CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1"

Transcript

1 Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario, per la preparazione agli sudi di Medicina. Il docene inroduce la lezione dicendo che un medico en preparao deve disporre di conoscenze, anche maemaiche, che permeano di cosruire modelli ed inerpreare i dai che definiscono lo sao di salue e la siuazione clinica dei pazieni. Al uo gruppo di lavoro viene assegnao il compio di preparare una lezione sul ema: "come varia nel empo la concenrazione di un farmaco nel sangue?". Se il farmaco viene somminisrao per via endovenosa, si ipoizza per semplicià che la concenrazione del farmaco nel sangue raggiunga suio il valore massimo e che immediaamene inizi a diminuire, in modo proporzionale alla concenrazione sessa; nel caso che il docene i ha chieso di discuere, per ogni ora che passa la concenrazione diminuisce di 1/ del valore che aveva nell ora precedene. 1) Individua la funzione y() che presena l andameno richieso, ipoizzando una concenrazione iniziale y() = 1 μg (microgrammi a milliliro) e rappresenala graficamene in un piano caresiano avene in ascisse il empo espresso in ore e in ordinae la concenrazione espressa in μg. Per = risula y()=1; per =1 risula y(1)=(1/)y()=1/; per =2 risula y(2)=1/(y(1))=1/(1/)=1/49 In generale quindi: y() = ( 1 ) Si raa di una funzione esponenziale di ase 1/, il cui grafico è il seguene: Americhe 21 - Prolema 1 1/ 8

2 Se invece la somminisrazione avviene per via inramuscolare, il farmaco viene dapprima inieao nel muscolo e progressivamene passa nel sangue. Si ipoizza perano che la sua concenrazione nel sangue aumeni per un cero empo, raggiunga un massimo e poi inizi a diminuire con un andameno simile a quello risconrao nel caso della somminisrazione per via endovenosa. 2) Scegli ra le segueni funzioni quella che riieni più adaa per rappresenare l andameno descrio per il caso della somminisrazione per via inramuscolare, giusificando la ua scela: ( 4)2 y() = 1 16 y() = sen(3) e y() = y() = 2 (e e ) Siccome per che ende all infinio la concenrazione ende a zero (come si deduce dall andameno della concenrazione relaiva al caso della somminisrazione per via endovenosa), si escludono le funzioni 1 e 3 (che endono a meno infinio per che ende a più infinio). La seconda funzione, per la presenza del faore sen(3), oscilla fino a più infinio; essendo sen(3) compreso ra -1 e +1, la funzione y() = sen(3) e è compresa ra le due funzioni e e +e, quindi non è vero che ad un cero puno, raggiuno il massimo, la concenrazione inizi a diminuire. La funzione che è più adaa per rappresenare l andameno descrio è perano la quara: 3) y() = 2 (e e ) Traccia il grafico della funzione scela in un piano caresiano avene in ascisse il empo espresso in ore e in ordinae la concenrazione y espressa in μg e descrivi le sue caraerisiche principali, in rapporo al grafico della funzione relaiva alla somminisrazione per via endovenosa. Sudiamo la funzione y() = 2 (e e ) per < + Americhe 21 - Prolema 1 2/ 8

3 Dominio: < + Inersezioni con gli assi: Se =: y= Se y=: 2 (e e ) = e = e = Segno della funzione: La funzione è posiiva se: 2 (e e ) > e > e > < > Quindi la funzione si annulla per = ed è sempre posiiva per >. Limii: Come già noao nel puno precedene, se ende a più infinio la funzione ende a zero (più esaamene a + ): y= è un asinoo orizzonale per che ende a più infinio. Derivaa prima: y = 2 ( 1 e + 1 e ) = 1 1 ( e + e ) se e + e ; e e ; e e ; e ; e 2 3 ; 2 3 ln ( ) ; 3 2 ln ( ) ; 3 2 ln ( ).89 La funzione è quindi crescene per < < 3 ln 2 ( ).89 e decrescene per > 3 ln 2 ( ).89 : ha quindi un massimo relaivo (che è anche assoluo) per = 3 ln 2 ( ).89 ore (in ermini medici queso empo è deo TEMPO DI PICCO); la concenrazione (massima) raggiuna in ale isane è: concenrazione massima = y ( 3 2 ln ( )) y(.89) = 2 (e.89 e.89 ).43 μg (in ermini medici quesa concenrazione è dea CONCENTRAZIONE DI PICCO) Americhe 21 - Prolema 1 3/ 8

4 Derivaa seconda: y = D [ 1 1 ( e + e )] = 1 1 ( e e ) = 1 3 (2e 49e ) se 2e 49e ; 2e 49e ; e ; e ; ln (49) 11.8: il grafico quindi volge la concavià verso l alo se 2 2 > 3 ln ( Ha un flesso se = 3 y ( 3 2 ln (49 2 ) ; 3 ) 11.8 e verso il asso se < ln (49 ) ln (49) 11.8; la concenrazione per ale valore del empo è: 2 2 ln (49 2 )) y(11.8) = (e e 11.8 ).32 μg Il grafico della funzione (somminisrazione inramuscolare) è il seguene: Meiamo a confrono il grafico relaivo al caso della somminisrazione per via inramuscolare con quello relaivo al caso della somminisrazione per via endovenosa: Americhe 21 - Prolema 1 4/ 8

5 Confronando i due grafici noiamo che nel caso della somminisrazione endovenosa la concenrazione del farmaco nel sangue, ipoizzando che raggiunga suio il valore massimo, diminuisce rapidamene, raggiungendo, dopo re ore, una concenrazione molo assa, pari a ( 1 )3.3 μg. Ne caso della somminisrazione inramuscolare, come deo nella premessa, il farmaco viene dapprima inieao nel muscolo e progressivamene passa nel sangue, perano si può ipoizzare che la sua concenrazione nel sangue aumeni per un cero empo e, in paricolare, con la legge in esame, raggiunge il massimo dopo circa.89 ore, massimo che è uguale a circa.43 μg ; dopo aver raggiuno ale massimo la concenrazione diminuisce, ma più lenamene rispeo al caso della somminisrazione endovenosa; per esempio dopo circa 11.8 ore (empo relaivo al flesso della curva), si ha una concenrazione pari a circa.32 μg ; dopo lo sesso empo, nel caso della somminisrazione endovenosa, la concenrazione è praicamene nulla: ( 1 ) μg Osserviamo che le due concenrazioni sono uguali dopo un empo corrispondene al puno di inconro dei due grafici, pari a circa.94 ore; la concenrazione comune è pari a circa.16 μg. Osserviamo che le derivae prime delle due funzioni indicano la velocià di variazione della concenrazione del farmaco nel sangue; aiamo nei due casi: somminisrazione endovenosa: v = d d (1 ) = ( 1 ) ln ( 1 ) = ln() (1 ) < per ogni, vuol dire che la concenrazione diminuisce sempre; infai si è ipoizzao che raggiunga pressoché isananeamene la massima concenrazione. somminisrazione inramuscolare: v = d d ( 2 (e e )) = 1 1 ( e + e ), che, come già viso nello sudio della funzione, è posiiva per < < 3 ln 2 ( ).89 e negaiva per > 3 ln 2 ( ).89 : vuol dire che la concenrazione aumena fino a circa.89 ore, raggiunge il massimo e poi diminuisce. Osserviamo poi che le derivae seconde delle due funzioni indicano se aumena o diminuisce la velocià di variazione della concenrazione del farmaco nel sangue (come dire l accelerazione); aiamo nei due casi: somminisrazione endovenosa: a = dv = d d d ((1 ) ln ( 1 )) = (1 ) ln 2 ( 1 ) > per ogni, vuol dire che la velocià di variazione della concenrazione del farmaco nel sangue cresce sempre: in realà, essendo la velocià sempre negaiva, in valore assoluo la velocià di variazione diminuisce. somminisrazione inramuscolare: a = dv d = d d ( 1 1 ( e + e )) = 1 3 (2e 49e ) > per 3 2 ln (49) 11.8 vuol dire che la velocià di 2 Americhe 21 - Prolema 1 / 8

6 variazione della concenrazione del farmaco nel sangue diminuisce fino a circa 11.8 ore ed aumena dopo ale empo (noiamo che nel puno di flesso, che si ha per =11.8, la velocià raggiunge il minimo). Nella figura seguene sono rappresenai i vari meodi di somminisrazione di un farmaco, ra cui, come nei nosri casi di sudio, quello per via endovenosa e quello per via inramuscolare. Per eviare danni agli organi nei quali il farmaco si accumula è necessario enere soo conrollo la concenrazione del farmaco nel sangue. Supponendo che in un organo il μg farmaco si accumuli con una velocià v, espressa in (microgrammi a milliliro all ora), h proporzionale alla sua concenrazione nel sangue: 4) v() = k y() Deermina la quanià oale di farmaco accumulaa nell organo nel caso della somminisrazione endovenosa e di quella inramuscolare sudiae in precedenza. In quale delle due l accumulo sarà maggiore? Dea q() la quanià di farmaco assoria nell organo, espressa in μg, dalla legge della velocià fornia si oiene: Americhe 21 - Prolema 1 6/ 8

7 v() = dq() d = k y(), da cui: dq = k y() d, k ha per dimensioni 1 h La quanià q di farmaco accumulao nell organo si oiene inegrando la precedene equazione differenziale ra e più infinio: q q = + k y() d + = k y() d Analizziamo i due casi in esame: (con q = q() = in enrami i casi) Somminisrazione endovenosa: + q = k ( 1 ) d = k ( 1 ln() ) lim [(1 + ) 1] = = k ( 1 ) [ 1] = k ln() = k lim (1 + ) d = k lim + 1 ln ( 1 ) [( 1 ) ln() (.14 k) μg h (microgrammi al milliliro) Ciò vuol dire che vengono accumulai nell organo (.14 k) microgrammi di farmaco, eoricamene in un empo infinio, praicamene dopo poche ore; per esempio dopo 2 ore, ponendo =2 nel calcolo precedene, si oiene circa il 98 %: ] = k ln ( 1 ) [( 1 ) ] 2 = k ln ( 1 [( 1 2 ) ) 1] (.3 k) μg h (microgrammi al milliliro) Somminisrazione inramuscolare: + q = k 2 (e e ) d = k lim 2 + (e e ) d = 2 k lim + [ e + e ] = k lim 2 + [ e + e ( + )] = k [ + + 2] = 2 = ( k) μg h (microgrammi al milliliro) Ciò vuol dire che vengono accumulai nell organo ( k) microgrammi al milliliro di farmaco, eoricamene in un empo infinio, praicamene dopo 1 ore si ha: 1 = k 2 [ e + e 2 ] k ( e 1 + e 1 + 2) (3. k) μg h (microgrammi al milliliro), la meà del oale; Americhe 21 - Prolema 1 / 8

8 dopo 24 ore aiamo: 24 = k 2 [ e + e 2 ] k ( e 24 + e ) (6.3 k) μg h (microgrammi al milliliro), il 9 % del oale; dopo 48 ore aiamo: 48 = k 2 [ e + e 2 ] k ( e 48 + e ) (6.98 k) μg h (microgrammi al milliliro), quasi il 1 % del oale. Calcoliamo la quanià di farmaco accumulaa dopo 2ore, per fare un confrono con il caso della somminisrazione per via endovenosa): 24 k 2 [ e + e ] = k 2 ( e 2 + e 2 + 2) (.32 k) μg h (microgrammi al milliliro), pari a circa il 4.6 % del oale; ricordiamo che nel caso della somminisrazione endovenosa dopo 2 ore si aveva circa il 98 % del oale. Queso vuol dire, come già osservao, che l accumulo di farmaco nel caso della somminisrazione endovenosa è molo più rapido. In conclusione: La quanià di farmaco accumulaa nell organo nel caso della somminisrazione inramuscolare è di gran lunga maggiore di quella accumulaa nel caso della somminisrazione endovenosa. Con la collaorazione di Angela Sanamaria e Sefano Scoleri Americhe 21 - Prolema 1 8/ 8

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in PROBLEMA. 1 Americhe Stai seguendo un corso, nell'ambito dell'orientamento universitario, per la preparazione agli studi di Medicina. Il docente introduce la lezione dicendo che un medico ben preparato

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Matematica Finanziaria. Lezione 3

Matematica Finanziaria. Lezione 3 1 Maemaica Finanziaria Lezione 3 Regime finanziario di capializzazione a ineressi anicipai Ponendo: C = Capiale iniziale M = Capiale disponibile in (capiale finale I= Ineresse d = asso di scono della legge

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5 Esercizio 1 Ricapioliamo i dai a nosra disposizione (o ricavabili da quesi): - asso di domanda aeso: đ = 194 unià/mese - deviazione sandard asso di domanda: σ d = 73 - coso fisso emissione ordine (approvvigionameno):

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella

Dettagli

Elevato debito pubblico

Elevato debito pubblico Lezione 22 (AG cap. 21) Elevao debio pubblico Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 1

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Quindi l offerta di moneta è M= Il tasso di interesse è i*=0,1. Il prezzo di un titolo a scadenza annuale è $P T = 90,91.

Quindi l offerta di moneta è M= Il tasso di interesse è i*=0,1. Il prezzo di un titolo a scadenza annuale è $P T = 90,91. Domanda Soluzione a) In un economia la domanda di monea è M d 0.560-50.000i, i rappori circolane/monea e riserve/deposii sono enrambi pari a 0,2. La base monearia è H2.000. Dopo aver scrio la formula del

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA CI OCCUPEREMO DI 1) Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della produzione dal suo asso naurale

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale 8.1 Definizioni 8.1.1 Periodo, frequenza, pulsazione Una grandezza si dice

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico Capiolo XXII. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = rb 1 + G T B -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicaa (FIS/07) 9CFU Facolà di Ingegneria, Archieura e delle Scienze Moorie 18-marzo-013 Archieura (corso magisrale a ciclo unico quinquennale) Prof. Lanzalone Gaeano Cinemaica del Puno Maeriale

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Oscillazione Moto di una molla

Oscillazione Moto di una molla Oscillazione oo di una molla Uno dei più imporani esempi di moo armonico semplice (AS) è il moo di una molla. (Una molla ideale è una molla che rispea la Legge di Hooe.) Consideriamo una molla sospesa

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

v2 - v1 t2 - t1 a = Δv Δv = 39-24 = 15 m/s Δv Δt a = 15/5 = 3 m/s 2 L ' ACCELERAZIONE 39-24 20-15 15 = = 3,0 a =

v2 - v1 t2 - t1 a = Δv Δv = 39-24 = 15 m/s Δv Δt a = 15/5 = 3 m/s 2 L ' ACCELERAZIONE 39-24 20-15 15 = = 3,0 a = L ' ACCELERAZINE Tui pensiao di sapere inuiivaene cosa sia l'accelerazione, a non sepre abbiao le idee sufficieneene chiare. Per coprendere eglio facciao un esepio : due dragsers, coe quelli in figura,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

MODELLO DI SOPRAVVIVENZA CONTINUO

MODELLO DI SOPRAVVIVENZA CONTINUO Modello di sopravvivenza coninuo ia Esempi: MODELLO DI ORAVVIVENZA CONINUO n.a. non negaivo che esprime la duraa aleaoria da un isane iniziale fino al verificarsi di un deerminao eveno duraa di funzionameno

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA Aldo Monesano PRINCIPI DI ANALISI ECONOMICA Cap. 6 SCELA E EMPO Le analisi precedeni delle scele di consumo e di produzione hanno considerao beni definii anche in relazione al empo della loro disponibilià,

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Diagramma Ferro-Carbonio

Diagramma Ferro-Carbonio Diagramma Ferro-Carbonio FERRIE DELA 1 2 3 4 5 6 7 8 FERRIE DELA L I D A4 S E FERRIE FERRIE + CM ERZIARIA AI A3 A2 P Acm CON CM SECONDARIA AI A1 PERLIE CON CM SECONDARIA AI CON CEM RASFORMAA RASFORMAA

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D AnnunzioD

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D AnnunzioD Corso di IMPIANTI TECNICI per l EDILIZIAl aso di espansione Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D AnnunioD Annunio Pescara www.lf.unich.i Prof. Paolo ZAZZINI Diparimeno INGEO Universià G.

Dettagli

ALIMENTATORI SWITCHING

ALIMENTATORI SWITCHING ALIMENAORI SWIHING osiuiscono l alra caegoria dei converiori / impiegai per le applicazioni di piccola po_ enza ( 10 100 Wa ) e, più in paricolare, per l alimenazione di carichi passivi prevalenemene resisivi,

Dettagli

SisElnD3ddc 01/12/ /12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC.

SisElnD3ddc 01/12/ /12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. Ingegneria dell Informazione Obieivi del gruppo di lezioni D Modulo SISTEMI ELETTRONICI D CIRCUITI DIGITALI D3 Comparaori di soglia Comparaori Comparaori con iseresi Uso dell A.O. Generaore di segnale

Dettagli

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW Nella prima pare del capiolo esponiamo il modello di crescia di Solow 1. Successivamene sudieremo le proprieà di convergenza del reddio pro capie implicie nell

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

LA CRITICA ALLA SINTESI DEGLI ANNI E LA RIPRESA DELLA MACROECONOMIA PRE- KENESIANA

LA CRITICA ALLA SINTESI DEGLI ANNI E LA RIPRESA DELLA MACROECONOMIA PRE- KENESIANA LA CRITICA ALLA SITESI DEGLI AI 50-60 E LA RIPRESA DELLA MACROECOOMIA PRE- KEESIAA Alla fine degli anni 60 si apre una fase di ripensameno della eoria macroeconomica prevalene (la sinesi neoclassica).

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

PROBLEMI PROBLEMI INTORNO A NOI RISOLUZIONE

PROBLEMI PROBLEMI INTORNO A NOI RISOLUZIONE PRBLEMI INTRN NI PRBLEMI INTRN NI Un modello per la secrezione dell insulina Nel corpo umano la concenrazione di lucosio nel sanue, dea licemia, è normalmene compresa fra 60 m/dl e 0 m/dl quando si è a

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

A K CARICHE MOBILI POSITIVE

A K CARICHE MOBILI POSITIVE L DODO SEMCONDUTTOE Polarizzando una giunzione P-N si oiene un paricolare componene doao di una sraordinaria capacià: quella di condurre correne se polarizzao direamene e di non condurla se polarizzao

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoi Parhenope Facoà di Ingegneria Corso di Comunicazioni Eeriche docene: Pro. Vio Pascazio 14 a Lezione: 8/5/3 Sommario Fasori Segnai passabanda Trasmissione di segnai passabanda in sisemi

Dettagli

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo Capiolo 2 Sisemi lineari empo-invariani: analisi nel dominio del empo 1. Inroduzione In queso capiolo ci occuperemo dell analisi nel dominio del empo dei sisemi dinamici lineari empo-invariani. Vale a

Dettagli

OBBLIGAZIONI A CEDOLA FISSA

OBBLIGAZIONI A CEDOLA FISSA OBBLGAZON A EDOLA FSSA L acquiso di una obbligazione sul mercao finanziario è un esempio di operazione finanziaria, precisamene si raa di una operazione di puro invesimeno, in quano si ha una sola uscia

Dettagli

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D IL MOVIMENTO Spazio e empo Sposameno Legge oraria Velocia Moo uniforme Accelerazione Moo uniformemene accelerao Esempi di moi in 2-D Il movimeno pag.1 Spazio e empo Ingredieni fondamenali: Disanza variazione

Dettagli

Corso di ECOLOGIA Sito del corso:

Corso di ECOLOGIA Sito del corso: UIVERSITA DEGLI STUDI DI PERUGIA Diparimeno di Chimica, Biologia e Bioecnologie Via Elce di Soo, 6123 -Perugia Corso di Laurea in Scienze Biologiche Corso di ECOLOGIA Sio del corso: hp://cclbiol.unipg.i/index.hml

Dettagli

CONVERTITORI CC / CC

CONVERTITORI CC / CC CONETITOI CC / CC I converiori CC/CC sono dei circuii che, ricevendo in ingresso una ensione coninua, presenano in uscia una ensione ancora coninua ( in realà un valore medio ) ma di valore diverso rispeo

Dettagli

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07.

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07. Indice generale della produzione indusriale indice grezzo correo per i giorni lavoraivi desagionalizzao 0.0 0.0 00.0 indice 90.0 80.0 70.0 60.0 50.0 marzo 06 giugno 06 seembre 06 dicembre 06 marzo 07 giugno

Dettagli

parabola per i tre punti P 0,5 P 5,30 P 10,5 oppure parabola di vertice V 5,30

parabola per i tre punti P 0,5 P 5,30 P 10,5 oppure parabola di vertice V 5,30 Problemi di simulazione della seconda prova di maemaica Esami di sao liceo scienifico 5 febbraio 15 Lo sudene deve svolgere un solo problema a sua scela Tempo massimo assegnao alla prove re ore Problema

Dettagli

2. Definiamo il rapporto Debito Pubblico / Pil e le sue determinanti principale conclusione:

2. Definiamo il rapporto Debito Pubblico / Pil e le sue determinanti principale conclusione: DEITO PULICO In quesa lezione:. definiamo il vincolo di bilancio del overno e sudiamo le conseuenze di un aumeno delle impose sull evoluzione del livello del debio pubblico principali conclusioni: o Se

Dettagli

ESERCITAZIONE 8. B r. H c. ELEVATA H c GRANDE AREA DEL CICLO MATERIALE DURO MATERIALE DOLCE B SONO CARATTERIZZATI DA:

ESERCITAZIONE 8. B r. H c. ELEVATA H c GRANDE AREA DEL CICLO MATERIALE DURO MATERIALE DOLCE B SONO CARATTERIZZATI DA: ESERCITAZIONE 8 DESCRIVERE LE PROPRIETÀ DEI MAGNETI PERMANENTI. PRESENTARE I TIPI DI MATERIALI PIÙ SIGNIFICATIVI. FORNIRE I CRITERI GENERALI PER IL LORO USO. MAGNETI PERMANENTI PER COSTRUIRE MAGNETI PERMANENTI

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

IL MODELLO DINAMICO AD- AS: CAPIRE LE FLUTTUAZIONI ECONOMICHE

IL MODELLO DINAMICO AD- AS: CAPIRE LE FLUTTUAZIONI ECONOMICHE IL MODELLO DINAMICO AD- AS: CAPIRE LE FLUTTUAZIONI ECONOMICHE 0 COSA IMPAREREMO Come incorporare la dimensione emporale (dinamica) nel modello AD-AS. Come usare il modello dinamico AD-AS per illusrare

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

La politica fiscale nel lungo periodo ed il debito pubblico

La politica fiscale nel lungo periodo ed il debito pubblico La poliica fiscale nel lungo periodo ed il debio pubblico Capiolo 8 Capiolo8 La poliica fiscale nel lungo periodo ed il debio pubblico In queso capiolo consideriamo il saldo del bilancio pubblico in un

Dettagli

Esercizi di Analisi Matematica Equazioni differenziali

Esercizi di Analisi Matematica Equazioni differenziali Esercizi di Analisi Maemaica Equazioni differenziali Tommaso Isola 8 gennaio 00 Indice Generalià. Equazioni del primo ordine inegrabili 3. Teoria............................................ 3. Equazioni

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli