IL GIOCO D AZZARDO E DARWIN

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL GIOCO D AZZARDO E DARWIN"

Transcript

1 IL GIOCO D AZZARDO E DARWIN di Pierluigi Parlare di gioco e di azzardo, per uno che si occupa di applicazioni della Teoria dei Giochi (TdG), è una cosa tremendamente stimolante. Non proverò minimamente ad addentrarmi nelle analisi statistiche ed economiche legate al mondo dei giochi d azzardo, né tantomeno nelle problematiche legate al loro impatto sociale e psicologico, oppure ad analizzare perché sia consentito allo stesso Stato di approfittare del gioco d azzardo per fare cassa. La mia intenzione è quella di dare una lettura, spero chiara e sintetica, di come l azzardo, sia esso patologico o meno, affondi le sue radici in qualcosa con cui tutti quanti, più o meno profondamente, dobbiamo confrontarci: l errata percezione del mondo che ci circonda. 1. La Teoria dei Giochi Prima di iniziare, consentitemi di dire due parole sulla TdG e sul fraintendimento che spesso questa disciplina trascina con sé, dato il nome che porta. La TdG è una branca della matematica molto giovane : solo negli ultimi decenni infatti ha acquisito una configurazione relativamente stabile e, comunque, continua ancora oggi a svilupparsi e a cambiare. Nonostante le numerose ed inconsapevoli sue applicazioni già dal remoto passato (le prime aste ad esempio, notevole applicazione della TdG, avevano luogo in Babilonia all incirca nel 500 a.c. 1 ). La sua vera e propria data di nascita si può far risalire solo al 1928, anno di pubblicazione di un saggio del matematico ungherese von Neumann 2. Egli ha rappresentato, per la prima volta matematicamente, le regole dei giochi da tavola definendo formalmente il concetto di strategia e dimostrando l esistenza di una soluzione per tutti i giochi antagonistici, cioè con giocatori avversari e con somma delle vincite costante. Dunque la TdG si chiama così perché è stata formalizzata per la prima volta proprio descrivendo i giochi da tavola, pur avendo il suo focus soprattutto in ciò che i giochi da tavola rappresentano anche nella vita di tutti i giorni: strategie ed interazioni tra individui. Questo è il motivo per cui, successivamente alla pubblicazione di questo saggio, essa ha trovato numerose applicazioni anche nelle scienze sociali, nella biologia evolutiva, come metodo d analisi politica e, non da ultima, in economia. L exploit di questo ramo della matematica è stato ottenuto soprattutto grazie all opera di John F. Nash, primo di numerosi premi Nobel, nel 1994 insieme ad Harsanyi e Selten, assegnati ai cultori di questa disciplina Il gioco, cos è? 1 Lo storico Erodoto riporta nel primo libro delle Storie la prima testimonianza storica a noi pervenuta relativa all impiego di un meccanismo di tale tipo: In ogni villaggio una volta l anno si fa questo: quando le fanciulle sono mature per le nozze le riuniscono tutte, le raccolgono tutte insieme in un luogo ed intorno ad esse si pone una folla di uomini. Un araldo, fattele alzare una dopo l altra, le mette in vendita, prima la più bella di tutte e poi, quando questa, trovato un compratore, sia stata venduta a caro prezzo, passa ad offrirne un altra, quella che è forse la più bella dopo la prima. Vengono messe in vendita per essere sposate. Quanti Babilonesi in età da ammogliarsi erano ricchi, superandosi l un l altro acquistavano le più belle; quanti invece erano popolani, non si curavano affatto di un bell aspetto ma prendevano denari ed insieme le ragazze più brutte. Infatti, quando l araldo aveva terminato di vendere le più belle, faceva alzare la più brutta o qualche storpia se c era e la offriva per chi volesse sposarla ricevendo la più piccola somma di denaro, fin tanto che la donna rimaneva aggiudicata a colui che si impegnava a prenderla con il minimo compenso. Il denaro veniva dalle belle che così accasavano le brutte e le deformi. 2 von Neumann J (1928) Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100 : Successivamente il riconoscimento è stato asseganto nel 1996 a James A. Mirrlees e William Vickrey, nel 2005 a Robert J. Aumann e Thomas C. Schelling, nel 2007 a L. Hurwicz, Eric S. Maskin e Roger B. Myerson, e poi ancora nel 2012 ad Alvin Roth e Lloyd Shapley.

2 Per spiegarvi però come la TdG possa dirci qualcosa sul gioco d azzardo, dobbiamo partire dall inizio e capire che cosa noi, abitualmente, intendiamo come gioco. Nel corso del pensiero umano, da Aristotele e Platone, sino ai matematici e agli statistici passando per gli psicologi e gli antropologi, molte sono le definizioni di gioco che si possono incontrare. Una particolarmente interessante è quella data da Huizinga, Rettore dell Università di Leida, nel 1933 quando scelse come tema della sua prolusione il tema: I limiti del gioco e del serio nelle culture. La sua intenzione era quella di dare sia una definizione comprensiva ed esaustiva di «gioco», sia dimostrare l importanza del suo ruolo nello sviluppo delle civiltà. Huizinga definisce il gioco in questo modo: Considerato per la forma si può dunque, riassumendo, chiamare il gioco un azione libera, conscia di non essere presa «sul serio» e situata al di fuori della vita consueta, che nondimeno può impossessarsi totalmente del giocatore; azione a cui in sé non è congiunto un interesse materiale, da cui non proviene vantaggio, che si compie entro un tempo e uno spazio definiti di proposito, che si svolge in un ordine secondo date regole, e suscita rapporti sociali che facilmente si circondano di mistero e accentuano, mediante travestimento, la loro diversità dal mondo solito 4. Andando ancora più indietro nel tempo, è significativo vedere come con il nascere di una società più antropocentrica rispetto a quelle primitive, quale quella greca che poi darà origine all Occidente, si affermarono due tipologie principali di gioco: quelli di Agon, da cui la nostra parola agonismo, cioè giochi con regole precise e competitivi, e quelli legati all Alea, dalla parola latina che indica i dadi, hanno a che fare non più con le capacità degli individui, ma con la Sorte: una entità impersonale ed imperscrutabile che dispensa i propri favori o torti, senza che entri nel gioco nessuna caratteristica del giocatore: né di ordine morale, né abilità di alcun tipo. Nei giochi governati dall Alea il giocatore si affida totalmente alla fortuna: la sfida è quella di vincere, non tanto contro un avversario, ma contro la Sorte stessa, spesso chiamata a guardare con favore il giocatore. A questi giochi è dunque legata, come forma degenerativa, la superstizione: cioè l idea che il caso possa essere influenzato in qualche modo dal giocatore. Da qui l uso dei talismani, di preghiere, di invocazioni e da qui anche l origine del ruolo delle carte da gioco come forma di divinazione. Al gioco d azzardo si sono ispirati nel corso dei secoli anche notevoli scrittori, uno fra tutti Dostoevskij che, ironia delle ironie, scrisse per necessità economica causata da debiti da gioco, proprio il romanzo Il giocatore. In questo romanzo lo scrittore analizza il gioco d'azzardo in tutte le sue forme e con i diversi tipi di giocatori, dai ricchi nobili europei, ai poveretti che si giocano tutti i loro averi, ai ladri tipici dei casinò, lasciandoci intendere che le problematiche legate agli aspetti degenerativi del gioco non sono migliorate col passare dei secoli. 3. Il gioco d azzardo Il gioco di Alea quindi, come abbiamo già detto, può essere visto come un modo per prendersi una rivincita su altri aspetti della propria vita, ma contemporaneamente, per chi gestisce una sala giochi o per lo Stato, tali giochi sono semplicemente una fonte di guadagno. Da un punto di vista normativo però è importante poter identificare quali giochi sono d azzardo e quali no, in modo da classificare quali possano essere giocati legalmente ovunque e quali solo in particolari luoghi, ad esempio nei Casinò. Per evitare che questa classificazione venga influenzata dall interpretazione soggettiva di alcune regole dei giochi stessi, e cioè che l influenza della sorte e dell abilità del giocatore vengano percepite più o meno elevate di quelle che in realtà sono, considereremo un gioco in cui è opinione diffusa che il risultato finale dipenda (quasi) esclusivamente dalla capacità dei due giocatori: gli scacchi. Quali sono le caratteristiche di questo gioco? Innanzitutto, per tutta la sua durata, i giocatori sono perfettamente a conoscenza della effettiva situazione di entrambi, nel senso che non ci sono elementi di cosiddetta asimmetria informativa. In altre parole: non esiste qualcosa nota solo a uno dei giocatori e non all altro. Un secondo aspetto importante è che, nel gioco degli scacchi, gli 4 J. Huizinga, Homo ludens, Einaudi, Torino 1982.

3 elementi che dipendono dal caso risultano essere trascurabili o nulli, nel senso che in una partita tra amici l assegnazione del bianco, che inizia il gioco, e del nero è casuale, ma nei tornei ufficiali ciascuno dei due giocatori gioca con il bianco lo stesso numero di partite, lasciando incognita solo la strategia di ciascun giocatore, inclusi i tranelli, i diversivi e il sacrificio di qualche pezzo (che però può far parte della strategia con cui si gioca il gioco stesso). Dunque, proprio partendo da queste osservazioni, un gruppo studiosi 5 di TdG ha proposto una definizione matematica del concetto di abilità dei giocatori. Essa è definita considerando due parametri: il livello in cui l esito del gioco è influenzato dai giocatori (apprendimento) e il livello in cui l esito dipende dagli aspetti dovuti al caso (casualità). L apprendimento è definito come l aumento delle vincite che un giocatore esperto è in grado di ottenere. Cioè quanto migliorano le prestazioni di un giocatore che è in grado di elaborare delle strategie, anche sofisticate e complesse, che gli permettono di vincere di più rispetto ad un principiante, ovvero un giocatore che conosce semplicemente le regole del gioco (e che non ha mai giocato, ad esempio). La casualità invece è definita come l aumento delle vincite di un giocatore che non solo conosce le regole del gioco, ma che conosce anche ciò che può dipendere dal caso. L abilità può essere allora espressa come il rapporto tra l apprendimento e la somma tra apprendimento e casualità: Apprendimento Abilità = Apprendimento + Casualità Un esempio molto semplice fa riferimento alla roulette: in questo caso se già conoscessimo quale numero uscirà, cioè siamo a conoscenza oltre che delle regole del gioco anche di quanto dipende dal caso, vinceremo sicuramente. Allo stesso tempo, qualsiasi altro giocatore che non ha conoscenza anche del caso, ma solo delle regole del gioco, non migliorerà le sue vincite giocando più volte alla roulette: ogni volta è come se fosse la prima). Quindi, nella roulette l apprendimento non permette di aumentare in alcun modo la vincita di un giocatore. Ecco che allora l abilità, definita come sopra, ci dà come risultato 0, cioè il gioco della roulette è un gioco di puro azzardo (infatti è un gioco di Alea) La probabilità e il rischio di un gioco d azzardo Dunque, i giochi il cui esito è fortemente, se non esclusivamente, determinato dal caso, vengono definiti d'azzardo. Rientrano in questa categoria tutti i giochi che si trovano nei Casinò, tutte le scommesse pubbliche (Lotto, Superenalotto, Lotterie, i Gratta e vinci), giochi vari con i dadi, poco diffusi in Europa ma molto praticati negli Stati Uniti, i giochi di Natale (Tombola, Mercante in fiera, Sette e mezzo, Piatto). Anche l'impianto su cui spesso si basano trasmissioni televisive a premi, ultima delle quali Affari tuoi, il gioco dei pacchi, è basato su un gioco d'azzardo. Non tutti i giochi che prevedono elementi aleatori, però, sono da considerarsi giochi d'azzardo. Il Bridge e il Tresette, per esempio, o anche lo stesso Poker, lasciano ampio spazio all'abilità del giocatore di provare a bilanciare la casualità della distribuzione delle carte. Noi 5 A new relative skill measure for games with chance elements. Marcel Dreef, Peter Borm and Ben van der Genugten, Più specificamente sul Poker e l abilità dei giocatori si può leggere anche questo paper, degli stessi autori. 6 Azzardo deriva dal francese hasard, termine di origine araba e derivante dal az-zahr: dado, cioè gioco di Alea. Freud interpretò la coazione al gioco d azzardo come una forma di autopunizione, guidata dal bisogno di perdere, al fine di alleviare il senso di colpa dato dal complesso edipico; il gioco, inoltre, rappresenterebbe una trasformazione simbolica del bisogno (e vizio) masturbatorio infantile analogia che verrà poi ripresa da diversi autori psicodinamici. La teoria comportamentista, invece, sulla base della teoria di Skinner e dalle riflessioni sullo stimolo intermittente, spiegò che il giocatore, rinforzato dall eccitazione associata ai momenti della puntata e da vincite casuali anche relativamente infrequenti, sarebbe spinto a ritentare, sviluppando e mantenendo così il desiderio di giocare fino a raggiungere un livello patologico in quest ottica, più tentativi corrispondono a maggiore eccitazione e maggiore possibilità di vincita. Ancora, secondo il modello cognitivista, l origine del coinvolgimento sarebbe da attribuire ad una sorta di pensiero magico (quindi irrazionale), in cui ogni giocata è vista come indipendente da quelle precedenti, ha una propria possibilità di vincita e porta il giocatore a sviluppare la sensazione che ogni partita sia quella vincente, credendosi esperto, capace e imbattibile, senza essere in grado di riconoscerlo come fonte di perdite finanziarie e sofferenze emotive e soprattutto come il puro effetto del caso.

4 però possiamo approfondire l analisi di questi giochi dal punto di vista del meccanismo matematico da essi rappresentato. Inevitabilmente farò riferimento al calcolo della probabilità, che tra l'altro ha avuto origine proprio nel 1650 dallo scambio di lettere di due matematici incuriositi dal gioco con i dadi 7. Ricorrendo a una definizione di probabilità intuitiva e ragionevole, possiamo dire così: considerato che un dato ha solo sei facce, la probabilità che esca 1 (valore che è presente solo su una delle sei facce) è data da 1 su 6, cioè 1/6. In generale, la probabilità di un evento sarà il rapporto tra il numero dei casi favorevoli (ciò che io voglio succeda) e la totalità dei casi possibili (tutto quello che può succedere). Non riusciremo mai indovinare con esattezza quale sarà l'esito del lancio di un dado, ma il calcolo della probabilità può consentirci di effettuare una previsione (non una predizione) sull'andamento dell'uscita della faccia con il numero 1 effettuando un gran numero di lanci. Insomma, non è molto, ma è già qualcosa. Nei giochi d azzardo inoltre è prevista la presenza di uno o più giocatori e un Banco. Il Banco propone ai giocatori di scommettere su un evento, cioè che accada qualcosa di ben definito, versando una quota in denaro per partecipare al gioco. Se il giocatore indovina, ossia si è verificato l'evento sul quale ha scommesso, il Banco versa al giocatore la somma pattuita in precedenza, altrimenti incamera l'ammontare della giocata. Nei giochi d'azzardo contro il Banco, quindi, il giocatore possiede l'unico potere discrezionale di stabilire l'ammontare della posta e il tipo di puntata, oltre che, naturalmente, se giocare o no. Non può fare altro. 5. Il coefficiente di azzardo di alcuni giochi All interno dei giochi d azzardo è poi possibile fare un ulteriore classificazione in base ad un parametro, detto coefficiente d azzardo. Cos è? Esso è calcolato come la probabilità che ho di vincere, moltiplicata per quanto potrei vincere, meno la probabilità che ho di perdere moltiplicata per quanto ho scommesso. Un coefficiente di azzardo maggiore di zero indica che la scommessa è conveniente (ovviamente non vuol dire che si vincerà sempre. Vuol dire che, ripetendo la scommessa più volte, sul lungo periodo guadagnerò dei soldi), mentre se il coefficiente è negativo abbiamo una scommessa che, se ripetuta sul lungo periodo, ci porterà sicuramente a perdere dei soldi (come prima: non vuol dire che si perderà sempre. Vuol dire che, ripetendo la scommessa più volte, sul lungo periodo perderemo sicuramente dei soldi). Qualche esempio. Una roulette ha 37 numeri (36 + lo zero). Di questi 18 sono rossi, 18 sono neri, e lo zero ha un suo colore (di solito, il verde). Una scommessa sul rosso o sul nero viene pagata uno a uno (punto 5, vinco altri 5 ), mentre una scommessa sul numero singolo viene pagata trentacinque ad uno (punto 5, ne vinco 5x35=175 ). Il coefficiente di azzardo se punto sul rosso o sul nero è pari a , mentre se punto su un 7 L effettivo inizio della teoria della probabilità, però, si fa risalire ad una corrispondenza epistolare fra i matematici francesi Pascal e Fermat, originata intorno al 1650 da alcuni problemi posti a Pascal da un accanito giocatore d azzardo: il Cavaliere De Méré. I problemi erano: è più probabile ottenere almeno un 6 lanciando 4 volte un dado o avere un doppio 6 lanciando 24 volte lo stesso dado? Se due giocatori (ugualmente bravi) interrompono un gioco in cui vince per primo chi totalizza un certo punteggio, senza averlo raggiunto, come si divide il premio? Pascal chiese aiuto a Fermat e dalla loro corrispondenza nascono le prime leggi del calcolo combinatorio e delle probabilità tanto che nel 1654 pubblica il Traité du Triangle Arithmétique (in cui parla del triangolo di Tartaglia). Nel 1657 l olandese Huygens pubblica il De ratiocinis in ludo aleae (cioè Sul ragionamento nel gioco dei dadi) e nel 1666 il tedesco Leibniz pubblica la sua Dissertatio de arte combinatoria. Ma il primo volume veramente importante sulla teoria della probabilità è Ars conjectandi (Arte di congetturare) di Jacques Bernoulli apparso nel 1713 (otto anni dopo la morte dell autore). E fu in questi anni che la teoria della probabilità ebbe il maggior sviluppo perché in molti furono interessati all argomento. Nel 1812 Pierre de Laplace introdusse una grande quantità di nuove idee e tecniche matematiche nel suo libro Théorie Analytique des Probabilités, ed in quegli stessi anni Gauss, con il contributo dello stesso Laplace, dava una formulazione della distribuzione normale conosciuta con il nome di distribuzione di Gauss-Laplace che costituisce uno dei cardini su cui si fonda la statistica moderna. 8 In questo caso la probabilità di vincere è data da 18/37= e, siccome la scommessa viene pagata uno a uno, se gioco 5 vinco 5, il coefficiente di azzardo è dato da A = s ( s)= s, dove s è la scommessa.

5 numero qualsiasi è dato da I coefficienti risultano entrambi negativi: quindi, giocare alla roulette alla lunga vuol dire perdere. Ma sono valori anche abbastanza vicini allo zero, quindi il gioco tutto sommato è più o meno onesto: se il coefficiente fosse positivo vorrebbe dire che i Casinò alla lunga andrebbero in perdita, e la cosa non ha ovviamente senso. Consideriamo però un gioco che sembra molto più intrigante della roulette: il Win for life. Dico intrigante perché sembrerebbe che un gioco in cui puoi scegliere 10 numeri su 20 e vincere indovinandone 0, 1, 2, 3, 7, 8, 9 oppure 10, sia estremamente allettante. Peccato che in realtà si vince solo il 9% delle volte: questo vuol dire che si perde il 91% delle volte. Inoltre, di quel 9% di volte in cui si vince, il 99% delle volte si vincono meno di 10 euro. Quindi solo una volta su mille (Morandi in questo c ha visto lungo) ci sarà una vincita superiore a 10 euro 10. Certo, si potrebbe sempre vincere il superpremio di euro al mese per 20 anni. Ma facciamo due conti: la cifra totale che si vince è di euro (5 mila euro al mese per 12 mesi per 20 anni). La probabilità di vincere, giocando un euro è una su , quindi si ottiene un coefficiente di azzardo pari a che è un numero non solo negativo, ma 30 volte più distante dallo zero dei coefficienti che abbiamo calcolato per la roulette. In altre parole, giocare alla roulette è 30 volte più conveniente che giocare al Win for Life e, per diretta conseguenza, un Casinò (dove si può giocare legalmente alla roulette) è 30 volte più onesto dello Stato. Per il Superenalotto invece la cosa si fa ancora più interessante: per vincere il primo premio in questo gioco occorre indovinare una combinazione di 6 numeri estratti casualmente tra 90. Ma dal punto di vista statistico vincere è davvero difficile: la probabilità di indovinare il primo numero estratto è di 1 su 90, quella di indovinare il secondo è di 1 su 89, e così via. Facendo qualche calcolo si scopre che la probabilità di indovinare la sestina vincente è quasi nulla: solo 1 su Immaginiamo un montepremi mediamente alto, tipo 80 milioni di euro: con questi numeri il coefficiente d azzardo vale , cioè è il più disonesto dei giochi che abbiamo visto finora. Dicevamo che la probabilità di indovinare la sestina vincente al Superenalotto è solo 1 su Per avere un termine di confronto si pensi che gli esperti del CNR hanno stimato che la probabilità che nel 2036 l asteroide Apophis investa il nostro pianeta è pari a 1 su In altre parole potremmo dire alla gente che è molto, ma molto, ma molto più probabile morire a causa di una catastrofe stellare che vincere al Superenalotto. La domanda però è una: alla fine qualcuno al Superenalotto vince, mentre nessun asteroide cade sulla terra. Quindi? Cosa c è di sbagliato in questo ragionamento? Il problema è abbastanza chiaro: noi non riusciamo a gestire i giochi d azzardo, ed essi ci affascinano e hanno presa su di noi, perché non siamo abituati a ragionare con numeri così grandi. E questa cosa ci porta a fare scelte spesso sbagliate. Perché? Perché noi siamo quello che siamo per via dell evoluzione che ci ha portati fin qui. Mi spiego meglio nel prossimo, e ultimo, passo di questo ragionamento. 9 Ripetiamo il calcolo per una eventuale scommessa sul numero singolo. In questo caso la probabilità di vincere è data da 1/37= La vincita invece è 35 volte la scommessa s, quindi A = s ( s)= s. 10 Il nostro cervello non traffica con guadagni-perdite allo stesso modo. Li tratta come fenomeni distinti. Non è «progettato» per fare quello che vuole la teoria economica neoclassica, cioè soppesare razionalmente la combinazione di probabilità, in particolare di rischio, e rendimenti attesi. Il cervello non fa naturalmente tale tipo di operazione, ma tratta la vincita con il Nucleus accumbens septi ed elabora il rischio con le aree della corteccia frontale e l'incertezza con l'insula. 11 Il calcolo è effettuato in questo modo:! 90 $ 90! # & = = = " 6 % 84! 6!

6 6. Darwin c entra sempre (e spiega molte cose anche sul gioco d azzardo) 12 Il motivo per cui si continua a giocare a dispetto di queste probabilità insignificanti di vittoria, risiede nel fatto che il nostro cervello è costruito per far fronte a eventi su scale di tempo radicalmente diverse da quelle che caratterizzano il nostro mutamento evolutivo. Noi siamo equipaggiati a valutare processi che richiedono, per completarsi, secondi, minuti, anni o, al massimo, decenni. Pertanto il nostro apparato di giudizio fondato sullo scetticismo e sulla teoria della probabilità soggettiva è esposto a margini di errore molto grandi, essendo sintonizzato, per una curiosa ironia ad opera dell evoluzione stessa, a lavorare entro una durata di vita di pochi decenni. Probabilmente gli eventi che noi chiamiamo comunemente miracoli, sia quelli religiosi che quelli legati al gioco d azzardo, fanno parte di una gamma di eventi naturali più o meno improbabili. Un miracolo, in altri termini, se mai si verifica, non è altro che un evento molto fortunato. Gli eventi non si distinguono nettamente in eventi naturali e miracoli: dato un tempo infinito, o un numero di opportunità infinito, è possibile qualsiasi cosa. I grandi numeri forniti dall'astronomia e i lunghissimi intervalli di tempo caratteristici della geologia si combinano a sconvolgere le nostre stime quotidiane di ciò che ci si attende e di ciò che è miracoloso. Se io dico: «Possa essere colpito in questo momento da un fulmine», se il fulmine mi colpisse nel preciso momento in cui lo dico sarebbe considerato un miracolo. In realtà, però, questo fatto non sarebbe giudicato dalla scienza come assolutamente impossibile, esso sarebbe considerato solo molto improbabile. Infatti, il fulmine ha l'abitudine di colpire di tanto in tanto delle persone: ognuno di noi potrebbe essere colpito da un fulmine, ma la probabilità in qualsiasi minuto è piuttosto bassa. L'unica cosa miracolosa sarebbe la coincidenza fra ciò che ho chiesto (di essere colpito da un fulmine) e l'essere veramente colpito dal fulmine. Attenzione però: coincidenza non significa altro che improbabilità moltiplicata. La probabilità che io venga colpito dal fulmine in un qualsiasi minuto della mia vita è di forse 1 a 10 milioni, come stima prudente, ma anche la probabilità che io chieda ad un fulmine di colpirmi in un particolare istante è molto bassa. Per calcolare la probabilità congiunta che questa coincidenza si verifichi è necessario quindi moltiplicare le due probabilità separate. Approssimativamente possiamo dire che la probabilità che questo accada è uno su 250 miliardi. Dunque, benché le probabilità siano molto basse, noi siamo in grado di calcolarle: esse non sono letteralmente zero. Però può succedere, se consideriamo i quasi 7 miliardi di persone che vivono su questo pianeta, che qualcosa anche di altamente improbabile accada. A questo va aggiunta una considerazione: la comunicazione di massa ci porta molto facilmente a conoscenza di qualsiasi cosa succeda, anche se è qualcosa di molto improbabile capitata a qualcuno in qualsiasi parte del mondo. Questa cosa noi riusciremo a leggerla quasi in tempo reale su internet o sul giornale o via radio o al telegiornale, e non possiamo non restarne impressionati. Ma considerando i vari miliardi di persone a cui una cosa del genere potrebbe capitare, sebbene improbabile, la coincidenza finisce col non essere in realtà così grande come potrebbe sembrare a prima vista. In altre parole, il villaggio globale nel quale viviamo, ci permette di osservare cose altamente improbabili con una frequenza apparentemente molto maggiore di quella reale, e questo perché noi ci siamo evoluti in contesti di qualche decina o al massimo centinaia di persone, pertanto il nostro cervello non è in grado di capire e di immaginarsi un numero di persone così elevato. Tutto ci sembra come se fosse capitato al nostro vicino di casa e, per questo, ci sembra molto più probabile di quello che in realtà è. Infatti, ciò che noi possiamo immaginare come plausibile è una banda limitata al centro di uno spettro molto più ampio di ciò che è realmente possibile. Una buona analogia per capire meglio questo aspetto ci viene fornita dalla luce. I nostri occhi si sono evoluti per percepire (quindi vedere) una banda limitata di frequenze elettromagnetiche (quelle che noi chiamiamo, appunto, luce). In realtà ciò che i nostri occhi riescono a percepire sta più o meno nel mezzo di uno spettro che va dalle onde lunghe della radio a quelle corte dei 12 Questo paragrafo è quasi completamente tratto da un illuminante saggio di R. Dawkins, L orologiaio cieco, edito da Mondadori.

7 raggi X (discorso analogo si potrebbe fare con l udito: ciò che riusciamo ad ascoltare è una banda molto limitata, posta più o meno al centro di uno spettro che va dagli infrasuoni agli ultrasuoni). Allo stesso modo le scale delle dimensioni e del tempo si estendono in entrambe le direzioni molto al di fuori dell'ambito di ciò che possiamo immaginare: la nostra mente non riesce a concepire le grandi distanze di cui si occupa l'astronomia né le piccole distanze di cui si occupa la fisica atomica, sebbene si sia in grado di fare dei calcoli molto precisi con quelle dimensioni di riferimento, così come avviene per il tempo 13. È presumibile che i nostri progenitori non avessero alcun bisogno di far fronte a dimensioni e tempi al di fuori della gamma ristretta delle esigenze pratiche della vita quotidiana, cosicché il nostro cervello non ha mai sviluppato la capacità di immaginare cose così grandi o così piccole. L analogia con i miracoli e le improbabilità elevate è dunque chiara. Immaginiamoci una scala graduata di eventi che possono succedere, analoga alla scala di lunghezze che va dagli atomi alle galassie. Su questa scala possiamo segnare vari punti di riferimento: a uno dei suoi estremi avremo gli eventi che sono quasi certi, come la probabilità che domani sorga il sole. In prossimità di questo estremo della scala si trovano cose che sono solo leggermente improbabili, come ottenere due sei gettando una sola volta un paio di dadi: infatti la probabilità di ottenere una coppia di sei in un lancio è di 1 a 36 (tutto sommato abbastanza alta). Spostandosi poi verso l'altro lato della nostra immaginaria scala di improbabilità, possiamo identificare un altro punto di riferimento: la probabilità che un giocatore di bridge ottenga un perfect deal, cioè un seme completo. La probabilità di una tale evenienza è di 1 a (duemiladuecentotrentasei quadrilioni). Quindi, fra il lancio di una coppia di sei con due dadi e la distribuzione di un seme completo di bridge, c'è una gamma di eventi più o meno improbabili che a volte accadono, compreso quello di essere una volta o l'altra colpiti dal fulmine mentre lo si chiede, o di vincere al Superenalotto, o di fare una buca con un colpo solo al golf e via dicendo. In questa gamma molto estesa di improbabilità, il nostro cervello riesce ad interpretare correttamente solo le cose che vanno dalle cose certe (il sole che sorge) ai miracoli facili (come indovinare un terno al Lotto o il verificarsi di un sogno). Al di fuori di questa banda ristretta c'è una vasta gamma di improbabilità che ci lasciano al buio, che non riusciamo ad capire correttamente, sebbene siano calcolabili matematicamente. Noi quindi siamo equipaggiati per fare calcoli mentali di rischio e probabilità, ma lo sappiamo fare bene solo nella gamma di improbabilità che sono utili alla sopravvivenza: il rischio di essere infilzati da un bisonte se gli tiriamo una freccia, di essere colpiti da un fulmine se cerchiamo riparo sotto un albero isolato durante un temporale o di annegare se cerchiamo di attraversare un fiume a nuoto 14. Questi rischi accettabili sono 13 La nostra mente non può immaginare un intervallo di tempo breve come un picosecondo, ma possiamo fare calcoli sui picosecondi, e possiamo costruire computer in grado di compiere calcoli nel brevissimo lasso di tempo di picosecondi. La nostra mente non può immaginare una durata di tempo di un milione di anni, e tanto meno i miliardi di anni che figurano normalmente nei calcoli dei geologi. Come i nostri occhi possono vedere solo la stretta banda di frequenze elettromagnetiche che i nostri antenati sono stati equipaggiati a vedere dalla selezione naturale, così il nostro cervello è stato costruito per far fronte a bande limitate di dimensioni e di tempo. 14 Da un punto di vista neurologico, il sistema dopaminergico si attiva per anticipare i guadagni e si deattiva per anticipare le perdite, mentre un sistema "emotivo e somatosensoriale" centrato sull'amigdala si attiva per le perdite e si deattiva per i guadagni. In altre parole, a parità di somma in gioco, le risposte associate alle perdite sono più intense di quelle associate alle vincite, e la forza di questa asimmetria, che varia da persona a persona, riflette la propensione individuale all'avversione alle perdite. Ma quest'ultima è anche correlata al volume di materia grigia nell'amigdala. L'amigdala è una struttura cerebrale profonda, essenziale per le capacità di apprendere i pericoli intorno a noi, riconoscerli e preparare l'organismo a una risposta, ad esempio "combatti o scappa". Oggi sappiamo che l'amigdala riconosce anche i possibili pericoli insiti nelle nostre stesse azioni, e che la sua attivazione ci spinge, più spesso di quanto sarebbe razionale, ad evitare di agire. Questo "freno" al comportamento ci può salvare la vita, ma se non è a sua volta tenuto sotto controllo ci impedisce di cogliere le opportunità offerte dall'ambiente.

8 commensurati alla durata di alcuni decenni della nostra vita, e per questo sappiamo fare bene questi conti, anche a livello inconscio 15. L'evoluzione quindi ha dotato il nostro cervello di una coscienza soggettiva del rischio e dell'improbabilità adatta a creature che hanno una durata di vita di meno di un secolo: quando si ha a che fare con situazioni in cui la nostra percezione viene travolta da grandezze a cui non siamo abituati, e il gioco d azzardo è una di queste situazioni, è molto più razionale rendersi conto del fatto che i cambiamenti di vita repentini, legati a miracolose vincite al gioco, sono praticamente nulli. Paradossalmente tali attività rischiano di trasformare la permanenza in questo mondo, e non solo nostra ma anche delle persone che con noi condividono questo tratto di strada, in un vero e proprio inferno. Inferno che non è quello fantasioso di Dante o degli antichi greci, che si sperimenta solo dopo la morte, ma quello ben descritto da Calvino nelle sue Città invisibili: L'inferno dei viventi non è qualcosa che sarà; se ce n'è uno è quello che è già qui, l'inferno che abitiamo tutti i giorni, che formiamo stando insieme. 15 Se, infatti, noi fossimo biologicamente capaci di vivere per un milione di anni ad esempio, le cose cambierebbero perchè dovremmo valutare i rischi in modo molto diverso. Dovremmo prendere l'abitudine, per esempio, di non attraversare strade o prendere gli aerei, perché attraversando una strada ogni giorno per mezzo milione di anni finiremmo con l'essere sicuramente investiti (basta vedere la probabilità di investimento di pedoni ad opera di automobilisti) oppure non si meraviglieranno di ricevere di tanto in tanto un seme completo a bridge.

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Il calcolo delle probabilità

Il calcolo delle probabilità Il calcolo delle probabilità Cenni storici Come in molti altri casi, anche l'individuazione di una data precisa per la collocazione della nascita della teoria della probabilità non ha soluzione univoca.

Dettagli

Lo sviluppo della strategia di base del Blackjack

Lo sviluppo della strategia di base del Blackjack Il Blackjack on line Il poker e le slot sono sempre considerate invenzioni americane come l'americana torta di melema altri giochi d'azzardo, come la roulette e il blackjack, sono indiscutibilmente francesi

Dettagli

roulette americana come giocare

roulette americana come giocare roulette americana come giocare Indice Le origini del gioco 4 Ogni gioco ha i propri gettoni 5 Esperienza o superstizione? 8 Come piazzare una scommessa? 8 Quando e come scommettere sulla tabella dei

Dettagli

Dr. Alessandra Alberti Ser.T. zona Valtiberina Dip.to Dipendenze A.USL 8

Dr. Alessandra Alberti Ser.T. zona Valtiberina Dip.to Dipendenze A.USL 8 Dr. Alessandra Alberti Ser.T. zona Valtiberina Dip.to Dipendenze A.USL 8 Normalmente azzardo perché il gioco d azzardo è anch esso una forma di gioco normale, ma anche perché possiamo dire che in qualche

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

UNA STORIA PROBABILE di Francesca D Iapico

UNA STORIA PROBABILE di Francesca D Iapico UNA STORIA PROBABILE di Francesca D Iapico Si mostrano qui alcune delle tappe attraverso le quali si è compiuto il cammino che ha portato al calcolo delle probabilità come lo usiamo oggi Un racconto pensato

Dettagli

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE

COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE 11 November 2014 COME AGGIORNARE IL PROPRIO SISTEMA DI CREDENZE Articolo a cura di Nicola Doro - Responsabile Commerciale Ad Hoc Ti sei mai chiesto perché alcune persone falliscono in tutto quello che

Dettagli

Dispense di Filosofia del Linguaggio

Dispense di Filosofia del Linguaggio Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.

Dettagli

Introduzione al pensiero probabilistico Il problema delle parti

Introduzione al pensiero probabilistico Il problema delle parti Introduzione al pensiero probabilistico Il problema delle parti Problema (in piccoli gruppi di lavoro) Due giocatori di pari abilità disputano una serie di partite; vince il gioco chi, per primo, raggiunge

Dettagli

Una breve introduzione alla Teoria dei Giochi

Una breve introduzione alla Teoria dei Giochi Una breve introduzione alla Teoria Stefano GAGLIARDO Dipartimento di Matematica - Università degli studi di Genova Stage DIMA - 19/04/2011 (DIMA, UNIGE) 19/04/2011 1 / 74 Outline 1 Un po di storia 2 La

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

VINCERE AL BLACKJACK

VINCERE AL BLACKJACK VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 3 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html MODALITÀ DI ESAME È previsto un appello alla fine

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Verità convenzionale e realtà ultima *

Verità convenzionale e realtà ultima * 17 Verità convenzionale e realtà ultima * Gli organi dei sensi ci rappresentano il mondo circostante in maniera distorta; sono come delle lenti deformanti. Ciò è dovuto al fatto che nella nostra fase di

Dettagli

RISULTATI DELLA RICERCA

RISULTATI DELLA RICERCA RISULTATI DELLA RICERCA 2011 Ricerca nazionale sul gioco d'azzardo 2011- Ricerca nazionale sulle abitudini di gioco degli italiani - curata dall Associazione Centro Sociale Papa Giovanni XXIII, e coordinata

Dettagli

Non mi resta che augurarvi buona lettura, sperando di aiutarvi a diventare tanti Papà Ricchi! 1. IL RICCO NON LAVORA PER DENARO

Non mi resta che augurarvi buona lettura, sperando di aiutarvi a diventare tanti Papà Ricchi! 1. IL RICCO NON LAVORA PER DENARO Credo che nella vita sia capitato a tutti di pensare a come gestire al meglio i propri guadagni cercando di pianificare entrate ed uscite per capire se, tolti i soldi per vivere, ne rimanessero abbastanza

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Scommesse e concorsi a pronostico

Scommesse e concorsi a pronostico Scommesse singole ippiche e sportive Scommesse e concorsi a pronostico La percentuale di probabilità di vincita si ricava dal rapporto tra il singolo esito e il numero di esiti possibili, ovvero: (Singolo

Dettagli

CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO

CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO CAPITOLO TRE IL MIO MODO DI GIOCARE E LE ESCHE CHE MI ATTIRANO Sommario Nel primo capitolo di questo quaderno lei ha ritenuto che il gioco d azzardo sta causando problemi nella sua vita. Si è posto obiettivi

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

8 Il futuro dei futures

8 Il futuro dei futures Introduzione Come accade spesso negli ultimi tempi, il titolo di questo libro è volutamente ambiguo, ma in questo caso non si tratta solo di un espediente retorico: come spero si colga nel corso della

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Giochiamo a dadi Nel XVII secolo il cavaliere De Meré, forte giocatore, come spesso accadeva fra la nobiltà di quel tempo, si pose questo quesito: Che cosa è più conveniente, scommettere

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012

Teoria dei Giochi. Anna Torre. Almo Collegio Borromeo 6 marzo 2012 Teoria dei Giochi Anna Torre Almo Collegio Borromeo 6 marzo 2012 UN PO DI STORIA UN PO DI STORIA Von Neumann, Morgenstern Theory of Games and Economic Behavior (Princeton, 1944); UN PO DI STORIA Von Neumann,

Dettagli

Analisi di situazioni casuali: apparenti paradossi e auto-inganni

Analisi di situazioni casuali: apparenti paradossi e auto-inganni Analisi di situazioni casuali: apparenti paradossi e auto-inganni Fabio Spizzichino Associazione Civica XIX Libreria Passaparola, Roma Roma, 11 Aprile 2014 1 Ci sono tre tipi di bugie: le bugie normali,

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori

STIMA PIU CHE PUOI Un gioco per diventare abili stimatori ISTITUTO COMPRENSIVO DI MONTALE ISTITUTO COMPRENSIVO B. da Montemagno DI QUARRATA a.s. 2012-2013 GRUPPO DI RICERCA-AZIONE DI MATEMATICA STIMA PIU CHE PUOI Un gioco per diventare abili stimatori Classi

Dettagli

GET TEST Test sulle attitudini imprenditoriali

GET TEST Test sulle attitudini imprenditoriali GET TEST Test sulle attitudini imprenditoriali 1 URHM UNIVERSITY BUSINESS SCHOOL GENERL ENTERPRICING TENENCY (GET) TEST 2 INTROUZIONE Il Test è stato progettato per cogliere insieme e misurare un numero

Dettagli

Didattica del numero e dei problemi

Didattica del numero e dei problemi Scienze della Formazione Primaria Livorno 8-3-2010 Didattica del numero e dei problemi Pietro Di Martino dimartin@dm.unipi.it www.dm.unipi.it/~dimartin Emerge che Spesso chi ha grosse difficoltà in matematica

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R.

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R. 6. I numeri reali e complessi ( R e C ). 6.1 I numeri reali R. Non tratteremo in modo molto approfondito gli ulteriori ampliamenti che dai numeri razionali ci portano a quelli reali, all insieme, e R d

Dettagli

2OTT. Sogni e obiettivi: intervista a Silvia Minguzzi

2OTT. Sogni e obiettivi: intervista a Silvia Minguzzi Sogni e obiettivi: intervista a Silvia Minguzzi 2OTT Silvia Minguzzi Silvia Minguzzi si occupa professionalmente di formazione, coaching e crescita personale (vedi sito). Come spettatrice segue assiduamente

Dettagli

E ancora un gioco? Dipartimento Dipendenze Az. USL8 AREZZO

E ancora un gioco? Dipartimento Dipendenze Az. USL8 AREZZO E ancora un gioco? Dipartimento Dipendenze Az. USL8 AREZZO Elisa Casini 1, Fiorenzo Ranieri 2 Campione e metodi Il campione di ricerca è costituito da 384 soggetti di età compresa tra i 16 e i 20 anni

Dettagli

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza.

Le metafore della scienza. di Tommaso Castellani. S. Ho saputo che hai fatto un seminario intitolato Le metafore della scienza. Le metafore della scienza di Tommaso Castellani Un dialogo tra: F. Un fisico che fa ricerca all università. I. Un fisico che si occupa di insegnamento a scuola. S. Uno studente sulla strada della fisica.

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Il pensiero magico è una forma mentale che contraddistingue il funzionamento cognitivo infantile.

Il pensiero magico è una forma mentale che contraddistingue il funzionamento cognitivo infantile. PENSIERO MAGICO Il pensiero magico è una forma mentale che contraddistingue il funzionamento cognitivo infantile. Questa forma di pensiero non abbandona mai totalmente la mente umana tracce del pensiero

Dettagli

LA MATEMATICA SERVE! Incontro con Anna Cerasoli*

LA MATEMATICA SERVE! Incontro con Anna Cerasoli* LA MATEMATICA SERVE! Incontro con Anna Cerasoli* * L incontro, presentato dalla Prof.ssa Ana MIllán Gasca, si è tenuto il 6 dicembre 2011 presso l Università Roma Tre. L incontro si colloca all'interno

Dettagli

nostre «certezze» sul fatto che senza di lui non potremo mai più essere felici, che durano fino a una nuova... relazione!) continueremo a infilarci

nostre «certezze» sul fatto che senza di lui non potremo mai più essere felici, che durano fino a una nuova... relazione!) continueremo a infilarci Pensieri. Perché? Cara dottoressa, credo di avere un problema. O forse sono io il problema... La mia storia? Stavo con un ragazzo che due settimane fa mi ha lasciata per la terza volta, solo pochi mesi

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

187. Casualità Matematica e Metodo Monte Carlo Nicola De Nitti nicoladenitti@gmail.com

187. Casualità Matematica e Metodo Monte Carlo Nicola De Nitti nicoladenitti@gmail.com 187. Casualità Matematica e Metodo Monte Carlo icola De itti nicoladenitti@gmail.com Premessa Il concetto di probabilità, impiegato a partire dal XVII secolo, è diventato con il passare del tempo fondamentale

Dettagli

OSSERVATORIO NORD EST. Il Nord Est che gioca e scommette

OSSERVATORIO NORD EST. Il Nord Est che gioca e scommette OSSERVATORIO NORD EST Il Nord Est che gioca e scommette Il Gazzettino, 20.07.2010 NOTA METODOLOGICA I dati dell'osservatorio sul Nord Est, curato da Demos & Pi, sono stati rilevati attraverso un sondaggio

Dettagli

UNA TECNICA DI MEMORIA CHE NON SERVE A NIENTE : IMPARARE CODICI BINARI A VELOCITÀ SUPERSONICA.

UNA TECNICA DI MEMORIA CHE NON SERVE A NIENTE : IMPARARE CODICI BINARI A VELOCITÀ SUPERSONICA. I UNA TECNICA DI MEMORIA CHE NON SERVE A NIENTE : IMPARARE CODICI BINARI A VELOCITÀ SUPERSONICA. Un codice binario è un stringa di numeri che, indipendente dalla sua lunghezza, presenta una successione

Dettagli

IL CERVELLO QUESTO SCONOSCIUTO

IL CERVELLO QUESTO SCONOSCIUTO 1 IL CERVELLO QUESTO SCONOSCIUTO Nonostante il progresso della conoscenza e delle tecnologie sappiamo ancora molto poco sul funzionamento del nostro cervello e sulle sue possibilità tanto che, fra gli

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OPENLAB - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

E poi c è anche il resto dell Universo

E poi c è anche il resto dell Universo E poi c è anche il resto dell Universo Proposta di collaborazione ai docenti di Scienze delle ultime classi dei Licei e delle Scuole tecniche I programmi delle Scuole Superiori comprendono un ampio panorama

Dettagli

IL CERVELLO CREATIVO. Il cervello creativo. I due emisferi cerebrali

IL CERVELLO CREATIVO. Il cervello creativo. I due emisferi cerebrali IL CERVELLO CREATIVO Conoscere come funziona la nostra mente significa farne un uso migliore, sviluppare attività metacognitive Il nostro cervello è: visivo concreto legato alla motricità L intelligenza

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

VOLARE E PERICOLOSO? LA RISPOSTA E DENTRO NOI STESSI. volare diventa MOLTO PERICOLOSO se si riducono i margini di sicurezza

VOLARE E PERICOLOSO? LA RISPOSTA E DENTRO NOI STESSI. volare diventa MOLTO PERICOLOSO se si riducono i margini di sicurezza VOLARE E PERICOLOSO? È certamente una domanda legittima, che molti piloti, più o meno consciamente, presto o tardi si pongono. Sorprendentemente, la risposta è a portata di mano: LA RISPOSTA E DENTRO NOI

Dettagli

GIANLUIGI BALLARANI. I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe

GIANLUIGI BALLARANI. I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe GIANLUIGI BALLARANI I 10 Errori di Chi Non Riesce a Rendere Negli Esami Come Vorrebbe Individuarli e correggerli VOLUME 3 1 GIANLUIGI BALLARANI Autore di Esami No Problem Esami No Problem Tecniche per

Dettagli

DAL LIBRO AL TEATRO Caduto dal basso

DAL LIBRO AL TEATRO Caduto dal basso DAL LIBRO AL TEATRO Caduto dal basso LIBERI PENSIERI PER LIBERI SENTIMENTI La riflessione circa In viaggio verso l incontro come ci è stato proposto, nasce attorno alla lettura del romanzo : C è nessuno?

Dettagli

CAPITOLO UNO AUTOVALUTAZIONE DELLE ABITUDINI DI GIOCO D AZZARDO

CAPITOLO UNO AUTOVALUTAZIONE DELLE ABITUDINI DI GIOCO D AZZARDO CAPITOLO UNO AUTOVALUTAZIONE DELLE ABITUDINI DI GIOCO D AZZARDO Sommario Questo capitolo tratta di gioco d azzardo e di gioco d azzardo problematico. Le esercitazioni di questo capitolo le consentiranno

Dettagli

Un progetto di formazione, nell ambito matematico-scientifico, promosso dalla Regione Toscana

Un progetto di formazione, nell ambito matematico-scientifico, promosso dalla Regione Toscana Un progetto di formazione, nell ambito matematico-scientifico, promosso dalla Regione Toscana Il Progetto di Educazione Scientifica promosso dalla Regione Toscana ha coinvolto i docenti in un attività

Dettagli

LA DIPENDENZA DALLE SLOT MACHINE MARCON CHIARA E MARTINELLO CHIARA

LA DIPENDENZA DALLE SLOT MACHINE MARCON CHIARA E MARTINELLO CHIARA LA DIPENDENZA DALLE SLOT MACHINE MARCON CHIARA E MARTINELLO CHIARA EFFETTI DELLA DIPENDENZA DALLE SLOT MACHINE CONSEGUENZE DA DIPENDENZA COME USCIRE DA QUESTO FENOMENO QUANTO E DIFFUSO ATTUALMENTE NEL

Dettagli

Dipartimento di Scienze della Formazione, Psicologia, Comunicazione. CdL in Sienze dell Educazione e della Formazione. Psicologia Generale

Dipartimento di Scienze della Formazione, Psicologia, Comunicazione. CdL in Sienze dell Educazione e della Formazione. Psicologia Generale Dipartimento di Scienze della Formazione, Psicologia, Comunicazione CdL in Sienze dell Educazione e della Formazione Psicologia Generale A.A. 2013-2014 Docente: prof.ssa Tiziana Lanciano t.lanciano@psico.uniba.it

Dettagli

Categoria e concetto di numero

Categoria e concetto di numero Due nozioni Università degli Studi di Milano Categoria e concetto di numero Sandro Zucchi 2012-2013 Prima di passare ad esaminare le capacità numeriche degli animali, dobbiamo distinguere due nozioni (e

Dettagli

Asl8_AW_Azzardo:Layout 1 10/07/12 16.09 Pagina 1. gioco d azzardo, da divertimento a dipendenza

Asl8_AW_Azzardo:Layout 1 10/07/12 16.09 Pagina 1. gioco d azzardo, da divertimento a dipendenza Asl8_AW_Azzardo:Layout 1 10/07/12 16.09 Pagina 1 gioco d azzardo, da divertimento a dipendenza Asl8_AW_Azzardo:Layout 1 10/07/12 16.09 Pagina 2 2 con il gioco? Ecco un breve questionario per valutare la

Dettagli

La Manipolazione Mentale

La Manipolazione Mentale La Manipolazione Mentale Argomento vasto e complesso per le tante sfaccettature che può presentare. Innanzitutto poniamoci una domanda: cosa si intende per manipolazione mentale? Vuol dire semplicemente

Dettagli

Cosa ti porti a casa?

Cosa ti porti a casa? 8. L o p i n i o n e d e i r a g a z z i e d e l l e r a g a z z e Cosa ti porti a casa? A conclusione dell incontro di restituzione è stato richiesto ai ragazzi di riportare in forma anonima una valutazione

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007 Matematica finanziaria: svolgimento prova di esonero del 5 maggio 2 a. Assumendo che il colore dei capelli negli esseri umani sia determinato da una coppia di alleli, diciamo (B, S), presi a caso con probabilità

Dettagli

Quello Che Non Ti Dicono Sul Network Marketing

Quello Che Non Ti Dicono Sul Network Marketing Quello Che Non Ti Dicono Sul Network Marketing Ciao da Matteo Nodari di Network Marketing Top Strategy! Come ti dicevo il network marketing è uno dei settori più controversi e fraintesi di tutti i tempi.

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Capitolo S-09 Calcolo Combinatorio Autore: Mirto Moressa Contatto: mirtomo@tiscali.it Sito: www.mirtomoressa.altervista.org Data inizio: 16/10/2010 Data fine: 21/10/2010 Ultima modifica: 21/10/2010 Versione:

Dettagli

Antropologia delle società complesse. IED 2015 Massimo Temporelli

Antropologia delle società complesse. IED 2015 Massimo Temporelli Antropologia delle società complesse IED 2015 Massimo Temporelli http://www.everythingisaremix.info/watch-the-series/ Creative Commons incentivare la replica e l evoluzione http://www.creativecommons.it/

Dettagli

punto banco come giocare

punto banco come giocare punto banco come giocare Indice Le origini del gioco 4 Il gioco del Punto Banco 4 Ad ogni gioco le sue chips 6 Il valore delle carte del Punto Banco 8 Le possibilità di scommessa del giocatore 9 Come si

Dettagli

Tecniche di presenza Lightin. Tecniche di Presenza. Associazione Culturale Lightin

Tecniche di presenza Lightin. Tecniche di Presenza. Associazione Culturale Lightin Tecniche di Presenza Associazione Culturale Lightin 1 L energia della Natura Si dice che la Natura sia in perfetto equilibrio e di conseguenza anche noi che ne facciamo parte, dovremmo esserlo. L albero

Dettagli

Lezione 15: Un po di cose in generale

Lezione 15: Un po di cose in generale Lezione 15: Un po di cose in generale Abbiamo visto come possiamo associare ad alcune forme del piano o dello spazio delle espressioni analitiche che le rappresentano. Come un equazione sia una relazione

Dettagli

PRESENTAZIONE DELLA NUOVA FIAT PANDA

PRESENTAZIONE DELLA NUOVA FIAT PANDA PRESENTAZIONE DELLA NUOVA FIAT PANDA Intervento dell Amministratore Delegato della Fiat, Sergio Marchionne Pomigliano d Arco (NA) - 14 dicembre 2011 h 9:00 Signore e signori, buongiorno a tutti. E un piacere

Dettagli

Educare al pensiero probabilistico a scuola Ines Marazzani N.R.D. Bologna

Educare al pensiero probabilistico a scuola Ines Marazzani N.R.D. Bologna Educare al pensiero probabilistico a scuola Ines Marazzani N..D. Bologna Questo articolo è stato oggetto di pubblicazione in: Marazzani I. (2002). Educare al pensiero probabilistico a scuola. In. D Amore

Dettagli

Davide Uzzo LA COSTANZA PREMIA

Davide Uzzo LA COSTANZA PREMIA La costanza premia Davide Uzzo LA COSTANZA PREMIA INDICE La costanza premia PAG. 07 PAG. 11 PAG. 17 PAG. 26 PAG. 39 PAG. 44 PAG. 47 INTRODUZIONE SIETE PRONTI? SI COMINCIA! VARIE TECNICHE DI SCOMMESSA

Dettagli

Un sondaggio rivela che il 70% delle donne detesta questa ricorrenza Marte & Venere a confronto il 14 Febbraio

Un sondaggio rivela che il 70% delle donne detesta questa ricorrenza Marte & Venere a confronto il 14 Febbraio Un sondaggio rivela che il 70% delle donne detesta questa ricorrenza Marte & Venere a confronto il 14 Febbraio Sapevate che sia le donne single che quelle in coppia hanno gli incubi pensando alla Festa

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico.

Che cosa è la fisica? Per arrivare ad una legge fisica si fa un insieme di cose pratiche (procedura) che si chiama metodo scientifico. 01 Che cosa è la fisica? In questa lezione iniziamo a studiare questa materia chiamata fisica. Spesso ti sarai fatto delle domande su come funziona il mondo e le cose che stanno attorno a te. Il compito

Dettagli

La felicità per me è un sinonimo del divertimento quindi io non ho un obiettivo vero e proprio. Spero in futuro di averlo.

La felicità per me è un sinonimo del divertimento quindi io non ho un obiettivo vero e proprio. Spero in futuro di averlo. Riflessioni sulla felicità.. Non so se sto raggiungendo la felicità, di certo stanno accadendo cose che mi rendono molto più felice degli anni passati. Per me la felicità consiste nel stare bene con se

Dettagli

Giudizio, decisione e violazione degli assiomi di razionalità

Giudizio, decisione e violazione degli assiomi di razionalità - DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Giudizio, decisione e violazione degli assiomi di razionalità Corso di Psicologia del Rischio e della Decisione Facoltà di Scienze

Dettagli

La diffusione del gioco d azzardo tra i giovani. Simone Feder

La diffusione del gioco d azzardo tra i giovani. Simone Feder La diffusione del gioco d azzardo tra i giovani Simone Feder 2004: Fabio Fabio, un ragazzo di 15 anni chiedeva un consiglio per aiutare suo padre, caduto da alcuni mesi in una rete sconosciuta che catturava

Dettagli

Dio ricompensa quelli che lo cercano

Dio ricompensa quelli che lo cercano Domenica, 22 agosto 2010 Dio ricompensa quelli che lo cercano Ebrei 11:6- Or senza fede è impossibile piacergli; poiché chi si accosta a Dio deve credere che Egli è, e che ricompensa tutti quelli che lo

Dettagli

COME VINCERE CON LE SCOMMESSE SPORTIVE

COME VINCERE CON LE SCOMMESSE SPORTIVE COME VINCERE CON LE SCOMMESSE SPORTIVE Capitolo Uno. Pronosticare il risultato di uno specifico evento e scommettere sull'esito di quello stesso evento è la struttura di base di tutte le scommesse, da

Dettagli

ITIS A.Volta Frosinone

ITIS A.Volta Frosinone ITIS A.Volta Frosinone LE DIPENDENZE DA GIOCO Accanto alle tradizionali forme di dipendenza da sostanze (droghe e alcol) è oggi in costante aumento il fenomeno delle nuove dipendenze o new addictions.

Dettagli

Il ruolo del caso nella nostra vita: ignorarlo o comprenderlo? La probabilità: capire la realtà e prendere decisioni migliori.

Il ruolo del caso nella nostra vita: ignorarlo o comprenderlo? La probabilità: capire la realtà e prendere decisioni migliori. ITCG "E. Fermi", Pontedera 2 dicembre 2014 La probabilità: capire la realtà e prendere decisioni migliori Leonardo Grilli grilli@disia.unifi.it local.disia.unifi.it/grilli Il ruolo del caso nella nostra

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Intervista a Andrew Wiles

Intervista a Andrew Wiles Intervista a Andrew Wiles di Claudio Bartocci Immagine da http://www.cs.princeton.edu/~dpd/deanoffaculty/depts.html 15 ottobre 2004 La grande passione di Pierre de Fermat - nato nel 1601 in una cittadina

Dettagli

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust)

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) IL TEMPO DI MENTINA Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) E tempo di occuparci di Mentina, la mia cuginetta che mi somiglia tantissimo; l unica differenza sta nella

Dettagli

Crea la Mappa per la tua autorealizzazione. di Anthony Robbins

Crea la Mappa per la tua autorealizzazione. di Anthony Robbins di Anthony Robbins Ti sei mai accorto che nella vita esistono cose che, non appena diventano rilevanti per noi, iniziano ad apparirci sempre più spesso? Pensa, ad esempio, all ultima volta che hai desiderato

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

PRENDERE DECISIONI IN UN AMBIENTE COMPETITIVO

PRENDERE DECISIONI IN UN AMBIENTE COMPETITIVO PRENDERE DECISIONI IN UN AMBIENTE COMPETITIVO È quello che ogni giorno fa un imprenditore o un manager. È anche quello che ogni giorno fa un giocatore di poker. Vediamo se ci sono punti di contatto. TEORIA

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Appunti di Teoria dei Giochi per la Strategia di Impresa

Appunti di Teoria dei Giochi per la Strategia di Impresa Appunti di Teoria dei Giochi per la Strategia di Impresa Mauro Sylos Labini Scuola Superiore Sant Anna, Pisa. Gennaio 2004 1 Introduzione Il Capitolo di Teoria dei Giochi ha ormai conquistato un posto

Dettagli

«Sono delle teste dure!» ma è proprio vero?

«Sono delle teste dure!» ma è proprio vero? «Sono delle teste dure!» ma è proprio vero? Consigli per motivare al comportamento sicuro sul lavoro Forse vi è già capitato di trovarvi nei panni di questo allenatore di hockey e di pensare che i vostri

Dettagli

L ARTE DELLA CREAZIONE CONSAPEVOLE

L ARTE DELLA CREAZIONE CONSAPEVOLE L ARTE DELLA CREAZIONE CONSAPEVOLE GUIDA PRATICA IN 5 PASSI Sabrina Quattrini www.seichicrei.it Attenzione! Questo manuale contiene materiale protetto dalle leggi sul Copyright nazionale ed internazionale.

Dettagli