Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico"

Transcript

1 Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto dlla raltà di dispositivi (gnrator voltmtro) lo schma ch dscriv il circuito ralizzato è qullo sottostant di sinistra R g << R v S la rsistnza di uscita dl gnrator ha un valor trascurabil risptto alla rsistnza intrna dl voltmtro (usualmnt R v 10 MΩ) è possibil trascurar la prturbazion ch lo strumnto introduc nllo stato dl gnrator: in qusti problmi supporrmo ch ciò sia lcito. Problma 1 Lo strumnto indica +16,354 dall su spcifich si ricava ch l incrtzza ha la sgunt sprssion: ± ( 0,2% lttura + 3 digit ). Si chid di scrivr la dl valor mdio xmdio dlla tnsion sottoposta alla zion. xmdio ( +16,35 ± 0,04 ) Risoluzion Pr prima cosa si dv individuar l incrtzza strumntal con cui il voltmtro ha oprato. L incrtzza strumntal è la somma di du trmini: un primo trmin è proporzional alla indicazion (0,2% lttura) l altro trmin dipndnd dal significato dlla cifra ch compar nlla posizion più a dstra dl numro indicato sul display dllo strumnto (3 digit): in qusto problma la indicazion dl display è 16,354 prtanto la posizion più a dstra dl display rapprsnta i millsimi di volt, cioè 0, ,354 0,2 incrtzza strumntal: ± + ( 0,001 3) ± [( 0,032708) + ( 0,003) ± 0, ± 0, Dalla incrtzza strumntal così calcolata si dv ricavar l incrtzza dlla ch vin scritta liminando l cifr non significativ: dato ch l incrtzza strumntal è maggior di 3 cntsimi di volt si dovranno liminar l cifr ch rapprsntano i millsimi di volt qull infriori. Sappiamo prò ch non è corrtto troncar mdiant una smplic cancllazion prché qusta azion portrbb ad individuar un intrvallo (la incrtzza dlla ) minor di qullo ch abbiamo appna calcolato dai dati dl problma (la incrtzza strumntal ). Si

2 dovranno quindi liminar l cifr non significativ contmporanmnt di dovrà maggiorar di un punto la cifra di cntsimi di volt: incrtzza dlla : strumntal ± 0, ± 0,04 Ora ch abbiamo individuato la incrtzza dlla dobbiamo liminar l cifr non significativ dal valor indicato dallo strumnto: dato ch l incrtzza dlla colpisc i cntsimi di volt dovrmo liminar i millsimi di volt l vntuali cifr infriori. Anch in qusto caso l liminazion dll cifr non significativ dv ssr condotta con attnzion prché potrbb ssr ncssario aumntar di un punto la cifra mno significativa dl numro ch si ottin: s la part liminata inizia con una cifra ch va da 5 a 9 si dv incrmntar di un punto la cifra mno significativa dl valor troncato. In qusto problma la part ch vin liminata comincia con 4 prtanto non si dv incrmntar la cifra mno significativa dl valor troncato, cioè i cntsimi di volt (ch rstano 5). + 16, ,35 Ora ch sono stati individuati il valor l incrtzza assoluta dlla è possibil, finalmnt, scrivr la : xmdio ( +16,35 ± 0,04 ) ATTENZIONE: non scrivr MAI olt oppur volts : l unità di hanno nom comun d i nomi drivati dal cognom di scinziati sono inviarianti al plural. Problma 2 Lo strumnto indica +125,68 m l su spcifich riportano la sgunt sprssion dll incrtzza: ± ( 0,1% lttura + 5 digit ). Qual è la dl valor mdio xmdio dlla tnsion sottoposta alla zion? xmdio ( +125,7 ± 0,2 ) m Risoluzion Pr prima cosa si dv individuar l incrtzza strumntal con cui il voltmtro ha oprato. L incrtzza strumntal è la somma di un trmin proporzional alla indicazion (0,1% lttura) di un trmin dipndnd dal significato dlla cifra ch compar nlla posizion più a dstra dl display dllo strumnto (5 digit): in qusto problma la indicazion dl display è 125,68 m prtanto la posizion più a dstra dl display rapprsnta i cntsimi di millivolt, cioè 0,01 m. 125,68 0,1 incrtzza strumntal: ± + ( 0,01 5) ± [( 0,12568) + ( 0,05) m m ± 0,17568 m ± 0, m

3 Dalla incrtzza strumntal così calcolata si dv ricavar l incrtzza dlla ch vin scritta liminando l cifr non significativ: dato ch l incrtzza strumntal è maggior di 1 dcimo di millivolt si dovranno liminar l cifr ch rapprsntano i cntsimi di millivolt qull infriori. Sappiamo prò ch non è corrtto troncar mdiant una smplic cancllazion prché qusta azion portrbb ad individuar un intrvallo (la incrtzza dlla ) minor di qullo ch abbiamo appna calcolato dai dati dl problma (la incrtzza strumntal ). Si dovranno quindi liminar l cifr non significativ contmporanmnt di dovrà maggiorar di un punto la cifra di dcimi di millivolt: incrtzza dlla : strumntal ± 0, m ± 0,2 m Ora dobbiamo liminar l cifr non significativ dal valor indicato dallo strumnto: dato ch l incrtzza dlla colpisc i dcimi di millivolt dovrmo liminar i cntsimi di millivolt l vntuali cifr infriori. Anch in qusto caso l liminazion dll cifr non significativ dv ssr condotta con attnzion prché potrbb ssr ncssario aumntar di un punto la cifra mno significativa dl numro ch si ottin: s la part liminata inizia con una cifra ch va da 5 a 9 si dv incrmntar di un punto la cifra mno significativa dl valor troncato. In qusto problma la part ch vin liminata comincia con 8 prtanto si dv incrmntar la cifra mno significativa dl valor troncato, cioè i dcimi di millivolt (ch divntano 7) ,68 m + 125,7 m Ora ch sono stati individuati il valor l incrtzza assoluta dlla è possibil, finalmnt, scrivr la : xmdio ( +125,7 ± 0,2 ) m Problma 3 Lo strumnto indica -10,31 dall spcifich si ricava ch l incrtzza è: ± ( 0,3% lttura + 4 digit ). Scrivr la dl valor mdio xmdio dlla tnsion sottoposta alla zion. xmdio (-10,31 ± 0,08 ) Risoluzion Pr prima cosa si dv individuar l incrtzza strumntal con cui il voltmtro ha oprato. L incrtzza strumntal è la somma di un trmin proporzional alla indicazion (0,3% lttura) di un trmin dipndnd dal significato dlla cifra ch compar nlla posizion più a dstra dl display dllo strumnto (4 digit): in qusto problma la indicazion dl display è -10,31 prtanto bisogna considrar anch il sgno algbrico la posizion più a dstra dl display rapprsnta i cntsimi (ngativi) di volt, cioè -0,01.

4 10,31 0,3 incrtzza strumntal: ± + ( 0,01 4) ± [( 0,03) + ( 0,04) ± [ 0,07 m 0,07 m 0,07 Dato ch l incrtzza rapprsnta l ampizza dlla fascia di valor individuata dallo strumnto non è ncssario distingur fra il sgno mno o più d il sgno più o mno prtanto possiamo anch scrivr l incrtzza strumntal nlla forma usual: incrtzza strumntal: strumntal m 0,07 ± 0,07 Dalla incrtzza strumntal si dv poi ricavar l incrtzza dlla liminando l cifr non significativ: dato ch l incrtzza strumntal è maggior di 7 cntsimi di volt si dovranno liminar l cifr ch rapprsntano i millsimi di volt qull infriori. Sappiamo prò ch non è corrtto troncar mdiant una smplic cancllazion prché qusta azion portrbb ad individuar un intrvallo (la incrtzza dlla ) minor di qullo ch abbiamo appna calcolato dai dati dl problma (la incrtzza strumntal ). Si dovranno quindi liminar l cifr non significativ contmporanmnt di dovrà maggiorar di un punto la cifra di cntsimi di volt: incrtzza dlla : strumntal ± 0,07 ± 0,08 Ora dobbiamo liminar l cifr non significativ dal valor indicato dallo strumnto: dato ch l incrtzza dlla colpisc i cntsimi di volt dovrmo liminar i millsimi di volt l vntuali cifr infriori. Si nota prò ch in qusto problma il display mostra cifr fino al cntsimo di volt prtanto, in qusto caso, non è ncssario liminar alcuna cifra. 10,31 10,31 Ora ch sono stati individuati il valor l incrtzza assoluta dlla è possibil, finalmnt, scrivr la : xmdio ( -10,31 ± 0,08 ) Problma 4 Lo strumnto indica + 110,37 m l incrtzza è: ± ( 0,2% lttura + 10 digit ). Scrivr la dl valor mdio xmdio dlla tnsion sottoposta alla zion. xmdio (+110,4 ± 0,4 ) m Risoluzion Pr prima cosa si dv individuar l incrtzza strumntal con cui il voltmtro ha oprato.

5 L incrtzza strumntal è la somma di un trmin proporzional alla indicazion (0,2% lttura) di un trmin dipndnd dal significato dlla cifra ch compar nlla posizion più a dstra dl display dllo strumnto (10 digit): 110,37 0,2 incrtzza strumntal: ± + ( 0,01 10) ± [( 0,22074) + ( 0,10) m m ± 0,32074 m ± 0, m Dalla incrtzza strumntal si dv poi ricavar l incrtzza dlla liminando l cifr non significativ: dato ch l incrtzza strumntal è maggior di 3 dcimi di millivolt si dovranno liminar l cifr ch rapprsntano i cntsimi di millivolt qull infriori. Sappiamo prò ch non è corrtto troncar mdiant una smplic cancllazion prché qusta azion portrbb ad individuar un intrvallo (la incrtzza dlla ) minor di qullo ch abbiamo appna calcolato dai dati dl problma (la incrtzza strumntal ). Si dovranno quindi liminar l cifr non significativ contmporanmnt di dovrà maggiorar di un punto la cifra di dcimi di millivolt: incrtzza dlla : strumntal ± 0, m ± 0,4 m Ora dobbiamo liminar l cifr non significativ dal valor indicato dallo strumnto: dato ch l incrtzza dlla colpisc i dcimi di millivolt dovrmo liminar i cntsimi di millivolt l vntuali cifr infriori. L liminazion dll cifr non significativ dv ssr condotta con attnzion prché potrbb ssr ncssario aumntar di un punto la cifra mno significativa dl numro ch si ottin: s la part liminata inizia con una cifra ch va da 5 a 9 si dv incrmntar di un punto la cifra mno significativa dl valor troncato. In qusto problma la part ch vin liminata comincia con 7 prtanto si dv incrmntar la cifra mno significativa dl valor dopo la troncatura, cioè i dcimi di millivolt (ch divntano 4) ,37 m + 110,4 m Ora ch sono stati individuati il valor l incrtzza assoluta dlla è possibil, finalmnt, scrivr la : xmdio ( +110,4 ± 0,4 ) m

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

12. Il rumore negli amplificatori

12. Il rumore negli amplificatori 12. Il rumor ngli ampliicatori Il rumor prsnt ngli ampliicatori può ssr suddiviso in du catgori: rumor causato da sorgnti strn rumor causato da sorgnti intrn. Sorgnti strn. Il rumor provnint dalla lina

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor)

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor) Sommario Dispositivi lttronici l transistor bipolar a giunzion (bjt( bjt) l transistor bipolar a giunzion (bjt) com è fatto un bjt principi di funzionamnto (giunzion a bas corta) fftto transistor (

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

2. Richiami di calcolo delle probabilità

2. Richiami di calcolo delle probabilità . Richiai di calcolo dll probabilità L analisi sposta, consistnt nll ipotizzar la crisi in fas plastica, coporta, indubbiant, vantaggi risptto al todo lastico-linar, a non può considrarsi pinant accttabil

Dettagli

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti Svolgimnto di tmi d sam di Matmatica Anno Accadmico 05/6 Albrto Prtti April 06 A Prtti Svolgimnto di tmi d sam di Matmatica AA 05/6 PROVA INTERMEDIA DI MATEMATICA I part Vicnza, 04//05 Domanda Scomporr

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3. INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari.

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari. OO SCHOTTKY Si tratta dl più smplic dispositivo unipolar, in cui cioè la corrnt è lgata sclusivamnt ai portatori maggioritari. livllo dl vuoto q q s E Fm q m E Fs E Fm q( m -) q( m - s )= bi E Fs prima

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2011 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il candidato risolva uno di du problmi 5 di qusiti in cui si articola il qustionario. PROBLEMA Sia f la funzion dfinita sull insim R di numri

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo Agnzia rgional pr il lavoro Unità organizzativa: Ossrvatorio rgional dl mrcato dl lavo - Guida oprativa all strazion di dati dal SIL Sardgna scondo lo Standard Multirgional di Dati Amministrativi - Sttmbr

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel SIACATO PENSIONATI ITALIANI 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.150 FUNZIONE PUBBLICA 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.310 In una situazion di grav carnza conomica pr i comuni pr

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA Esrcizio n 1 C= 400 + 0,8D I= 200-1400r G= 200 TA= 0,25 X= 300-100 Q=156+0,4 r*=0,36 L=50+0,2-100r M o =99 a) Dtrminat l quazion dlla IS dlla LM, il tasso

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte Cod. 01 Laboratorio di Didattica Musal a cura dl dll Associazion Cultural RArt La musica di Orfo ATTIVITÀ: Visita guidata laboratorio didattico. FASCIA DI ETÀ: 5/10 anni N. BAMBINI: Da dfinir in bas alla

Dettagli

8.3 Inverter monofase

8.3 Inverter monofase 236 CAPITOL08 o ~!_!1L v t - --? (!!.L) A (VA.)' / 2 1.4 1.2 1.0 0.8 0.6 0.4 0.2 1 0 0 3 5 7 9 11 13 15 h (a) (b) Fig. 8.9 Funzionamnto a onda quadra. 8.3 Invrtr monofas 8.3.1 Invrtr a mzzo pont (monofas)

Dettagli

Appendice A Richiami di matematica

Appendice A Richiami di matematica Appndic A Richiami di matmatica A. Notazion scintifica Uso dgli sponnti I numri ch incontriamo in chimica sono spsso strmamnt grandi (pr s. 8 80 000 000) o strmamnt piccoli (pr s. 0,000 004 63). Quando

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

Le città vengono modificate anche all interno degli spazi già costruiti

Le città vengono modificate anche all interno degli spazi già costruiti La città ch cra il progtto snsibil L città vngono modificat anch all intrno dgli spazi già costruiti pnso sia molto più intrssant quando si usa il trmin nuovo far rifrimnto a qualcosa di divrso, cioè alla

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Lezione 24: Equilibrio termico e calore

Lezione 24: Equilibrio termico e calore Lzion 4 - pag. Lzion 4: Equilibrio trmico calor 4.. Antich spigazioni: il calorico Abbiamo visto ch, mttndo in contatto un corpo caldo con uno frddo, si avvia un procsso ch ha trmin quando i du corpi raggiungono

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

Il punto sulla liberalizzazione del mercato postale

Il punto sulla liberalizzazione del mercato postale Il punto sulla libralizzazion dl mrcato postal Andra Grillo Il punto di vista di Post Italian sul procsso di libralizzazion l implicazioni concorrnziali; l carattristich dl srvizio univrsal nll ambito

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

I dati definitivi del VI Censimento Generale dell Agricoltura nei comuni del comprensorio faentino

I dati definitivi del VI Censimento Generale dell Agricoltura nei comuni del comprensorio faentino COMUNE DI FAENZA SETTORE SVILUPPO ECONOMICO E POLITICHE EUROPEE Srvizio Azind comunali, Srvizi pubblici Statistica I dati dfinitivi dl VI Cnsimnto Gnral dll Agricoltura ni comuni dl comprnsorio fantino

Dettagli

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A AREA PERSONALE Ufficio Prsonal tcnico amministrativo Macrata, li 30.10.2008 Prot. N. 11694 IPP/29 d Ai Magnifici Rttori dll Univrsità Ai Dirttori

Dettagli

COMUNE DI VALDASTICO

COMUNE DI VALDASTICO COPIA COMUNE DI VALDASTICO VERBALE DI DELIBERAZIONE DEL CONSIGLIO COMUNALE N. 27 Ltto, confrmato sottoscritto IL PRESIDENTE F.to GUGLIELMI CLAUDIO IL SEGRETARIO COMUNALE F.to DOTT. LAVEDINI GIUSEPPE REFERTO

Dettagli

Cosa devo fare quando IdPC restituisce un errore?

Cosa devo fare quando IdPC restituisce un errore? 0 Può succdr ch durant la fas di accsso al portal il sistma IdPC di Rgion Lombardia rstituisca un rror ch impdisc di connttrsi. L'asptto dl mssaggio di rror è simil a qullo dlla figura: Prndi nota dl codic

Dettagli

Liberalizzazioni, consumatori e produttori

Liberalizzazioni, consumatori e produttori Argomnti Libralizzazioni, consumatori produttori Francsco Silva Pr una più fficint qualificata offrta di srvizi è ncssario libralizzar, ma l libralizzazioni sono fficaci solo s sono molto mirat non dmagogich.

Dettagli

verifiche di Informatica giuridica e logica giuridica; di Informatica giuridica e logica giuridica (recupero tre crediti);

verifiche di Informatica giuridica e logica giuridica; di Informatica giuridica e logica giuridica (recupero tre crediti); Informatica giuridica logica giuridica part tradizional (pagina 1 di 5 ) vrifich di Informatica giuridica logica giuridica; di Informatica giuridica logica giuridica (rcupro tr crditi); Univrsità dgli

Dettagli