LA DISTRIBUZIONE NORMALE o DI GAUSS

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA DISTRIBUZIONE NORMALE o DI GAUSS"

Transcript

1 p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici, con la colonna centrale corrispondente alla media aritmetica (misure) e allo zero (scarti).

2 p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici, con la colonna centrale corrispondente alla media aritmetica (misure) e allo zero (scarti). Le misure prossime alla media sono più numerose di quelle lontane. Gli scarti più piccoli sono più numerosi di quelli grandi.

3 p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici, con la colonna centrale corrispondente alla media aritmetica (misure) e allo zero (scarti). Le misure prossime alla media sono più numerose di quelle lontane. Gli scarti più piccoli sono più numerosi di quelli grandi. Il numero delle misure maggiori della media è all incirca uguale a quello delle misure minori della media. Il numero deli scarti positivi (in eccesso) è all incirca uguale a quello degli scarti negativi (in difetto).

4 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici, con la colonna centrale corrispondente alla media aritmetica (misure) e allo zero (scarti). Le misure prossime alla media sono più numerose di quelle lontane. Gli scarti più piccoli sono più numerosi di quelli grandi. Il numero delle misure maggiori della media è all incirca uguale a quello delle misure minori della media. Il numero deli scarti positivi (in eccesso) è all incirca uguale a quello degli scarti negativi (in difetto). Una funzione analitica atta a rappresentare una tale distribuzione deve essere simmetrica, unimodale e campanulare. p. 1/2

5 p. 2/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Proprietà ipotetiche dedotte da Gauss dalle osservazioni: s = x x scarto di una misura dal valore vero

6 p. 2/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Proprietà ipotetiche dedotte da Gauss dalle osservazioni: s = x x scarto di una misura dal valore vero 1. Se s > 0 e s < 0 equiprobabili distribuzione degli scarti simmetrica rispetto allo zero.

7 p. 2/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Proprietà ipotetiche dedotte da Gauss dalle osservazioni: s = x x scarto di una misura dal valore vero 1. Se s > 0 e s < 0 equiprobabili distribuzione degli scarti simmetrica rispetto allo zero. 2. Scarti piccoli più probabili: se s 1 > s 2 P( s 1 ) < P( s 2 ).

8 p. 2/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Proprietà ipotetiche dedotte da Gauss dalle osservazioni: s = x x scarto di una misura dal valore vero 1. Se s > 0 e s < 0 equiprobabili distribuzione degli scarti simmetrica rispetto allo zero. 2. Scarti piccoli più probabili: se s 1 > s 2 P( s 1 ) < P( s 2 ). 3. Condizione di normalizzazione (ipotesi aggiuntiva) + f(s)ds = 1

9 p. 3/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI In base alle 3 ipotesi e dal principio della media aritmetica a Gauss derivò che la distribuzione degli scarti di misure affette da errori accidentali è descritta da: f(s) = h π e h2 s 2 funzione di Gauss o legge normale di distribuzione degli errori

10 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali:

11 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali: 1. Forma a campana simmetrica rispetto a s = 0;

12 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali: 1. Forma a campana simmetrica rispetto a s = 0; 2. Decrescente per s crescente;

13 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali: 1. Forma a campana simmetrica rispetto a s = 0; 2. Decrescente per s crescente; 3. Tendente a zero per s ±, come richiesto dalla condizione di normalizzazione)

14 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali: 1. Forma a campana simmetrica rispetto a s = 0; 2. Decrescente per s crescente; 3. Tendente a zero per s ±, come richiesto dalla condizione di normalizzazione) La legge normale degli scarti dipende da un solo parametro h, detto modulo di precisione della misura. Tanto maggiore è h tanto minore è la dispersione delle misure rispetto alla media.

15 p. 4/2 DISTRIBUZIONE DEGLI ERRORI ACCIDENTALI Soddisfa alle 3 ipotesi iniziali: 1. Forma a campana simmetrica rispetto a s = 0; 2. Decrescente per s crescente; 3. Tendente a zero per s ±, come richiesto dalla condizione di normalizzazione) La legge normale degli scarti dipende da un solo parametro h, detto modulo di precisione della misura. Tanto maggiore è h tanto minore è la dispersione delle misure rispetto alla media. Per h descrecente la campana si abbassa e si allarga.

16 p. 5/2 PROPRIETÀ DELLA LEGGE NORMALE Hp: Supponiamo di aver infinite misure, N

17 p. 5/2 PROPRIETÀ DELLA LEGGE NORMALE Hp: Supponiamo di aver infinite misure, N Valore di aspettazione dello variabile scarto: E(s) = h + π h + π sf(s)ds = se h2 s 2 ds = 0 è identicamente nullo.

18 p. 5/2 PROPRIETÀ DELLA LEGGE NORMALE Hp: Supponiamo di aver infinite misure, N Valore di aspettazione dello variabile scarto: E(s) = h + π h + π sf(s)ds = se h2 s 2 ds = 0 è identicamente nullo. Ne segue un importantissima conseguenza: E(s) = E (x x ) = E(x) x = 0 E(x) = x

19 p. 6/2 PROPRIETÀ DELLA LEGGE NORMALE E(x) = x

20 p. 6/2 PROPRIETÀ DELLA LEGGE NORMALE E(x) = x Il valore di aspettazione delle misure di una grandezza fisica affette solo da errori casuali esiste, e coincide con il valore vero della grandezza misurata.

21 p. 7/2 PROPRIETÀ DELLA LEGGE NORMALE ERRORE MEDIO θ: il valore di aspettazione del modulo dello scarto θ = E ( s ) θ = 1 h π

22 p. 7/2 PROPRIETÀ DELLA LEGGE NORMALE ERRORE MEDIO θ: il valore di aspettazione del modulo dello scarto θ = E ( s ) θ = 1 h π ERRORE PROBABILE ρ: quel valore di s per cui metà delle misure ha s ρ +ρ ρ f(s)ds = 0.5

23 p. 7/2 PROPRIETÀ DELLA LEGGE NORMALE ERRORE MEDIO θ: il valore di aspettazione del modulo dello scarto θ = E ( s ) θ = 1 h π ERRORE PROBABILE ρ: quel valore di s per cui metà delle misure ha s ρ +ρ ρ f(s)ds = 0.5 ERRORE QUADRATICO MEDIO σ: è la radice quadrata del valore di aspettazione del quadrato degli scarti ( E ( s 2) = 2h 1 ) σ = 1 2 2h

24 p. 8/2 RELAZIONI TEORICHE Per misure affette da errori distribuiti secondo la legge normale: l errore quadratico medio ed il modulo di precisione h soddisfano alla relazione σ = 1 h 2

25 p. 8/2 RELAZIONI TEORICHE Per misure affette da errori distribuiti secondo la legge normale: l errore quadratico medio ed il modulo di precisione h soddisfano alla relazione σ = 1 h 2 Il rapporto tra errore probabile ed errore quadratico medio vale ρ σ 0.674

26 p. 8/2 RELAZIONI TEORICHE Per misure affette da errori distribuiti secondo la legge normale: l errore quadratico medio ed il modulo di precisione h soddisfano alla relazione σ = 1 h 2 Il rapporto tra errore probabile ed errore quadratico medio vale ρ σ Il rapporto tra errore medio ed errore quadratico medio vale θ σ 0.798

27 RELAZIONI TEORICHE p. 9/2

28 p. 10/2 DISTRIBUZIONI DELLE MISURE E DEGLI SCARTI Esprimendo h in funzione di σ la legge di Gauss diventa s2 f(s) = 1 σ e 2σ 2 2π

29 p. 10/2 DISTRIBUZIONI DELLE MISURE E DEGLI SCARTI Esprimendo h in funzione di σ la legge di Gauss diventa s2 f(s) = 1 σ e 2σ 2 2π Esprimendo s = x µ otteniamo f(x) = 1 σ 2π e 1 2 ( x µ ) 2 σ

30 p. 10/2 DISTRIBUZIONI DELLE MISURE E DEGLI SCARTI Esprimendo h in funzione di σ la legge di Gauss diventa s2 f(s) = 1 σ e 2σ 2 2π Esprimendo s = x µ otteniamo f(x) = 1 σ 2π e 1 2 ( x µ ) 2 σ

31 p. 11/2 LO SCARTO NORMALIZZATO Essendo la distribuzione normale largamente utilizzata e non avendo il suo integrale indefinito una forma analitica, per il calcolo delle probabilità vengono usati valori pre-tabulati.

32 p. 11/2 LO SCARTO NORMALIZZATO Essendo la distribuzione normale largamente utilizzata e non avendo il suo integrale indefinito una forma analitica, per il calcolo delle probabilità vengono usati valori pre-tabulati. Impossibile avere tabelle per tutte le possibili coppie di valori dei parametri σ e µ. È quindi conveniente rendere il calcolo della funzione cumulativa F(x) indipendente dai parametri.

33 p. 11/2 LO SCARTO NORMALIZZATO Essendo la distribuzione normale largamente utilizzata e non avendo il suo integrale indefinito una forma analitica, per il calcolo delle probabilità vengono usati valori pre-tabulati. Impossibile avere tabelle per tutte le possibili coppie di valori dei parametri σ e µ. È quindi conveniente rendere il calcolo della funzione cumulativa F(x) indipendente dai parametri. Definiamo scarto normalizzato o variabile normale standardizzata t = x µ σ

34 p. 11/2 LO SCARTO NORMALIZZATO Essendo la distribuzione normale largamente utilizzata e non avendo il suo integrale indefinito una forma analitica, per il calcolo delle probabilità vengono usati valori pre-tabulati. Impossibile avere tabelle per tutte le possibili coppie di valori dei parametri σ e µ. È quindi conveniente rendere il calcolo della funzione cumulativa F(x) indipendente dai parametri. Definiamo scarto normalizzato o variabile normale standardizzata t = x µ σ La densità di probabilità della variabile t è ϕ(t) = 1 2π e 1 2 t2

35 p. 12/2 DISTRIBUZIONE NORMALE STANDARDIZZATA Indipendente dall errore quadratico medio, ovvero dalla precisione della misura.

36 p. 12/2 DISTRIBUZIONE NORMALE STANDARDIZZATA Indipendente dall errore quadratico medio, ovvero dalla precisione della misura. La distribuzione normale standardizzata è una particolare normale con E(x) = 0 e σ = 1. ϕ(t) = 1 2π e 1 2 t2

37 p. 13/2 DISTRIBUZIONE NORMALE STANDARDIZZATA Alla normale standardizzata può essere ricondotta qualunque funzione di Gauss, effettuando il cambio di variabili: t = x µ σ z 1 µ+zσ valendo la relazione: e t2 dt = 2π σ 2π e 1 2 z µ zσ ( x µ σ ) 2

38 p. 13/2 DISTRIBUZIONE NORMALE STANDARDIZZATA Alla normale standardizzata può essere ricondotta qualunque funzione di Gauss, effettuando il cambio di variabili: t = x µ σ z 1 µ+zσ valendo la relazione: e t2 dt = 2π σ 2π e 1 2 z µ zσ ( x µ σ Esistono delle tabelle per il calcolo dell integrale della distribuzione normale standardizzata ) 2

39 p. 13/2 DISTRIBUZIONE NORMALE STANDARDIZZATA Alla normale standardizzata può essere ricondotta qualunque funzione di Gauss, effettuando il cambio di variabili: t = x µ σ z 1 µ+zσ valendo la relazione: e t2 dt = 2π σ 2π e 1 2 z µ zσ ( x µ σ Esistono delle tabelle per il calcolo dell integrale della distribuzione normale standardizzata La distribuzione normale standardizzata presenta le stesse caratteristiche della distribuzione normale NON standardizzata. Ciò che distingue le due distribuzioni è che la normale standardizzata ha µ = 0 e σ = 1. ) 2

40 p. 14/2 DISTRIBUZIONE NORMALE STANDARDIZZATA L aspetto più importante della standardizzazione è che trasformando una distribuzione normale di parametri (µ, σ) nella distribuzione standardizzata (0, 1), le aree individuate nella prima da due qualsiasi ascisse x 1 e x 2 sono uguali alle aree individuate nella seconda dagli scarti normalizzati t 1 = x 1 µ σ t 2 = x 2 µ σ

41 p. 15/2 DISTRIBUZIONE NORMALE STANDARDIZZATA La distribuzione normale standardizzata è rappresentata da UNA SOLA CURVA, mentre la distribuzione normale generale è costituita da una famiglia a seconda dei valori di µ e σ.

42 p. 16/2 LO SCARTO NORMALIZZATO ( ) Pr t [ 1, +1] ( ) Pr t [ 2, +2] ( ) Pr t [ 3, +3] +1 1 = 2π = 2π = 2π 3 e t2 2 dt = e t2 2 dt = e t2 2 dt =

43 p. 17/2 LO SCARTO NORMALIZZATO Ricordando che t = s/σ ( ) Pr s [ σ, +σ] ( ) Pr s [ 2σ, +2σ] ( ) Pr s [ 3σ, +3σ] ( ) Pr t [ 1, +1] ( ) Pr t [ 2, +2] ( ) Pr t [ 3, +3]

44 p. 18/2 INTERPRETAZIONE PROBABILISTICA DI σ Le misure affette da errori casuali (e quindi normali) hanno una probabilità del 68% di cadere all interno di un intervallo di semiampiezza σ centrato sul valore vero della grandezza misurata. Il 95% e il 99,7% (quasi la totalità) delle misure sono affette da errore in modulo minore o al piu uguale a 2σ e 3σ rispettivemente.

45 p. 18/2 INTERPRETAZIONE PROBABILISTICA DI σ Le misure affette da errori casuali (e quindi normali) hanno una probabilità del 68% di cadere all interno di un intervallo di semiampiezza σ centrato sul valore vero della grandezza misurata. Il 95% e il 99,7% (quasi la totalità) delle misure sono affette da errore in modulo minore o al piu uguale a 2σ e 3σ rispettivemente. L intervallo di semiampiezza σ centrato su di una misura qualsiasi di un campione ha pertanto una probabilità del 68% di contenere il valore vero, sempreché gli errori siano casuali e normali.

46 p. 19/2 ESAME DEI DATI: criterio del 3σ In una serie di misure dirette quale criterio per individuare dati sospetti e anomali?

47 p. 19/2 ESAME DEI DATI: criterio del 3σ In una serie di misure dirette quale criterio per individuare dati sospetti e anomali? Si calcolano x e σ x

48 p. 19/2 ESAME DEI DATI: criterio del 3σ In una serie di misure dirette quale criterio per individuare dati sospetti e anomali? Si calcolano x e σ x Si eliminano le misure x x > 3σ (p 0.003).

49 p. 19/2 ESAME DEI DATI: criterio del 3σ In una serie di misure dirette quale criterio per individuare dati sospetti e anomali? Si calcolano x e σ x Si eliminano le misure x x > 3σ (p 0.003). Si ricalcolano x e σ x

50 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica

51 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame.

52 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame. Sia ǫ = 1 n ǫ i l errore da associare alla media aritmetica. n i=1

53 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame. Sia ǫ = 1 n ǫ i l errore da associare alla media aritmetica. n i=1 Sia s i = x i x lo scarto di una misura rispetto alla media aritmetica.

54 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame. Sia ǫ = 1 n ǫ i l errore da associare alla media aritmetica. n i=1 Sia s i = x i x lo scarto di una misura rispetto alla media aritmetica. Ne segue che ǫ i = s i + ǫ.

55 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame. Sia ǫ = 1 n ǫ i l errore da associare alla media aritmetica. n i=1 Sia s i = x i x lo scarto di una misura rispetto alla media aritmetica. Ne segue che ǫ i = s i + ǫ. Quadriamo: (ǫ i ) 2 = (s i ) 2 + ǫ 2 + 2s i ǫ

56 p. 20/2 STIMA DELL ERRORE QUADRATICO MEDIO Si abbiano n misure x i di una stessa grandezza fisica Sia ǫ i = x i x l errore di una misura, dove x è il valore vero (incognito) della grandezza fisica in esame. Sia ǫ = 1 n ǫ i l errore da associare alla media aritmetica. n i=1 Sia s i = x i x lo scarto di una misura rispetto alla media aritmetica. Ne segue che ǫ i = s i + ǫ. Quadriamo: (ǫ i ) 2 = (s i ) 2 + ǫ 2 + 2s i ǫ Sommiamo da 1 a n n n (ǫ i ) 2 = [(s i ) 2 + ǫ 2 + 2s i ǫ] = i=1 n (ǫ i ) 2 = i=1 i=1 i=1 n (s i ) 2 + nǫ 2 n (s i ) 2 + nǫ 2 + 2ǫ i=1 n i=1 s i

57 p. 21/2 STIMA DELL ERRORE QUADRATICO MEDIO Dividiamo per n n i=1 (ǫ i) 2 n = n i=1 (s i) 2 n + ǫ 2

58 p. 21/2 STIMA DELL ERRORE QUADRATICO MEDIO n i=1 Dividiamo per n (ǫ i) 2 n La varianza è dunque: = n i=1 (s i) 2 n + ǫ 2 σ 2 = n i=1 (s i) 2 n + ǫ 2 (1) espressa in funzione degli scarti e dell errore della media, ancora incognito.

59 p. 21/2 STIMA DELL ERRORE QUADRATICO MEDIO n i=1 Dividiamo per n (ǫ i) 2 n La varianza è dunque: = n i=1 (s i) 2 n + ǫ 2 σ 2 = n i=1 (s i) 2 n + ǫ 2 (1) espressa in funzione degli scarti e dell errore della media, ancora incognito. Quadriamo ( l errore della media: ǫ 2 = 1 n ) 2 s n 2 i = 1 n (ǫ ǫ 2 + ǫ n ) 2 = i=1 1 n 2 (ǫ2 1 + ǫ ǫ 2 n + 2ǫ 1 ǫ 2 + 2ǫ 1 ǫ 3 + ) [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 + (2ǫ 1 ǫ 2 + 2ǫ 1 ǫ 3 + ) i=1

60 p. 21/2 STIMA DELL ERRORE QUADRATICO MEDIO n i=1 Dividiamo per n (ǫ i) 2 n La varianza è dunque: = n i=1 (s i) 2 n + ǫ 2 σ 2 = n i=1 (s i) 2 n + ǫ 2 (1) espressa in funzione degli scarti e dell errore della media, ancora incognito. Quadriamo ( l errore della media: ǫ 2 = 1 n ) 2 s n 2 i = 1 n (ǫ ǫ 2 + ǫ n ) 2 = i=1 1 n 2 (ǫ2 1 + ǫ ǫ 2 n + 2ǫ 1 ǫ 2 + 2ǫ 1 ǫ 3 + ) [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 + (2ǫ 1 ǫ 2 + 2ǫ 1 ǫ 3 + ) i=1 La somma dei termini misti può essere ragionevolmente posta = 0 per la simmetria della distribuzione di Gauss degli errori.

61 p. 22/2 STIMA DELL ERRORE QUADRATICO MEDIO Il quadrato dell errore della media è quindi: n [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 = 1 (ǫ i ) 2 i=1 n n = σ2 n i=1

62 p. 22/2 STIMA DELL ERRORE QUADRATICO MEDIO Il quadrato dell errore della media è quindi: n [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 = 1 (ǫ i ) 2 i=1 n n = σ2 n i=1 Introduciamo questa relazione nell Eq. (1) n σ 2 i=1 = (s i) 2 + σ2 n n

63 p. 22/2 STIMA DELL ERRORE QUADRATICO MEDIO Il quadrato dell errore della media è quindi: n [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 = 1 (ǫ i ) 2 i=1 n n = σ2 n i=1 Introduciamo questa relazione nell Eq. (1) n σ 2 i=1 = (s i) 2 + σ2 n n [ Esplicitiamo σ 2 σ ] n i=1 = (s i) 2 n n σ 2 = n i=1 (s i) 2 n 1

64 p. 22/2 STIMA DELL ERRORE QUADRATICO MEDIO Il quadrato dell errore della media è quindi: n [ ǫ 2 = 1 n ] n 2 (ǫ i ) 2 = 1 (ǫ i ) 2 i=1 n n = σ2 n i=1 Introduciamo questa relazione nell Eq. (1) n σ 2 i=1 = (s i) 2 + σ2 n n [ Esplicitiamo σ 2 σ ] n i=1 = (s i) 2 n n σ 2 = n i=1 (s i) 2 n 1 Infine: σ = n i=1 (s i) 2 n 1 che esprime lo scarto quadratico medio in funzione di tutti e soli gli scarti delle misure.

65 p. 23/2 STIMA DELL ERRORE QUADRATICO MEDIO DELLA MEDIA L errore della media o scarto quadratico medio della media deriva dall Eq. (??) σ x = σ 2 n = σ n σ x = n i=1 (s i) 2 n(n 1)

66 p. 23/2 STIMA DELL ERRORE QUADRATICO MEDIO DELLA MEDIA L errore della media o scarto quadratico medio della media deriva dall Eq. (??) σ x = σ 2 n = σ n σ x = n i=1 (s i) 2 n(n 1) Il guadagno in precisione all aumentare del numero di misure non scala linearmente con n. Inoltre Il processo non può essere spinto all infinito: interviene l usura degli strumenti, verificarsi di errori accidentali, ecc.

67 p. 24/2 INDETERMINAZIONI STATISTICHE Nel caso di misure ripetute lo scarto quadratico medio σ m rappresenta l indeterminazione statistica da associare alla singola misura. Infatti se prendiamo un qualunque misura m i, si ha il 68% di probabilità che m i m σ m e cioè che nell intervallo m i σ m m i m m i σ m sia compreso il valore m assunto per vero.

68 p. 24/2 INDETERMINAZIONI STATISTICHE Nel caso di misure ripetute lo scarto quadratico medio σ m rappresenta l indeterminazione statistica da associare alla singola misura. Infatti se prendiamo un qualunque misura m i, si ha il 68% di probabilità che m i m σ m e cioè che nell intervallo m i σ m m i m m i σ m sia compreso il valore m assunto per vero. lo scarto quadratico medio della media σ m rappresenta l indeterminazione statistica da associare alla media aritmetica. Essa è minore di quella della singola misura di un fattore 1/n.

69 p. 24/2 INDETERMINAZIONI STATISTICHE Nel caso di misure ripetute lo scarto quadratico medio σ m rappresenta l indeterminazione statistica da associare alla singola misura. Infatti se prendiamo un qualunque misura m i, si ha il 68% di probabilità che m i m σ m e cioè che nell intervallo m i σ m m i m m i σ m sia compreso il valore m assunto per vero. lo scarto quadratico medio della media σ m rappresenta l indeterminazione statistica da associare alla media aritmetica. Essa è minore di quella della singola misura di un fattore 1/n.

70 p. 25/2 TEOREMA DEL LIMITE CENTRALE Hp: N variabili casuali x i, statisticamente indipendenti e provenienti da una distribuzione avente densità di probabilità ignota, della quale esistano finite sia la media µ i che la varianza σ 2 i.

71 p. 25/2 TEOREMA DEL LIMITE CENTRALE Hp: N variabili casuali x i, statisticamente indipendenti e provenienti da una distribuzione avente densità di probabilità ignota, della quale esistano finite sia la media µ i che la varianza σ 2 i. Th: Una qualunque cobinazione lineare delle variabili con coefficienti α i, tende asintoticamente alla distribuzione normale con media µ e varianza σ 2 /N al crescere di N. µ = N α i µ i σ 2 = i=1 N αi 2 σi 2 i=1

72 p. 25/2 TEOREMA DEL LIMITE CENTRALE Hp: N variabili casuali x i, statisticamente indipendenti e provenienti da una distribuzione avente densità di probabilità ignota, della quale esistano finite sia la media µ i che la varianza σ 2 i. Th: Una qualunque cobinazione lineare delle variabili con coefficienti α i, tende asintoticamente alla distribuzione normale con media µ e varianza σ 2 /N al crescere di N. µ = N α i µ i σ 2 = i=1 N αi 2 σi 2 i=1 Nessuna ipotesi sulle distribuzioni delle variabili; unico requisito: esistenza di media e varianza.

73 p. 25/2 TEOREMA DEL LIMITE CENTRALE Hp: N variabili casuali x i, statisticamente indipendenti e provenienti da una distribuzione avente densità di probabilità ignota, della quale esistano finite sia la media µ i che la varianza σ 2 i. Th: Una qualunque cobinazione lineare delle variabili con coefficienti α i, tende asintoticamente alla distribuzione normale con media µ e varianza σ 2 /N al crescere di N. µ = N α i µ i σ 2 = i=1 N αi 2 σi 2 i=1 Nessuna ipotesi sulle distribuzioni delle variabili; unico requisito: esistenza di media e varianza. Particolarizzando alla media aritmetica: x, tende asintoticamente alla distribuzione normale con media µ e varianza σ 2 /N al crescere di N.

74 TEOREMA DEL LIMITE CENTRALE p. 26/2

75 p. 27/2 TEOREMA DEL LIMITE CENTRALE La figura precedente mostra il teorema del limite centrale all opera. I tre pannelli in alto mostrano tre distribuzioni continue di eventi generati secondo una distribuzione normale (sinistra), uniforme (centro) ed esponenziale (destra). Successivamente (dall alto verso il basso) sono mostrate le distribuzioni delle medie di n variabili casuali estratte dalle due distribuzioni. n vale, nell ordine, 2, 5, 30. Al crescere di n le distribuzioni della media tendono ad assumere una forma regolare a campana, indipendentemente dalle distribuzioni iniziali, fino a convergere a distribuzioni normali. Da notare il secondo pannello centrale dall alto (per n = 2). La forma triangolare corrisponde, ad esempio, alla distribuzione della variabile somma del punteggio di due dadi, già incontrata. Visuallizza qui

8.1 Derivazione empirica: la distribuzione degli errori accidentali

8.1 Derivazione empirica: la distribuzione degli errori accidentali Capitolo 8 La legge di Gauss Vogliamo ora investigare sulla distribuzione dei risultati delle misure ripetute di una grandezza fisica, nell ipotesi che esse siano affette da errori esclusivamente casuali.

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

La SCALA di Probabilità varia tra 0.00 e 1.00.

La SCALA di Probabilità varia tra 0.00 e 1.00. CHE COS E LA PROBABILITA La probabilità è la MISURA dell incertezza di un evento, cioè come noi classifichiamo gli eventi rispetto alla loro incertezza. La SCALA di Probabilità varia tra 0.00 e 1.00. 0.00

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

V.C. RETTANGOLARE o UNIFORME

V.C. RETTANGOLARE o UNIFORME V.C. RETTANGOLARE o UNIFORME La v.c. continua RETTANGOLARE o UNIFORME descrive il modello probabilistico dell equiprobabilità. [ a b] X, con densità di probabilità associata: P( x) 1 b a con P(x) costante.

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE Errore di misura è la differenza fra l indicazione fornita dallo strumento e la dimensione vera della grandezza. Supponendo che la grandezza vera

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili casuali continue p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

Lezione 4 a - Misure di dispersione o di variabilità

Lezione 4 a - Misure di dispersione o di variabilità Lezione 4 a - Misure di dispersione o di variabilità Abbiamo visto che la media è una misura della localizzazione centrale della distribuzione (il centro di gravità). Popolazioni con la stessa media possono

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Statistica4-29/09/2015

Statistica4-29/09/2015 Statistica4-29/09/2015 Raccogliere i dati con il maggior numero di cifre significative ed arrotondare eventualmente solo al momento dei calcoli (min. 3); nella grande maggioranza delle ricerche biologiche

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Casa dello Studente. Casa dello Studente

Casa dello Studente. Casa dello Studente Esercitazione - 14 aprile 2016 ESERCIZIO 1 Di seguito si riporta il giudizio (punteggio da 0 a 5) espresso da un gruppo di studenti rispetto alle diverse residenze studentesche di un Ateneo: a) Si calcolino

Dettagli

Corso C Geomatica. Teoria degli errori. Massimiliano Cannata

Corso C Geomatica. Teoria degli errori. Massimiliano Cannata Corso C111.01 - Geomatica Teoria degli errori Rappresentazione di una misura di precisione ( x ± σ x ) u x = misura σ x = incertezza della misura u = unità di misura Il problema degli errori in topografia

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

GLI EVENTI. Probabilità di un evento P(A)

GLI EVENTI. Probabilità di un evento P(A) GLI EVENTI Nel calcolo delle probabilità con la parola evento si intende ogni fatto che in seguito ad una prova può accadere oppure no. Qualche esempio: - l'apparizione di testa quando si lancia una moneta

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

Capitolo 10. La media pesata Calcolo della media pesata

Capitolo 10. La media pesata Calcolo della media pesata Capitolo 0 La media pesata Supponiamo che una stessa grandezza sia stata misurata da osservatori differenti (es. velocità della luce) in laboratori con strumenti e metodi di misura differenti: Laboratorio

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza: Fenomeni aleatori Misure Meccaniche e Termiche Sezione di Misure e Tecniche Sperimentali I fenomeni aleatori (o casuali) sono fenomeni empirici il cui risultato non è prevedibile a priori, caratterizzati

Dettagli

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale

Lezione VI: Distribuzione normale. La distribuzione normale (curva di Gauss). Prof. Enzo Ballone. Lezione 6a- Ia distribuzione normale Lezione VI: Distribuzione normale Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Lezione 6a- Ia distribuzione normale

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

A1. La curva normale (o di Gauss)

A1. La curva normale (o di Gauss) Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 202/203 lezione n. 8 dell aprile 203 - di Massimo Cristallo - A. La curva normale (o di Gauss) La curva

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Il e Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 21 Outline Il e 1 2 3 Il 4 e 5 () Statistica 2 / 21 Il e Due distribuzioni aventi stessa posizione

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla

Dettagli

Le tappe sono essenzialmente 2

Le tappe sono essenzialmente 2 Statistica3 28/09/2015 Che cosa interessa realmente al biologo quando ad esempio determina la glicemia in un gruppo di 6 animali? La glicemia di questi 6 animali La glicemia degli animali sani Le tappe

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo gdibartolomeo@unite.it Definizioni di base Una popolazione è l insieme

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

LE MISURE. attendibilità = x i - X

LE MISURE. attendibilità = x i - X LE MISURE COCETTI PRELIMIARI: MISURA, ATTEDIBILITÀ, PRECISIOE, ACCURATEZZA Il modo corretto di fornire il risultato di una qualunque misura è quello di dare la migliore stima della quantità in questione

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Matematica U. Dini, Università di Firenze Viale Morgagni 67/A, 50134 - Firenze, Italy, vlacci@math.unifi.it A.A. 2015-16 Terminologia In un esperimento ogni risultato delle caratteristiche

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

http://www.biostatistica.unich.it 1 STATISTICA DESCRITTIVA Le misure di tendenza centrale 2 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 3 Esempio Nella

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE Psicometria (8 CFU) Corso di laurea triennale INDICATORI DI TENDENZA CENTRALE Torna alla pri ma pagina INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore

Dettagli

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..

Dettagli

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl 1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per

Dettagli

Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6)

Sintesi dei dati in una tabella. Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6) Sintesi dei dati in una tabella Misure di variabilità (cap. 4) Misure di forma (cap. 5) Statistica descrittiva (cap. 6) Sintesi dei dati Spesso si vuole effettuare una sintesi dei dati per ottenere indici

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Esempi di distribuzioni teoriche

Esempi di distribuzioni teoriche Capitolo 7 Esempi di distribuzioni teoriche In questo capitolo presentiamo alcune funzioni teoriche che rappresentano densità di probabilità di variabili casuali unidimensionali (continue e discrete) che

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Calcolo della Concentrazione Rappresentativa della Sorgente (CRS)

Calcolo della Concentrazione Rappresentativa della Sorgente (CRS) Calcolo della Concentrazione Rappresentativa della Sorgente (CRS) Prof. Renato Baciocchi, Università di Roma Tor Vergata Emiliano Scozza Università di Roma Tor Vergata 1 Valutazione dei Dati Data Set di

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Capitolo 3 Sintesi e descrizione dei dati quantitativi

Capitolo 3 Sintesi e descrizione dei dati quantitativi Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione

Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione Statistica Esercitazione alessandro polli facoltà di scienze politiche, sociologia, comunicazione Obiettivo Esercizio 1. Questo e alcuni degli esercizi che proporremo nei prossimi giorni si basano sul

Dettagli