è possibile calcolare l integrale b a f (x)dx per via analitica e, anche quando questo è possibile, può accadere che nel calcolo sono coinvolte funzioni non elementari, che devono poi essere valutate (e quindi approssimate). Pertanto, si approssima la funzione integranda f con una funzione φ n opportunamente legata alla funzione f e l integrale I(f ) viene calcolato nel seguente modo b n φ n (x)dx + e n (f ) = a k f (x k ) + e n (f ) := G n (f ) + e n (f ), a k=1 dove G n (f ) prende il nome di formula di quadratura ed e n (f ) denota l errore teorico di approssimazione.

4 Approssimazione di dati sperimentali In molte applicazioni accade di avere una certa quantità di dati (solitamente elevata) e di voler descrivere l andamento del fenomeno che ha generato tali dati ed utilizzare quindi il modello, così dedotto, per prevedere valori in corrispondenza di ascisse non comprese nei dati iniziali. Tale strategia è anche utilizzata per correggere i dati sperimentali.

5 La funzione φ n si dice approssimazione della funzione f e naturalmente occorre valutare lo scostamento di φ n da f. Per misurare la bontà della funzione φ n nell approssimare la funzione f (ovvero la distanza di φ n da f ) si valuta la norma f φ n := max x [a,b] f (x) φ n(x). Se si verifica che lim f φ n = 0 n si dice che la successione {φ n } n converge ad f in norma uniforme. Naturalmente richiediamo che l ordine di convergenza sia il più grande possibile.

6 Le tecniche di approssimazione che andremo a studiare: Interpolazione mediante polinomi (un unico polinomio per tutti i dati) Funzioni polinomiali a tratti (una funzione composta da polinomi)

7 Interpolazione polinomiale (cenni) Sia f C 0 ([a, b]), [a, b] R. Supponiamo di conoscere i valori f (x 1 ),..., f (x n ) assunti da f rispettivamente nei punti x 1,..., x n tutti distinti. Lo scopo dell interpolazione polinomiale è quello di cercare un polinomio di grado minimo (eventualmente unico) che coincida con la funzione f nei punti assegnati, cioè tale che P(x i ) = f (x i ), i = 1,..., n.

8 Poichè i punti sono n, è sufficiente considerare il generico polinomio di grado n 1 che ha n coefficienti P n 1 (x) = a 0 + a 1 x + + a n 1 x n 1 ed imporre le condizioni a 0 + a 1 x a n 1 x n 1 1 = f (x 1 ) a 0 + a 1 x a n 1 x n 1 2 = f (x 2 )... a 0 + a 1 x n + + a n 1 xn n 1 = f (x n ).

9 I parametri incogniti a 0, a 1,..., a n 1 sono soluzione del seguente sistema quadrato di ordine n. 1 x 1 x n x 2 x n x n xn n 1 a 0 a 1. a n 1 = f (x 1 ) f (x 2 ). f (x n ) (1)

10 La matrice del sistema è quella di Vandermonde e il suo determinante è diverso da zero se i punti x i, i = 1,..., n, sono tutti distinti. Dunque, esiste uno ed un solo polinomio di grado n 1 tale che P n 1 (x i ) = f (x i ), i = 1,..., n. Tale polinomio viene detto polinomio interpolante e i punti x i, i = 1,..., n, vengono detti punti o nodi di interpolazione.

11 Per la costruzione del polinomio interpolante, si potrebbe procedere alla risoluzione del precedente sistema. Ma questo approccio non è consigliato sia perché le matrici di Vandermonde sono malcondizionate sia perché necessita di un elevato numero di operazioni aritmetiche. Dunque, una volta stabilita l esistenza e l unicità del polinomio interpolante, per l effettiva costruzione si utilizzano tecniche alternative ben condizionate e, possibilmente, meno costose in termini di operazioni aritmetiche.

12 Espressione del polinomio interpolante L espressione più utilizzata del polinomio interpolante è quella dovuta a Lagrange: n n (x x i ) P n (f, x) = (x k x i ) f (x k). k=1 i=1 i k Ecco perché il polinomio interpolante viene anche detto polinomio di Lagrange.

13 Se la funzione f C k ([a, b]) con k 1, e se i nodi di interpolazione sono scelti opportunamente, la successione dei polinomi di Lagrange converge uniformemente alla funzione f nell intervallo [a, b] con ordine di convergenza circa k: f P n (f ) C log n. nk Dunque più è regolare la funzione e più la convergenza del polinomio di Lagrange alla funzione f è veloce.

14 Tuttavia, in molte applicazioni si è vincolati ad usare i nodi equispaziati o comunque non è possibile scegliere i nodi dell interpolazione. In tali casi è necessario cambiare il tipo di funzione approssimante.

15 Funzioni polinomiali a tratti Suddividiamo l intervallo [a, b] in n sottointervalli con n + 1 nodi x i, i = 0,..., n, tali che a = x 0 < x 1 <... < x n = b. Una funzione S n si dice polinomiale a tratti su [a, b] se sull i-esimo sottointervallo [x i, x i+1 ] coincide con un polinomio di grado k i. Di solito k i = k i = 0,..., n 1, cioè i polinomi usati nei diversi sottointervalli hanno tutti lo stesso grado k. I punti x i, i = 0,..., n, possono essere equispaziati di passo h = b a o possono avere distanza variabile. In quest ultimo caso n poniamo h i+1 = x i+1 x i, i = 0,..., n 1, e h = max h i. i=0,...,n 1

16 L esempio più semplice di funzione polinomiale a tratti è la polinomiale lineare. Nell i esimo sottointervallo la funzione S 1 coincide con il polinomio interpolante della funzione f nei nodi x i e x i+1, cioè per x i x x i+1 si ha S 1 (f, x) = L 2 (f, x) = (x i+1 x)f (x i ) + (x x i )f (x i+1 ) x i+1 x i. 1 Se f C 1 ([a, b]) si ha 2 se f C 2 ([a, b]) si ha 3 se f C k ([a, b]) con k > 2 si ha f S 1 (f ) Ch; f S 1 (f ) Ch 2 ; f S 1 (f ) Ch 2.

17 Per la sua semplicità questo metodo è usato spesso nella pratica, ma esso non è adatto per una buona rappresentazione grafica della funzione. Infatti, poichè non stabilisce nessuna condizione sulle derivate dei polinomi nei punti x i, i = 1,..., n 1, il raccordo fra due diversi polinomi presenta in generale un punto spigoloso.

18 Funzioni spline Esistono tanti altri esempi di funzioni polinomiali a tratti, ma fra di esse, quelle più usate sono le funzioni spline. Le funzioni spline sono polinomiali che si ottengono imponendo condizioni di continuità delle derivate, senza utilizzare i valori, in generale non disponibili, delle derivate della funzione nei nodi dell intervallo. Esse sono molto utilizzate nella pratica perché consentono di ottenere ottimi risultati dal punto di vista grafico.

19 Fissato un intero d 1, S d (f, x) è una funzione spline di ordine d associata alla suddivisione dell intervallo [a, b] se: a = x 0 < x 1 <... < x n = b 1 S d (f, x) è un polinomio di grado d in ogni intervallo [x i 1, x i ], i = 1,..., n; (f ) è una funzione continua su [a, b] per ogni k = 0,..., d 1. 2 S (k) d Le funzioni spline più usate sono quelle cubiche, cioè d = 3.

20 Spline cubiche Assegnati n + 1 punti nell intervallo [a, b] tali che a = x 0 < x 1 <... < x n = b, la spline cubica S 3 (f, x) interpola la funzione y = f (x) in tali punti, cioè S 3 (f, x i ) = f (x i ), i = 0,..., n. (2) Inoltre, dalla Definizione 2 risulta S 3 (f, x) = a i + b i x + c i x 2 + d i x 3, x [x i 1, x i ], (3) i = 1,..., n, S (k) 3 (f, x+ i ) = S (k) 3 (f, x i ), i = 1,..., n 1, (4) k = 0, 1, 2. Le condizioni (2) e (4) conducono ad un sistema lineare di 4n 2 equazioni (n + 1 dalla (2) e 3(n 1) dalla (4)) nelle 4n incognite a i, b i, c i, d i definite in (3).

21 Per ottenere un sistema quadrato di ordine 4n, dobbiamo imporre due ulteriori condizioni. Imponendo le condizioni S (2) 3 (f, x 0) = S (2) 3 (f, x n) = 0 si ottengono le splines cubiche naturali. Se invece sono noti i valori della derivata prima della funzione negli estremi, imponendo le condizioni S 3(f, x 0 ) = f (x 0 ), S 3(f, x n ) = f (x n ) si ottengono le splines cubiche complete Imponendo la continuità della derivata terza della spline nei punti x 1 ed x n 1, cioè imponendo le condizioni S 3 (3)(f, x 1 ) = S 3(3)(f, x + 1 ), S 3(3)(f, x n 1 ) = S 3(3)(f, x + n 1 ) si ottengono le splines cubiche not-a-knot.

22 In generale, per ciascuna delle spline precedenti, per determinare le incognite a i, b i, c i, d i, i = 1,..., n si deve risolvere un sistema lineare a matrice piena di ordine 4n. Tuttavia, introducendo le nuove incognite M i = S 3(f, x i ), i = 0, 1,..., n. è possibile costruire univocamente S 3 (f, x) risolvendo un sistema lineare di ordine al più n + 1, la cui matrice dei coefficienti è tridiagonale simmettrica e a diagonale dominante. Date le caratteristiche della matrice dei coefficienti, la soluzione si calcola efficientemente con il metodo di Gauss senza pivoting.

23 Per quanto riguarda la stima dell errore: se f C 1 ([a, b]) si ha se f C 2 ([a, b]) si ha f S 3 (f ) Ch; f (p) S (p) 3 (f ) Ch 2 p, p = 0, 1; se f C 3 ([a, b]) si ha f (p) S (p) 3 (f ) Ch 3 p, p = 0, 1, 2; se f C 4 ([a, b]) si ha f (p) S (p) 3 (f ) Ch 4 p, p = 0, 1, 2, 3; se f C k ([a, b]) con k > 4 f (p) S (p) 3 (f ) Ch 4 p, p = 0, 1, 2, 3. Il risultato precedente ci consente di utilizzare S 3 (f, x) per approssimare f e le derivate di S 3 (f, x) per approssimare le derivate di f.

24 Il comando spline in Matlab In Matlab con la function spline vengono computate le spline cubiche not-a-knot. Sia x un vettore di nodi ed y il vettore dei valori nei nodi, entrambi di lunghezza m. Con il comando >>S=spline(x,y) viene determinata una variabile strutturata S contenente la pp form della spline. Vediamo con un esempio che cosa si intende.

25 Esempio Approssimazione di Funzioni >>x =[ 0 : 0.1 : 1]; >>y=sin(x); >>S=spline(x,y) si ha in output: S= form: pp breaks: [ ] nodi di interpolazione coefs: [10x4 double] coefficienti dei polinomi pieces: 10 numero degli intervalli order: 4 ordine della spline +1 dim: 1

26 Attraverso la funzione unmkpp è possibile estrarre i suddetti parametri assegnandoli a variabili distinte di tipo double: >>[x,c,l,k]=unmkpp(s) x è un vettore di lunghezza m contenente i nodi [0 : 0.1 : 1] in cui la spline interpola la funzione; C è la matrice di ordine (m 1)x4 la cui riga i sima contiene i coefficienti del polinomio di terzo grado relativo all intervallino i simo; l è il numero degli intervallini (numero dei punti 1); k è l ordine della spline +1.

27 La funzione mkpp viene usata per la procedura inversa di passaggio dai parametri alla pp-form. Ad esempio, se ho il vettore dei nodi x e la matrice dei coefficienti C, il comando >>Sback=mkpp(x,C) costruisce il parametro strutturato Sback.

28 Approssimazione simultanea di una funzione e della sua derivata prima La derivata prima della spline cubica relativa ai nodi x 0,..., x n e ad una funzione f è una spline di ordine 2, ossia composta da polinomi di secondo grado, continua con la sua derivata prima. In base a questo risultato e servendoci della pp-form della spline in Matlab, andiamo ad approssimare una funzione f con S 3 (f ) e la sua derivata prima f con S 3 (f ), cioé usando solo i valori della funzione f necessari per costruire la spline e senza dover calcolare (conoscere) i valori della derivata prima f nei nodi.

29 Dalla pp-form determiniamo la matrice di ordine (m 1)x3 la cui i sima riga con- tiene i coefficienti della derivata prima del polinomio di terzo grado relativo all intervallino i simo: >>Cder=[3*C(:,1) 2*C(:,2) C(:,3)]; >>Sder = mkpp(x,cder) Si ha la pp-form della spline quadratica che useremo per approssimare la f.

30 Per ottenere un approssimazione del grafico della funzione f e della funzione f, scegliamo un insieme di punti z (diverso dall insieme dei punti x) e usiamo la function Matlab ppval >>z=[0:0.01:1]; >>Sz=ppval(S,z); >>Sderz=ppval(Sder,z); >> subplot(121),plot(z,sin(z), r ), subplot(122),plot(z,sz, g ) >> subplot(121),plot(z,cos(z), r ), subplot(122),plot(z,sderz, g ) Otteniamo i grafici:

31 0.9 y=f(x)=sin(x) 0.9 y=s 3 (f,x) y=f (x)=cos(x) 1 y=s 3 (f,x)

32 Esempio Approssimazione di Funzioni In un giorno del mese di luglio, ad intervalli di 1 ora, per tutte le 24 ore, sono state registrate le seguenti temperature ora temperatura

33 Utilizziamo la spline cubica S 3 (f ) per stimare le temperature delle ore 12, 30 e delle ore 19, 30 e, poi, confrontiamo i risultati ottenuti con i valori reali riportati nella seguente tabella ora temperatura 12, ,30 26

34 Denotato con x il vettore avente per componenti le ore e con y il vettore avente per componenti le corrispondenti temperature, con il comando Matlab >>yy=spline(x,y,[ ]) si ottiene ora temperatura errore 12, ,

35 Valutiamo, inoltre, la spline S 3 (f ) nei punti [1.5 : 24.5] e disegnamo il grafico. >>xx=[1.5:24.5]; >>yy=spline(x,y,xx); >>plot(xx,yy)

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Il best fitting In molte applicazioni accade di avere una certa quantità di dati (solitamente elevata) e di voler descrivere l andamento del fenomeno che ha

Dettagli

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b INTEGRAZIONE NUMERICA (Quadratura di Gauss) Regola dei trapezi I ( b a) f ( a) + f ( b) f (x) errore di integrazione f (x) f (a) f (b) a b x a a ' b' b x a, b punti fissi a priori a, b non fissi a priori

Dettagli

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica, Interpolazione Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Interpolazione 2 Interpolazione polinomiale Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 1 Approssimazione di dati e funzioni Problema Data la tabella {x i, y i }, i = 0,..., n, si vuole trovare una funzione analitica ϕ

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 9

Laboratorio di Matematica Computazionale A.A Lab. 9 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 9 Spline interpolanti lineari (interp1) e cubiche (spline) Esercizio 1 Assegnati i punti di coordinate x -1 1 2 3 5 y 0-1 5 2 1 si disegnino,

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

Approssimazione di dati e funzioni

Approssimazione di dati e funzioni Approssimazione di dati e funzioni Richiamiamo i principali metodi di approssimazione polinomiale di un insieme di dati (x i, y i ), i = 0,..., n. Le ordinate y i possono essere i valori assunti nei nodi

Dettagli

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata?

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata? Quale delle seguenti istruzioni MATLAB esegue il calcolo del raggio spettrale di una matrice quadrata A? a. max(eig(abs(a))) b. max(abs(eig(a))) c. abs(max(eig(a))) d. max(abs(eig(a *A))) Il raggio spettrale

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

Approssimazione di dati e funzioni

Approssimazione di dati e funzioni Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Generalità Problema 1 Dati (x i, y i ) i =

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Polinomi e Interpolazione polinomiale

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Polinomi e Interpolazione polinomiale Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 4 - Polinomi e Interpolazione polinomiale Polinomi e vettori Matlab non prevede un oggetto particolare di tipo polinomio, ma rappresenta

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Quali condizionisi si possono richiedere sulla funzione interpolante?

Quali condizionisi si possono richiedere sulla funzione interpolante? INTERPOLAZIONE Problema generale di INTERPOLAZIONE Dati n punti distinti ( i, i ) i=,..,n si vuole costruire una funzione f() tale che nei nodi ( i ) i=,..n soddisfi a certe condizioni, dette Condizioni

Dettagli

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE INTERPOLAZIONE Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ INTERPOLAZIONE p./8 INTERPOLAZIONE Nella

Dettagli

Laboratorio 3. Integrazione numerica

Laboratorio 3. Integrazione numerica Anno Accademico 2007-2008 Corso di Analisi 1 per Ingegneria Elettronica Laboratorio 3 Integrazione numerica Sia f una funzione continua sull intervallo [a, b] numerica con lo scopo di approssimare Introduciamo

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sull Approssimazione di dati e funzioni Esempio 1 Nella tavola seguente è riportata la popolazione (in migliaia) dell

Dettagli

APPROSSIMAZIONE di FUNZIONI

APPROSSIMAZIONE di FUNZIONI APPROSSIMAZIONE di FUNZIONI Francesca Pelosi Dipartimento di Sc. Matematiche ed Informatiche, Università di Siena CALCOLO NUMERICO a.a. 26 27 APPROSSIMAZIONE di FUNZIONI p.1/3 APPROSSIMAZIONE di FUNZIONI:

Dettagli

INTERPOLAZIONE POLINOMIALE

INTERPOLAZIONE POLINOMIALE Capitolo 5 INTERPOLAZIONE POLINOMIALE Un problema che frequentemente si presenta in matematica applicata è quello dell approssimazione di funzioni, che consiste nel determinare una funzione g, appartenente

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.

Dettagli

INTERPOLAZIONE. Introduzione

INTERPOLAZIONE. Introduzione Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Funzioni algebriche: pendenza e Teorema di Ruffini

Funzioni algebriche: pendenza e Teorema di Ruffini Funzioni algebriche: pendenza e Teorema di Ruffini Michele Impedovo Il concetto di retta tangente dell'analisi (la tangenza è locale) è del tutto differente dall'idea intuitiva che gli studenti acquisiscono

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013 Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo Universitá del Salento, 9 Aprile 2013 1 1 TEMA I Il candidato svolga una ed una sola delle dissertazioni proposte, illustrando sinteticamente

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Introduzione Il calcolo di integrali si presenta assai di frequente nelle applicazioni della matematica, ad esempio come misura dell area sottesa da una curva, o alla lunghezza di

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

Il metodo di Gauss-Newton per le regressioni non-lineari

Il metodo di Gauss-Newton per le regressioni non-lineari Il metodo di Gauss-Newton per le regressioni non-lineari Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia Versione on-line: http://www.unipg.it/ onofri/rtutorial/index.html

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Correzione secondo compitino, testo B

Correzione secondo compitino, testo B Correzione secondo compitino, testo B 7 aprile 2010 1 Parte 1 Esercizio 1.1. Tra le funzioni del vostro bestiario, le funzioni che più hanno un comportamento simile a quello cercato sono le funzioni esponenziali

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Laboratorio di Telecomunicazioni - a.a. 200/20 Lezione n. 3 Analisi dei segnali nel dominio del tempo L.Verdoliva In questa seconda lezione determiniamo, con l uso di Matlab, i parametri che caratterizzano

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti)

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti) METODO DI CVLIERI-SIMPSON (o delle parabole) (per il calcolo approssimato di integrali definiti) ssieme ai metodi dei Rettangoli e dei Trapezi costituisce l insieme dei metodi di Integrazione Numerica

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Variabili aleatorie scalari

Variabili aleatorie scalari Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabili aleatorie scalari Sommario della Introduzione CDF e PDF: definizione CDF e PDF: proprietà Distribuzioni uniforme e Gaussiana

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Fondamenti di Informatica, A.A Compito A

Fondamenti di Informatica, A.A Compito A Fondamenti di Informatica, A.A. 2013-2014 - Compito A 30/07/2014 Prova Pratica L integrale definito di una funzione continua su un intervallo chiuso e limitato può essere calcolato con la regola dei trapezi

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Un paio di esempi su serie e successioni di funzioni

Un paio di esempi su serie e successioni di funzioni Un paio di esempi su serie e successioni di funzioni 29 novembre 2010 1 Successione di funzioni Ricordiamo innanzitutto un po di definizioni. Definizione 1. Una successione di funzioni è una corrispondenza

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Una libreria di funzioni per la geometria analitica

Una libreria di funzioni per la geometria analitica Una libreria di funzioni per la geometria analitica Michele Impedovo La geometria analitica del piano costituisce uno dei più importanti e consolidati argomenti di matematica. Un lavoro interessante parallelo

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Raccolta di esercizi di Calcolo Numerico

Raccolta di esercizi di Calcolo Numerico Annamaria Mazzia Raccolta di esercizi di Calcolo Numerico Dipartimento di Ingegneria Civile Edile e Ambientale Università degli Studi di Padova Creative Commons Attribuzione-Non commerciale-non opere derivate

Dettagli

Variabile, costante ed espressione

Variabile, costante ed espressione Variabile, costante ed espressione All interno di un programma un informazione può essere organizzata in vari modi: Variabile Costante Espressione Le variabili a loro volta possono essere: scalari vettori

Dettagli

Errori frequenti di Analisi Matematica

Errori frequenti di Analisi Matematica G.C. Barozzi Errori frequenti di Analisi Matematica http://eulero.ing.unibo.it/~barozzi/pcam Complementi/Errori.pdf [Revisione: gennaio 22] Numeri reali e complessi 1. La radice quadrata di 4 è ±2. Commento.

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli