Rappresentazione del sistema. Classificazione dei sistemi di controllo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rappresentazione del sistema. Classificazione dei sistemi di controllo"

Transcript

1 Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili di ao i dice ordine del iema. Sao Saico: il iema non dipende dalle variabili di ao. È nella forma Dinamico: il iema dipende dalle variabili di ao y = f u, Numero di variabili Sio (Single Inpu Single Oupu): una ola variabile in ingreo e una in ucia Mimo (Muliple Inpu Muliple Oupu): più variabili in ingreo e in ucia Dipendenza dell ucia dagli ingrei Sreamene proprio: e y()=g(x(), ), cioè e non dipende dall ingreo. I iemi aici ono un cao paricolare di iema reamene proprio. Grad (N()) < Grad (D()) Proprio: l ucia del iema dipende dall ingreo. Grad (N()) = Grad (D()) Dipendenza dal empo Sazionario (Invariane nel empo): nelle equazioni del iema non c è dipendenza eplicia dal empo. ẋ= f x,u y=g x,u Variane nel empo: almeno una equazione del iema dipende epliciamene dal empo Linearià Lineare: le funzioni f e g ono lineari in x e u, cioè il iema è nella forma ẋ=a xbu y=c xdu Non lineare: il iema non ripea la forma ipica della linearià Sabilià La nozione di abilià implica che l applicazione di piccole perurbazioni ullo ao iniziale provochino piccole perurbazioni ul movimeno dello ao. DEF: Uno ao di equilibrio x i dice abile e, per ogni ε>0 eie δ>0 ale che per ui gli ai iniziali x 0 che oddifano la relazione x 0 x La abilià è una proprieà del ingolo movimeno, non del iema.

2 Nei iemi lineari, ui i movimeni hanno la ea proprieà di abilià, quindi i parla di abilià del iema. Un iema lineare azionario è abile e e olo e ui i movimeni liberi dello ao ono limiai. È ainoicamene abile e e olo e ui i movimeni liberi dello ao endono a zero per È inabile e e olo e almeno un movimeno libero dello ao non è limiao. La abilià dipende olo dalla marice dinamica A. Sabilià e auovalori (crierio degli auovalori) Un iema lineare e azionario è ainoicamene abile e e olo e ui i uoi auovalori hanno pare reale negaiva. Un iema lineare e azionario è inabile e almeno uno dei uoi auovalori ha pare reale poiiva. Se un iema è ainoicamene abile i coefficieni del polinomio caraeriico hanno ui lo eo egno. Deo p= n n n n 0 il polinomio aociao all'equazione mariciale de I A=0, condizione necearia affinchè le radici di p() (gli auovalori di A) abbiano che i iano ui dello eo egno e diveri da 0. R0 è Crierio di Rouh-Hurwiz Condizione Necearia e Sufficiene affinchè le radici di p() abbiano ue R0 è che gli elemeni della prima colonna della abella di Rouh iano ui dello eo egno e diveri da zero. i { n n 2 n 4 n n 3 n 5 l i,j è l'elemeno j-eimo della riga i-eima. La marice coniene, nella prima colonna, gli elemeni della prima colonna delle due righe precedeni e, nella econda colonna, gli elemeni della colonna ucceiva delle due righe precedeni. Se mancano degli elemeni per fare i coni, i uano degli zeri. La abella deve avere n+ righe Sabilià di iemi lineari inerconnei In erie: {auovalori di A} = {au di A } {au di A 2 } In parallelo: {auovalori di A} = {au di A } {au di A 2 } In reroazione: gli auovalori di A non hanno legami con quelli di A e di A 2. Devono eere calcolai. Movimeni l i, j = Si definice movimeno dello ao aociao alla condizione iniziale x(0) e all'ingreo u il corripondene andameno nel empo di x Si definice raieoria aociaa alla c.i. x(0) e all'ingreo u l'inieme dei valori auni dal corripondene movimeno dello ao x Daa un'equazione di ao ẋ = A x B u, il movimeno dello ao corripondene all'ingreo u() allo ao iniziale x(0)=x 0 è dao dalla formula di Lagrange: x=e A 0 x 0 0 de[ l i 2, l i, l i, j l i 2, l i, j] e A B ud, 0

3 Analogamene, il movimeno dell'ucia è: y =Ce A 0 x 0 C 0 e A B ud D u, 0 All'inerno dei movimeni ono preeni due conribui dovui allo ao iniziale ed all'ingreo. Il conribuo dello ao è il movimeno libero: x l =e A 0 x 0 y l =Ce A 0 x 0 Invece, il conribuo dell'ingreo è il movimeno forzao: x f = e A B ud 0 y f =C e A B ud D u 0 È poibile calcolare il movimeno libero del iema anche in forma mariciale. Marice della dinamica diagonalizzabile Se la marice A aume la forma diagonale A D, cioè e A=A D =diag{z,z 2,..., z n } il movimeno libero dello ao x l =e A x 0 i può calcolare con e A =Te A D T e T è la marice di raformazione formaa dagli auoveori. Linearizzazione Conie nel decrivere il comporameno di un iema non lineare aorno all'equilibrio come e foe lineare. ẋ= f x,u Un iema oggeo all'ingreo coane u con ao di equilibrio y =g x,u 0= f x,u x e ucia di equilibrio y ali che è linearizzabile ramie lo viluppo in erie di Talyor del y=g x,u primo ordine, oenendo il iema linearizzao: ẋ=a xb u, x 0 = x 0 y=c x D u con A= f x, u x x=x, u=u C= g x,u x=x, u=u B= f x,u u x=x,u=u D= g x, u x=x,u=u x u Cioè, per linearizzare un iema in un inorno dao biogna calcolare le derivae parziali delle ingole componeni del iema e poi calcolarle oiuendo le condizioni impoe dall'inorno. Equilibrio Un iema i dice in equilibrio quando eiono x e u coani nel empo ali che f x, u=0 Perciò per coprire e un iema è in equilibrio, biogna porre ue le ue equazioni di ao uguali a 0 e riolverlo, per rovare x e u Si può quindi calcolare l ucia di equilibrio come y=g x, u Traformaa di Laplace Daa una funzione complea f con R e = j C F = 0 f e d i dice raformaa di Laplace di f

4 Sono di paricolare imporanza le raformae razionali, cioè quelle della forma D() polinomi primi ra loro. F = N D con N() e Le radici dell'equazione N()=0 i chiamano zeri, quelle di D()=0 i chiamano poli. Poli e zeri inieme i dicono ingolarià. Proprieà della raformaa di Laplace Linearià: L [ f g ]= F G Tralazione nel dominio del empo: L [ f ]=e F Derivazione nel dominio del empo: L [ ḟ ]= F f 0 Teorema del valore iniziale: Se una funzione reale f ha raformaa razionale F con grad Dengrad Num, allora f 0=lim F Teorema del valore finale: Se una funzione reale f ha raformaa razionale F con grad Dengrad Num e poli nulli o con pare reale negaiva, allora lim f =lim F 0 Traformae elemenari imp ca ca n ram= ca par e ca in co e n 2 3 a Aniraformaa con meodo di Heaviide Uando il claico meodo della diviione di polinomi è poibile ricondurre la funzione da aniraformare ad una omma di funzioni più emplici. Quee poono poi eere aniraformae ingolarmene ramie la abella delle raformae elemenari e ommae (per la linearià) a formare l'aniraformaa della funzione iniziale. Funzione di raferimeno La funzione di raferimeno è definia come G =C I A BD In condizioni iniziali nulle, il iema può eere decrio con la rappreenazione ingreo-ucia: Y =G U Se il iema è SISO, G() è una funzione razionale in, daa dal rapporo di due polinomi. La cancellazione di radici in comune ra i polinomi a numeraore e denominaore fa ì che il numero dei poli poa eere inferiore a quello degli auovalori. Poiché G() decrive il legame ra l'ingreo e l'ucia del

5 iema, i può inuire che gli auovalori che non coincidono con i poli di G() ono aociai a pari nacoe del iema. Quando nel calcolo di G(S) non avvengono emplificazioni, il uo denominaore coincide con il polinomio caraeriico e i poli coincidono con gli auovalori, perciò baa la loro conocenza per accerare la abilià del iema. I poli del iema coincidono con gli auovalori della pare raggiungibile e oervabile del iema eo, comprea la moleplicià. Gli evenuali auovalori del iema che non ono poli di G() ono neceariamene auovalori della pare non raggiungibile e/o non oervabile del iema eo. Scria G() nella forma G = T i i g i i iema il paramero =G 0= CA BD e g=0. Se g 0, =lim g G è il guadagno generalizzao del iema. 0, con g (ipo del iema), i definice guadagno del Sovraelongazione maima percenuale: S %=00 y max y y Tempo di aeameno all'ε%: empo neceario perchè il modulo della differenza ra l'ucia e il valore di regime rimanga definiivamene al di oo di ε%. Ta = T ln 0.0 Schemi a blocchi Serie G =G a G b Parallelo G =G a G b Reroazione negaiva G G = a G a G b Reroazione poiiva G G = a G a G b =funzione di raferimeno d'andaa funzione di raferimene d'anello =funzione di raferimeno d'andaa funzione di raferimene d'anello Sabilià La conneione in erie o in parallelo di ooiemi ainoicamene abili genera empre un iema ainoicamene abile. La preenza di un ooiema non ainoicamene abile in un collegameno in erie o in parallelo rende non ainoicamene abile il iema compleivo. Una conneione in reroazione non permee di rarre concluioni immediae ulla abilià.

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica.

ALGEBRA DEGLI SCHEMI A BLOCCHI. La figura seguente rappresenta una relazione ingresso/uscita in forma grafica. Lezioni di Teoria dei Siemi. CdL in Ingegneria dell Ambiene e del Terriorio (A.A. 00/0. Bozze). ALGEBRA DEGLI SCHEMI A BLOCCHI La figura eguene rappreena una relazione ingreo/ucia in forma grafica. U(

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA G. SUPT FUGA MT D TOA D T ovembre CAPTOO 9 - T DAMCH DOMO DA FQUZA pag. / CAPTOO 9 - T DAMCH DOMO DA FQUZA TODUZO l meodo della raformaa di aplace, chiamao anche analii nel dominio della frequenza, è una

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dipene del coro di Analii II verione preliminare Paolo Tilli Diparimeno di Maemaica Poliecnico di Torino email: paolo.illi@polio.i gennaio 25 Capiolo 5 Traformaa di Laplace 5. Inroduzione Sia x() una funzione

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

INTRODUZIONE ALLE LEGGI FINANZIARIE

INTRODUZIONE ALLE LEGGI FINANZIARIE Inroduzione alle leggi finanziarie Operazione finanziaria u due dae: S - S + I INTRODUZIONE ALLE LEGGI FINANZIARIE 0 1 anni Legge di equivalenza ineremporale inrodoa dal conrao finanziario: 0 S 1 S + I

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

16. Onde elastiche. m s

16. Onde elastiche. m s 1 Catena di ocillatori 16. Onde elatiche Vogliamo dicutere il fenomeno della propagazione ondulatoria in un mezzo elatico. A tale copo conideriamo un inieme di punti materiali dipoti lungo una retta, ad

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice.

n 1 Un esempio di sistema rappresentabile con equazioni differenziali lineari del tipo (1) è illustrato in Appendice. RICHIAMI SULLE FUNZIONI DI TRASFERIMENTO, TRASFORMATE DI FOURIER E LAPLACE E DIAGRAMMI DI BODE Univerià di Padova Facolà di Ingegneria Coro di Fondameni di Eleronica A.A.4/5 Padova, 4//5 Le noe egueni

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo Capiolo 2 Sisemi lineari empo-invariani: analisi nel dominio del empo 1. Inroduzione In queso capiolo ci occuperemo dell analisi nel dominio del empo dei sisemi dinamici lineari empo-invariani. Vale a

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

Semplificazioni di schemi a blocchi

Semplificazioni di schemi a blocchi Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

24. La sfera e la circonferenza nello spazio.

24. La sfera e la circonferenza nello spazio. 4. La fera e la circonferenza nello pazio. 1 4.1. Definizione. Diremo fera l inieme di tutti e oli i (il luogo dei) punti dello pazio che hanno la tea ditanza > (detta raggio della fera) da un fiato punto

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Note sulla Geometria delle Masse. Sistemi discreti e continui, baricentri, momenti statici, momenti d inerzia

Note sulla Geometria delle Masse. Sistemi discreti e continui, baricentri, momenti statici, momenti d inerzia Noe ulla eomeria delle Mae Siemi dicrei e coninui, baricenri, momeni aici, momeni d inerzia erardo Carpenieri /0/04 Verione: ennaio 04 Quea opera, il codice di calcolo ed alri maeriali di upporo ono diponibili

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa)

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa) Capitolo 4 Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

a) Caso di rottura duttile con armatura compressa minore di quella tesa

a) Caso di rottura duttile con armatura compressa minore di quella tesa LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Nel caso di molte misure e statistica gaussiana

Nel caso di molte misure e statistica gaussiana Dicrepanza Nella tragrande maggioranza dei cai le concluioni perimentali implicano il confronto tra due o più valori. Queti valori poono eere delle miure (e quindi con un incertezza), delle time teoriche

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

Soluzione degli esercizi del Capitolo 10

Soluzione degli esercizi del Capitolo 10 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. La funzione d anello è L(s) = R(s)G(s) = ( + s) 2 il cui diagramma del modulo è mosrao nella Figura S.. Da ale grafico si deduce che risula

Dettagli

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità?

Velocità. s t. m = m s. Il concetto di velocità. Abbiamo rappresentato le posizioni di un oggetto nel tempo. Come rappresentare ora le sue velocità? Pagina 1 di 12 Verione 17/02/04 Velocià Il conceo di velocià Abbiamo rappreenao le poizioni di un oggeo nel empo. Come rappreenare ora le ue velocià? Il conceo di velocià viene uao normalmene nel linguaggio

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la

Dettagli

Fabio Peron. La trasmissione del calore: 1. conduzione termica. Le modalità di scambio del calore. L esperienza di J.B. Fourier. La conduzione termica

Fabio Peron. La trasmissione del calore: 1. conduzione termica. Le modalità di scambio del calore. L esperienza di J.B. Fourier. La conduzione termica Coro i Progeaione Ambienale prof. Fabio Peron Le moalià i cambio el calore Una ifferena i emperaura coiuice uno uilibrio che la naura cerca i annullare generano un fluo i calore. La ramiione el calore:.

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Risposta a regime (per ingresso costante e per ingresso sinusoidale)

Risposta a regime (per ingresso costante e per ingresso sinusoidale) Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non

Dettagli

22 - Il principio dei lavori virtuali

22 - Il principio dei lavori virtuali - Il principio dei lavori virtuali ü [.a. 0-0 : ultima reviione 5 aprile 0] Eempio n. Si conideri il portale di Figura, emplicemente ipertatico. Si vuole applicare il principio dei lavori virtuali per

Dettagli

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1 Capiolo 7 Cammini minimi 7. Definizioni fondamenali Sia dao un grafo non orienao G(N,A) conneo, con coi aociai agli archi c uv R per ogni uv A. Siano anche dai due nodi peciali, N. Faremo la eguene: Aunzione

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469-21029) APPELLO del 07 Settembre 2011 Prof. Andrea Cataldo Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Logico Spiegare la principale differenza nell'elaborazione

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli