Claudio Estatico

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Claudio Estatico"

Transcript

1 Cludio Esttico Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio

2 Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi trigolri. Algoritmo di sostituzioe i vti e ll idietro. 4) Algoritmo di Guss. Pseudocodice e pplicbilità del metodo. 5) Metodo del pivotig.

3 Elimizioe Gussi Sistemi lieri L risoluzioe dei sistemi lieri si rede ecessri i ogi mbito dell lisi umeric. Iftti ogi problem di crttere scietifico coduce i qulche modo ll risoluzioe di sistemi lieri, che di otevoli dimesioi (d esempio milioi di equzioi ed icogite).

4 Elimizioe Gussi Risoluzioe di sistemi lieri Problem: dto il sistem di m equzioi i icogite (,,, ) b b m m m bm co i,j e b i umeri reli, voglimo determire i vlori delle icogite (,,, ) che risolvoo tutte le m equzioi, ossi i vlori di (,,, ) che sostituiti elle sigole equzioi coducoo d m uguglize. 4

5 Elimizioe Gussi I form comptt rppresetimo il sistem come A b co A mtrice A( i,j ) e b(b i ), i,,,m e j,,. A è dett mtrice dei coefficieti b è il vettore dei termii oti I seguito cosidereremo solo il cso m (si osservi che il cso m può essere ricodotto questo). 5

6 Elimizioe Gussi Importz di vere lgoritmi efficieti che risolvoo Ab L risoluzioe di problemi reli si effettu i molti csi ttrverso l risoluzioe dirett di sistemi lieri del tipo Ab (es. Imge deblurrig) L risoluzioe di problemi reli può portre ll risoluzioe di problemi mtemtici che coducoo ll soluzioe di sistemi lieri del tipo Ab (es. problemi di miimizzzioe, determizioe delle rdici di sistemi di equzioi o-lieri). 6

7 Elimizioe Gussi Risultti oti (Esistez e Uicità dell soluzioe) Dt il sistem liere qudrto Ab, se A è o sigolre, ossi det(a) 0, llor esiste u ed u sol soluzioe. (Algoritmo di risoluzioe) L be ot regol di Crmer risolve il problem. A (,, i det( Ai ) i,,, det( A) ), A (,,, b,, i i i ) 7

8 Elimizioe Gussi A prte csi di dimesioe molto piccol (o rilevti elle ppliczioi reli), l regol di Crmer è iutilizzbile. Iftti, se l mtrice A è u mtrice, clcoldo gli determiti co il clssico metodo di Lplce, l regol di Crmer richiede circ ()! moltipliczioi. Dispoedo di u clcoltore 0 9 flops ( Gig-flops, ossi milirdo di operzioi l secodo) servirebbero: per 5 per 0 per 00 t ore, t40 i, t0 4 i.. 8

9 Elimizioe Gussi Mtrice ivers L mtrice ivers di u mtrice A, deott co A, è quell mtrice tle che A AAA I. Ess esiste ed è uic se se A è o sigolre, ossi det(a) 0. Clcolo dell ivers A di A Questo problem è strettmete collegto ll risoluzioe di Ab. Iftti se si h u metodo per clcolre A, si può llor risolvere il sistem Ab; se si h u metodo per trovre l soluzioe di Ab, llor si può clcolre A. 9

10 Più i dettglio: Elimizioe Gussi se si s clcolre A -, llor l soluzioe del sistem Ab è dt d A - b (prodotto mtrice-vettore); se si s risolvere u sistem liere co mtrice A, llor l risoluzioe degli sistemi lieri A j e j dove e j (0, 0,,,, 0) t, permette di clcolre l ivers A. i posizioe j-esim Iftti l mtrice (,,, ) formt dgli vettori soluzioi è l ivers di A. 0

11 Elimizioe Gussi Mtrici trigolri (defiizioe) U mtrice U si dice trigolre superiore se tutti i suoi elemeti l di sotto dell digole priciple soo ulli. U mtrice L si dice trigolre iferiore se tutti i suoi elemeti l di sopr dell digole priciple soo ulli. U u 0 0 u u 0 0 u u u l l L l l l l

12 Elimizioe Gussi Sistemi trigolri (defiizioe) U sistem liere si dice trigolre (superiore, iferiore) se l mtrice dei coefficieti è trigolre (superiore, iferiore) È importte vere degli lgoritmi che risolvoo u sistem liere trigolre poiché l risoluzioe di u sistem liere (geerico) Ab può essere effettut trsformdo prelimirmete tle sistem i u sistem trigolre equivlete (ossi l cui soluzioe è l stess).

13 Elimizioe Gussi Algoritmo per l soluzioe di u sistem trigolre iferiore Lyb, L o sigolre (sostituzioe i vti) l l l y y y l l y y l y b b b Ricvo y dll equzioe Sostituisco y ell equzioe Ricvo y dll equzioe Sostituisco y e y ell equzioe Ricvo y dll equzioe

14 Algoritmo di sostituzioe i vti per l risoluzioe di u sistem trigolre iferiore e o sigolre Lyb Pseudocodice: y b /l for i,, y i b i for j,,i- Elimizioe Gussi ed y i y i -l ij y j ed y i y i /l ii 4

15 Elimizioe Gussi Algoritmo per l soluzioe di u sistem trigolre superiore Uy, U o sigolre (sostituz. ll idietro) u Ricvo dll equzioe Sostituisco ell equzioe Ricvo dll equzioe Sostituisco e ell equzioe Ricvo dll equzioe u u u u u y y y 5

16 Algoritmo di sostituzioe ll idietro per l risoluzioe di u sistem trigolre superiore o sigolre Lyb Pseudocodice: y /u for i-,, i y i for ji,, Elimizioe Gussi ed i i -u ij j ed i i /u ii 6

17 Elimizioe Gussi Complessità computziole di u lgoritmo U modo bbstz usule di vlutre l efficiez di u lgoritmo è quello di clcolre il umero di operzioi che vegoo eseguite durte l su esecuzioe l vrire dei dti iput del problem. Le operzioi possoo essere di vrio tipo: operzioe ritmetiche, cofroto tr umeri, lettur di dti, ecc. Nel cso degli lgoritmi umerici si cosidero il umero di operzioi ritmetiche (,, *, / ). I prim lisi si cosidero solo le moltipliczioi e le divisioi, poiché queste operzioi soo cosiderte più costose rispetto lle ddizioi e sottrzioi. 7

18 Elimizioe Gussi L complessità computziole dell lgoritmo di sostituzioe i vti per sistemi trigolri è operzioi i i ( ) i i Al crescere di (l dimesioe del problem) il umero di operzioi ( * e / ) cresce come ; si dice che l complessità dell lgoritmo è poliomile Posto il tempo per l esecuzioe di u moltipliczioe ugule τ il tempo di esecuzioe dell lgoritmo srà: t τ ( /) 8

19 Elimizioe Gussi Il grfico dell fuzioe umero di operzioi eseguite dll lgoritmo l vrire dell dimesioe del problem è (pprossimtivmete) il seguete Per il tempo di esecuzioe dell lgoritmo, il grfico srà dello stesso tipo 9

20 Elimizioe Gussi Metodo di Guss L lgoritmo di Guss è u metodo diretto per risolvere sistemi lieri Ab, A mtrice,, det(a) 0, ovvero,,,,,,,,, b b b,,, I coefficieti del sistem (ossi gli elemeti di A) e i termii oti (ossi gli elemeti di b) possoo essere memorizzti i u stess mtrice, dett mtrice complet del sistem (si ricordi il Teorem di Rouché-Cpelli). 0

21 Ide di bse del metodo di Guss ive el cso sistem liere Ricvo dll equzioe Elimizioe Gussi,,, e lo sostituisco ell e equzioe, otteedo sistem liere () compioo degli zeri ell prim colo,, 4,,,,, (), (),,,,,,, (), (),,4,4,4,4 (),4 (),4

22 Elimizioe Gussi D sistem liere () Ricvo dll equzioe e lo sostituisco ell equzioe, otteedo sistem liere () compioo degli zeri ell secod colo,,, (), (), (), 4, (), (), (),, (), (),, (), (),,4 (),4 (),4,4 (),4 (),4

23 Elimizioe Gussi Si osservi che i pssggi soo possibili se (), e, soo Il sistem file è trigolre superiore,,,,4 () () (),,,4 () (),,4 () Se, 0 l soluzioe di Ab l si trov co l lgoritmo (già visto) che risolve u sistem trigolre superiore ( sostituzioe ll idietro ). 0

24 Il pssggio dl sistem l sistem () si può scrivere,,,,4 m,, /,,,,,4,,,,4 moltiplico l rig del sist. per e l sottrggo ll ; ottego così: Elimizioe Gussi moltiplico l rig del sist. per,,,,4 () () () m,,,, /,,4 () () () e l sottrggo ll ; ottego così:,,,4 Cioè il sistem () è otteuto sostituedo opportumete d u rig, u combizioe liere dell rig stess co u ltr rig. Il sistem () h l stess soluzioe del sistem. 4

25 Elimizioe Gussi Osservzioi L soluzioe del sistem trigolre superiore è l stess soluzioe del sistem iizile perché i sistemi lieri (0), e () soo equivleti tr loro. Il ome di Guss ive deriv dl ftto che il metodo è pplicbile se e solo se, () (), e soo,, 0 (si osservi che, o è codizioe ecessri ll risolvibilità del sistem ). 0 5

26 Elimizioe Gussi Mtrice priciple di ordie k di u mtrice A, (cso ) (defiizioe),,, Mtrice priciple di ordie A A,, [, ],,,, Mtrice priciple,, di ordie A,, Mtrice priciple di ordie A,,,,,,,,, 6

27 Elimizioe Gussi Miori pricipli (defiizioe) I miori pricipli di ordie k (k,,,) di u mtrice A,, soo i determiti det(a k ) delle sue mtrici pricipli Teorem Dto u sistem Ab, se tutti i suoi miori pricipli soo 0, llor si può pplicre l lgoritmo di Guss ive. L lgoritmo di Guss ive si geerlizz i mier ble l cso geerle. 7

28 Guss ive el cso geerle Iterzioe : si ricv dll equzioe e lo si sostituisce ell,,, -esim equzioe,,, per i,, e j,,: ( ),,, i, j i, j m i,, j co m i, i, /,,,, ottego, Elimizioe Gussi, ( ), ( ),, ( ), ( ),, ( ), ( ),,, 8,

29 Allo stesso modo si procede co: iterzioe : si ricv dll equzioe e lo si sostituisce ell, 4,, -esim equzioe Elimizioe Gussi iterzioe -: si ricv - dll (-) equzioe e lo si sostituisce ell -esim equzioe Si ottiee ll fie u sistem trigolre superiore equivlete quello iizile, che si risolve fcilmete,,,, dlle ( ) ( ) ( ),,, ( ) ( ) 9,, Coefficieti ullti combizioi lieri di righe effettute dll itero lgoritmo

30 Elimizioe Gussi Pseudocodice dell lgoritmo di Guss ive (trigolrizzzioe del sistem Ab) Pseudocodice: for k,,,- for ik,, I questo ciclo si elimio successivmete le vribili,, - ed ( k ) ( k ) m ik ik / kk for jk,, ed ed m ( k ) ( k ) ( k ) ij ij ik kj 0

31 Osservzioi I vlori m ik vegoo chimti moltiplictori Solo se i miori pricipli di A soo tutti 0 llor si può pplicre l lgoritmo ive Numero di moltipliczioi e divisioi per l risoluzioe del sistem Ab medite Guss Risultto fodmetle: Elimizioe Gussi il costo computziole dell lgoritmo di Guss ive è poliomile, dello stesso ordie di

32 Elimizioe Gussi Schem di fuziometo dell lgoritmo per l trigolrizzzioe del sistem liere Ab u solo rry di lvoro l termie dell esecuzioe A b U U cotiee iizilmete A ed il vettore b zeri, coefficieti, termii oti dei successivi sistemi zeri, coefficieti, termii oti del sistem trigolre superiore file

33 Risoluzioe di u sistem liere Ab i cui l uic ipotesi è che A si o sigolre, ossi det(a) 0, (i prticolre o si richiede che i miori pricipli sio 0, esempio) iterzioe Elimizioe Gussi soluzioe estt,, 0 questo puto o possimo pplicre Guss ive

34 Elimizioe Gussi Se scmbimo l rig co l otteimo 0 Possimo pplicre l iterzioe che o cmbi il sistem. L lgoritmo può così procedere fio l termie e si ottiee quidi l soluzioe del sistem cerct. Lo scmbio di righe è u tecic che, iserit ell lgoritmo di Guss ive, lo rede sempre pplicbile. 4

35 Iterzioe Appliczioe di Guss co scmbio di righe Tr tutte le righe, si sceglie u rig i cui il coefficiete di (pivot) è mssimo i vlore ssoluto. Tle rig (se o è già l ) viee scmbit co l rig. Si pplic or l prim iterzioe dell lgoritmo di Guss Elimizioe Gussi (pivotig przile),,,,,,,,,,,, 5

36 Elimizioe Gussi Iterzioe Tr l e l,, l -esim rig, si sceglie u rig i cui il coefficiete di (pivot) è mssimo i vlore ssoluto. Tle rig (se o è già l ) viee scmbit co l rig. Si pplic or l secod iterzioe dell lgoritmo di Guss,, (), (),, (), (),, (), (), 6

37 Elimizioe Gussi Osservzioe Il pivotig przile rede sempre pplicbile l lgoritmo di Guss, co l sol ipotesi che det(a) 0 Appliczioe di Guss co scmbio di righe e coloe (pivotig totle) Co quest tecic si scmbio righe e coloe i modo che il pivot si il mssimo elemeto possibile i vlore ssoluto tr tutti quelli che possoo essere presi i cosiderzioe 7

38 Elimizioe Gussi Osservzioe Geerlmete si utilizz il pivotig przile poiché l su ppliczioe è meo costos. L tecic del pivotig oltre redere sempre pplicbile l lgoritmo di Guss, geerlmete ( ) e miglior l ccurtezz. 8

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Valutazione delle frequenze di oscillazione di un sistema strutturale

Valutazione delle frequenze di oscillazione di un sistema strutturale Teciche iovtive per l idetificzioe delle crtteristiche dimiche delle strutture e del do Vlutzioe delle frequeze di oscillzioe di u sistem strutturle Prof. Ig. Felice Crlo PONZO - Ig. Rocco DITOMMAO cuol

Dettagli

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è LEZIONE 14 14.1. Numeri complessi. Sppimo già come sommre le coppie di umeri reli. Se, b,, b R 2 llor l coppi somm è, b +, b = +, b + b R 2. Voglimo or defiire che u operzioe di prodotto i R 2. Defiizioe

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati.

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati. M.C.D. E il più grde tr tutti i ueri iteri positivi che dividoo i ueri dti. 4 = 144 = 4 M.C.D.= = 1 60 = 5 Si predoo cioè tutti i fttori coui co l espoete iore. Il M.C.D. tr due o più ooi è u ooio co coefficiete

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili Apputi di tetic SIRIO Soluzioe Copito i clsse Correzioe Copito di tetic - Clsse SIRIO I Qudriestre.s. 00/07 Docete Robert Virili. Copletre le uguglize pplicdo le proprietà delle poteze. b. 9 0 9 0 d. (

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

AUTOVALORI E AUTOVETTORI

AUTOVALORI E AUTOVETTORI pputi di Mtemtic Computziole Lezioe 4 UOVLORI E UOVEORI. Defiizioi Si C, il umero C, rele o complesso, è detto utovlore di se esiste u vettore C,, tle che vlg l relzioe () llor il vettore è detto utovettore

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

Compendio di Calcolo Combinatorio in preparazione all esame di stato

Compendio di Calcolo Combinatorio in preparazione all esame di stato Compedio di Clcolo Combitorio i preprzioe ll esme di stto Simoe Zuccher prile Idice Permutzioi semplici Permutzioi co ripetizioe Disposizioi semplici Disposizioi co ripetizioe 5 Combizioi semplici 6 Combizioi

Dettagli

Cristian Secchi Tel

Cristian Secchi Tel Cotrolli Digitli ure gistrle i Igegeri ecctroic IDEIFICAZIOE Cristi Secchi el. 05 535 e-mil: secchi.cristi@uimore.it Idetificioe Quto pes? Quto vle il coefficiete d ttrito? Qul è l cedevole dei giuti?

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Interpolazione e Approssimazione ai minimi quadrati

Interpolazione e Approssimazione ai minimi quadrati Cludio Ettico (cludio.ettico@uiubri.it) Iterpolzioe e Approizioe i iii qudrti Iterpolzioe e iii qudrti Iterpolzioe e pproizioe i iii qudrti ) L pproizioe di fuzioi: iterpolzioe e igliore pproizioe. ) Eitez

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

DAI RAZIONALI AI REALI

DAI RAZIONALI AI REALI DAI RAZIONALI AI REALI. L isieme dei umeri rzioli. Le operzioi fr umeri rzioli: ddizioe, moltipliczioe, sottrzioe e divisioe.. L elevmeto potez. L ordimeto.. Proprietà delle disuguglize (?disuguglize e

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Frattali ed altro. 1 quello alla fine, possiamo esprimere. Di Loris Mannucci INSIEMI FRATTALI. 1) Modelli d accrescimento 1/12

Frattali ed altro. 1 quello alla fine, possiamo esprimere. Di Loris Mannucci INSIEMI FRATTALI. 1) Modelli d accrescimento 1/12 Frttli ed ltro Di Loris Mucci Co quest rticolo mi propogo di fre u itroduzioe i frttli e di dre u rppresetzioe di come essi rppresetio u vlido strumeto per l descrizioe dell tur. Il percorso segue le tppe

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

APPUNTI DI MATEMATICA

APPUNTI DI MATEMATICA APPUNTI DI MATEMATICA Fuzioe dti li isiemi X e Y, si chim uzioe d X i Y u sottoisieme del prodotto crtesio XY tle che per oi X, esiste uo ed u solo elemeto Y tle che (,). Fuzioe relzioe che ssoci d oi

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Defiizioe. U successioe di fuzioi f : A R, N coverge putulmete d u fuzioe f : A R se f (x) = f(x) per ogi x A. L successioe coverge uiformemete d f se ccde che per ogi > 0 esiste N

Dettagli

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei

Distillazione. Obiettivi Arricchire la miscela dei componenti più volatili. Impoverire la miscela dei istillzioe istillzioe Oerzioe che cosete di serre i comoeti di u miscel liquid, sfruttdo l differez di tesioe di vore degli stessi comoeti. Obiettivi Arricchire l miscel dei comoeti iù voltili. Imoverire

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino RADICALI Clsse II.s. 00/0 Prof.ss Rit Schettio RADICALI Aritetici I R Algerici I R prof.ss R. Schettio N. B. R idic l isiee dei ueri reli o egtivi, ossi positivi o ulli. RADICALI ARITMETICI DEFINIZIONE

Dettagli

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4 Gli itegrli Gli itegrli. Itroduzioe Gli itegrli Le ppliczioi del clcolo itegrle soo svrite: esistoo, iftti, molti cmpi, dll fisic ll igegeri, dll iologi ll ecoomi, i cui tli ozioi trovo o poche ppliczioi.

Dettagli

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1 POTENZE AD ESPONENTE NATURALE LE POTENZE Si deiisce otez co bse e esoete u umero turle e si scrive.... ttori tutti uuli ll bse : csi rticolri: co. volte oi otez co esoete ullo è uule il rodotto di co oi

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

10. FUNZIONI CONTINUE

10. FUNZIONI CONTINUE . FUNZIONI CONTINUE DEFINIZIONE DI CONTINUITÀ DI UNA FUNZIONE IN UN PUNTO 46 oppure: def. f cotiu i lim f ( ) = f ( ) def. f cotiu i lim f ( + h ) = f ( ) h Il cocetto è vermete fodmetle e quidi dimo d

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione:

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione: La metilammia, reagisce co acqua allo stato gassoso portado alla formazioe di alcool metilico e ammoiaca secodo la reazioe: (g) + H (g) H(g) + (g). Soo oti i segueti dati a 5 C G f (kj mol -1 ) (g).16

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Didattica della matematica a.a. 2004/2005. I numeri decimali. ORLANDO FURIOSO Classe 59

Didattica della matematica a.a. 2004/2005. I numeri decimali. ORLANDO FURIOSO Classe 59 Didttic dell mtemtic.. 4/5 I umeri decimli ORLANDO FURIOSO Clsse 59 PREMESSA L prim e più evidete costtzioe che scturisce dl corso è che l mggior prte degli studeti che escoo d u corso di studi superiori

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L.

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L. ESERCIZI DI ANALISI MATEMATICA GRAZIANO CRASTA Notzioi. N = {, 1, 2,...} = isieme dei umeri turli, N + = Z + = N\{} = isieme dei umeri turli positivi, Z = isieme degli iteri reltivi. = esercizio difficile,

Dettagli