Esercizi di Ricerca Operativa II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Ricerca Operativa II"

Transcript

1 Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra sul rosso. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Si assuma infine che la curva di utilità abbia struttura u(x) = a be rx, e si determini l utilità di 50,00 Euro 2. Determinare quale dei seguenti due giocatori di roulette assegna maggiore utilità a 100,00 euro. Il primo giocatore decide per un unica puntata di 100,00 euro sul rosso. Il secondo giocatore, supponendo che non gli sia concesso di comportarsi come il primo giocatore, decide per due puntate successive di 50,00 euro sul rosso. Discutere le scelte di un decisore razionale che abbia la possibilità di scegliere fra le seguenti alternative i) non giocare, ii) puntare una sola volta come il primo giocatore, iii) puntare due volte come il secondo giocatore. Considerare entrambe le possibilità che il decisore si avverso o propenso al rischio. Discutere inoltre come cambierebbe il comportamento del decisore razionale se non gli fosse data la prima alternativa, cioè se fosse obbligato a giocare. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Giustificare le risposta calcolando l utilità dei 100,00 euro nelle varie situazioni. 3. Determinare quale dei seguenti due giocatori di roulette assegna maggiore utilità a 100,00 euro. Il primo giocatore decide per un unica puntata di 100,00 euro sul rosso. Il secondo giocatore, supponendo che non gli sia concesso di comportarsi come il primo giocatore, decide per una prima puntata di 50,00 euro sul rosso e, nel caso perdesse, per una seconda puntata sul rosso con i rimanenti 50,00 euro. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Giustificare la risposta calcolando l utilità dei 100,00 euro nelle due situazioni, se necessario assumere che le funzioni utilità abbiano struttura u(x) = a be rx. 4. Ripetere gli esercizi (1-3) assumendo di essere in un contesto commerciale cioè che la lotteria favorisca il giocatore (investitore). In particolare ritenere che la probabilità di successo, i.e., che esca il rosso, sia. Discutere come cambiano i risultati degli esercizi (1-3). 1

2 5. Intervistando un vostro cliente per stimare la sua curva di utilità avete ottenuto i risultati indicati nella tabella successiva. payoff (in euro) Utilità -1000, , , , , Disegnare i punti della curva di utilità, indicare se il vostro cliente appare propenso o avverso al rischio, evidenziare eventuali andamenti inattesi della curva di utilità. 6. Siano dati due decisori. Il primo amministratore di una piccola azienda familiare con fatturato intorno ai ,00 euro l anno. L altro amministratore di una grande azienda. Indicare, giustificando la risposta quale tra i due decisori ritiene che ,00 euro abbiano maggiore utilità nel seguente contesto. E disponibile un appalto di cui costi di partecipazione sono ,00 euro, vi è l 80% di probabilità che non sorgano problemi e che quindi si abbia un ricavo di 1.000,00 euro, nel rimanente % dei casi si andrà invece incontro ad un ricavo ridotto uguale a ,00 euro. 7. Un vostro cliente deve decidere tra due investimenti. Il primo investimento produce un ricavo di Keuro con probabilità 1 2, di 40 Keuro con probabilità 3 7 e di 80 Keuro per le probabilità rimanenti. Il secondo investimento produce un ricavo di Q 80 Keuro con probabilità 3 4, di Keuro con probabilità 1 4. In precedenza il decisore aveva valutato uguale a 65 Keuro la certezza monetaria equivalente di un investimento che produceva un ricavo di Keuro con probabilità 1 3 e di 80 Keuro con probabilità 2 3. Assumendo che la funzione di utilità del decisore abbia struttura u(x) = a + bx + c x, determinare se il decisore è avverso, propenso o indifferente al rischio. Determinare inoltre quale è il valore che deve assumere Q affinché il decisore consideri le due alternative equivalenti. Risposte agli esercizi (1) Dal testo del problema si evince quanto segue: il giocatore preferisce partecipare a una lotteria con premi di 0,00 euro e 0,00 euro con rispettiva probabilità 18 e piuttosto di avere la certezza monetaria di euro, il valore atteso della puntata è = 94, 73 euro. Tutto ciò implica immediatamente che, in una valutazione dell utilità che avvenga all interno di valori monetari che abbia come estremi 0,00 e 0,00 euro,il giocatore assegna le seguenti utilità u(0, 00) = 0, u(0, 00) = 100, u(100, 00) 18 = 47, 36, infatti deve valere quanto segue u(100, 00) P (0, 00)u(0, 00)+ P (0, 00)u(0, 00), dove P (x) rappresenta la probabilità di vincere la somma x. In altre parole l utilità attesa della puntata alla roulette deve essere maggiore dell utilità di avere 100,00 euro. 2

3 Un approccio alternativo, forse più contorto, potrebbe essere il seguente. Si può affermare che la certezza monetaria equivalente di 94,73 euro è non superiore a 100,00 euro, i.e., CME(94, 73) Questo implica che il giocatore è, ovviamente, propenso al rischio. Conseguentemente l utilità di euro è non superiore a quella che il giocatore assegnerebbe a 94,73 euro se egli fosse indifferente al rischio. Se si assegna u(0, 00) = 0 e u(0, 00) = 100, in condizioni di indifferenza al rischio l utilità di 94,73 euro risulterebbe essere di 47,36. Da cui, nella situazione descritta di propensione al rischio, si ottiene u(100, 00) 47, 36. Per determinare l utilità di 50,00 euro si deve, inizialmente, stimare i valori dei parametri della funzione di utilità. Ponendo u(0, 00) = 0, u(0, 00) = 100, u(100, 00) = 47, 36 si ottengono le condizioni a = b, a be 0r = 100, a be 100r = 47, 36, da cui si giunge all equazione 1 e 100r 1 e 0r = 47, e quindi 0, 4736e 0r e 100r + 0, 5264 = 0. Si ottiene e 100r = 1 e e 100r = 1, La prima soluzione non è ammissibile, mentre la seconda conduce a r = 0, , da cui a = b = 0 1 e 0r = 423. Dai conti precedenti si giunge infine a u(50) = 423(e 0, ) = 23, 02. (2) Poste le seguenti utilità di riferimento u 1 (0, 00) = u 2 (0, 00) = 0, u 1 (0, 00) = u 2 (0, 00) = 100, l utilità percepita dal primo giocatore per euro è u 1 (100, 00) 47, 36 (vedi soluzione dell esercizio precedente). Per determinare l utilià u 2 (100, 00) del secondo giocatore bisogna osservare che in conseguenza della sua strategia di gioco possono ottenersi i seguenti risultati: i) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( 18 ) 2 = 0, 224, ii) il giocatore realizza 100,00 euro, la probabilità di tale evento è P (100, 00) = 2 18 = 0, 498, iii) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( ) 2 = 0, 277. Dato che il secondo giocatore ha deciso di puntare ne consegue che u 2 (100, 00) P (0, 00)u 2 (0, 00) + P (100, 00)u 2 (100, 00) + P (0, 00)u 2 (0, 00) da cui u 2 (100, 00) P (0,00)u 2(0,00)+P (0,00)u 2 (0,00) 1 P (100,00) = 44, 75. Assumendo che il primo giocatore abbia deciso per la propria strategia rifiutando la strategia del secondo giocatore, e interessante notare che il primo giocatore attribuisce maggiore utilità a 100,00 euro che il secondo, ovvero il primo giocatore è meno propenso al rischio che il secondo. Questo risultato non meraviglia, infatti la roulette non è una lotteria fair (equa) e quindi, a parità di capitale giocato, il valore atteso di puntate multiple è inferiore al valore atteso di una singola giocata. Si osservi inoltre che nel calcolo dell utilità del secondo giocatore si è dovuto supporre che le uniche due alternative che gli si presentavano erano non giocare o fare una doppia puntata. Infatti se si fosse proposta anche l alternativa scelta dal giocatore due non sia sarebbe trovato nessun valore ammissibile per l utilità. Il sistema u 2 (100, 00) p 2 u 2 (0, 00) + 2p(1 p)u 2 (100, 00) + (1 p) 2 u 2 (0, 00), u 2 (100, 00) pu 2 (0, 00) + (1 p)u 2 (0, 00) non ammette soluzione per nessun p < 0.5 (e neanche per alcun p > 0.5) e quindi tanto meno per p = 18. Anche questo risultato non meraviglia, infatti un giocatore propenso al rischio avrebbe giocato come il primo giocatore in quanto vi sono maggiori probabilità di vincere qualcosa in più rispetto al capitale iniziale. Il giocatore avverso al rischio semplicemente non avrebbe giocato. 3

4 Diverso è il caso in cui un giocatore sia obbligato a giocare, debba cioè scegliere se comportarsi come il primo o come il secondo giocatore. In questa situazione se il giocatore è propenso al rischio giocherà come il primo giocatore, se è avverso al rischio come il secondo. (3) In questo esercizio, bisogna fare attenzione al fatto che affinché le utilità dei due giocatori possano essere paragonate i loro valori massimo (100) e minimo (0) devono corrispondere agli stessi valori monetari. Poste le seguenti utilità di riferimento u 1 (0, 00) = u 2 (0, 00) = 0, u 1 (0, 00) = u 2 (0, 00) = 100, l utilità percepita dal primo giocatore per euro è u 1 (100, 00) 47, 36 (vedi soluzione dell esercizio precedente). Per determinare l utilià u 2 (100, 00) del secondo giocatore bisogna osservare che in conseguenza della sua strategia di gioco possono ottenersi i seguenti risultati: i) il giocatore realizza 150,00 euro, la probabilità di tale evento è P (150, 00) = 18 probabilità di tale evento è P (100, 00) = 18 = 0, 474, ii) il giocatore realizza 100,00 euro, la = 0, 249, iii) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( ) 2 = 0, 277, iv) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = 0. Il quarto risultato è fittizio, ma mostra come possa essere giustificato il valore u 2 (0.00) = 100 per il secondo giocatore. Dato che il secondo giocatore ha deciso di puntare ne consegue che u 2 (100, 00) P (0, 00)u 2 (0, 00) + P (150, 00)u 2 (150, 00) + P (100, 00)u 2 (100, 00) + P (0, 00)u 2 (0, 00). Da quest ultima disequazione non è possibile determinare u 2 (100) dato che non è noto a priori il valore di u 2 (150). E quindi necessaria aggiungere l ipotesi che u 2 (x) = a be rx. Imponendo u 2 (0, 00) = 0 e u 2 (0, 00) = 100 si ottiene u 2 (x) = e rx 1 e 0r. Da cui la disequazione di interesse diventa e quindi 1 e 100r e 0r e 0r 1 e 0r 1 e 150r 18 1 e 100r + 1 e 0r 1 e 0r + ( ) 2 1 e 0r 1 e 0r 271(1 e 100r ) 171(1 e 150r ) 271e 100r 171e 150r Le soluzioni del equazione associata alla disuguaglianza sono rispettivamente r = 0 e r = La prima soluzione non è ammissibile, mentre la negatività della seconda soluzione indica che il decisore è propenso al rischio. Si ottiene quindi u 2 (100.00) e e = 47, 74. Le utilità percepita di euro dei due giocatori sono paragonabili. Infatti, la massima utilità percepita per euro compatibile con le scelte del secondo giocatore è solo leggermente superiore alla massima utilità percepita per euro compatibile con le scelte del primo giocatore. (5) Disegnando per punti la funzione di utilità si osserva che essa giace al di sopra della retta di indifferenza al rischio. Il decisore è quindi avverso al rischio. La curva presenta però un anomalia 4

5 nell intorno dei 6000,00 euro. Infatti essa presenta un andamento convesso non coerente con l avversione al rischio del decisore. Un decisore avverso al rischio ritiene infatti che la variazioni u di utilià indotte da una variazione x del payoff debbano decrescere al crescere del payoff stesso (da cui u(x) deve essere concava). In altre parole la variazione di utilità percepita dal decisore per una variazione del payoff di 10,00 euro deve essere minore nell intorno di 1000,00 euro piuttosto che nell intorno di,00 euro. (6) Per rispondere a questa domanda di devono fare un ipotesi aggiuntiva. In particolare si deve assumere che i decisori, avendo a disposizione lo stesso capitale, in situazioni identiche si comporterebbero nello stesso modo. Nel contesto proposto dalla domanda, se i decisori sono avversi al rischio, quello responsabile della piccola azienda darebbe maggiore utilità ai ,00 euro che quello responsabile della seconda azienda. Infatti un eventuale perdita di ,00 avrebbe maggiore impatto sulla piccola azienda che su quella grande. Sempre per gli stessi motivi, in caso di propensione al rischio, l amministratore della piccola azienda darebbe invece minore utilità ai ,00 euro che l amministratore della seconda azienda. (7) Inizialmente si devono determinare i valori dei parametri della funzione di utilità del decisore. E possibile fare ciò in base alle informazioni sull investimento passato. Posto u() = 0 e u(80) = 100, il valore dell utilità attesa di tale investimento risulta essere 66,6. Poiché il decisore ritenne il valore monetario equivalente uguale a 65 Keuro si deduce che u(65) = 66, 6. Osservando che il valore atteso dell investimento è uguale a 60 Keuro si può concludere che il decisore è (o per lo meno fu) propenso al rischio. Si noti infatti, che in condizione di indifferenza al rischio, risulterebbe essere uguale a 66,6 l utilità di 60 Keuro e non quella di 65 Keuro. Imponendo le condizioni u() = 0, u(80) = 100, u(65) = 66, 6 si ottiene u(x) , 5x x. (Si noti che i coefficienti della funzione di utilità sono volutamente arrotondati, in quanto è irrealistico pensare che si possano stimare in maniera esatta.) L utilità attesa del primo investimento risulta essere EU 1 = 1 2 u() u(40) u(80) = L utilità attesa del secondo investimento risulta essere EU 2 = 1 4 u() ,5 4u(Q) = 85, 5+1, 875Q+ Q. Ponendo EU 1 = EU 2 si ottiene Q = 12, 5 e Q = 41, 3 dove il risultato Q = 12, 5 è da escludere in quanto fuori dall intervallo considerato. 5

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia.

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Richiami essenziali: Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Tasso di sconto intertemporale soggettivo

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj

Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj Esercizi: Utilità attesa (Cap.6) Problema 11 (pagina 203, libro) Supponete di avere 10 000 euro da investire in Junk Bonds oppure titoli

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

1.4 Risposte alle domande di ripasso

1.4 Risposte alle domande di ripasso Pensare da economisti 1 1.4 Risposte alle domande di ripasso 1. Il costo opportunità di leggere un romanzo questa sera consiste nel non poter fare qualsiasi altra cosa avreste voluto fare in alternativa.

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione propone esplora due problemi fondamentali: Se esiste un rischio in una transazione chi lo deve

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Esercizi d esame di Teoria dei Giochi

Esercizi d esame di Teoria dei Giochi Esercizi d esame di Teoria dei Giochi Dario Bauso Esempio Svolto Dato il seguente gioco a due giocatori a somma zero si calcolino P P 1 0-3 3 1. il loss ceiling J,. il gain floor J, 3. l equilibrio di

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio

Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio pcrosetto@luiss.it 8 Aprile 2010 1. Che faremo? Dove torvare i materiali: queste slides: http://docenti.luiss.it/crosetto/;

Dettagli

5.7. Assicurazione e equilibri di separazione.

5.7. Assicurazione e equilibri di separazione. ELORTO DL PR ON LINE DI ECONOMI DEI CONTRTTI 5.7. ssicurazione e equilibri di separazione. In questo paragrafo esaminiamo l attività di screening di una compagnia assicurativa (per definizione neutrale

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dipartimento di Economia Aziendale e Studi Giusprivatistici Università degli Studi di Bari Aldo Moro Corso di Macroeconomia 2014 1. Assumete che = 10% e = 1. Usando la definizione di inflazione attesa

Dettagli

Analisi Decisionale. (Decision Analysis) Caratteristiche:

Analisi Decisionale. (Decision Analysis) Caratteristiche: Analisi Decisionale 1 Analisi Decisionale (Decision Analysis) Metodologia che si applica quando un decisore può scegliere tra varie azioni future il cui esito dipende da fattori esterni che non possono

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli

Esercitazione 23 maggio 2016

Esercitazione 23 maggio 2016 Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Calcolo del valore attuale e principi di valutazione delle obbligazioni

Calcolo del valore attuale e principi di valutazione delle obbligazioni PROGRAMMA 0. Introduzione 1. Valore: Pianificazione finanziaria Valore attuale Valutazione delle obbligazioni e delle azioni, Valore attuale netto ed altri criteri di scelta degli investimenti 2. Valutazione

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Le Scelte scelte in in condizioni di d incertezza

Le Scelte scelte in in condizioni di d incertezza 6 Le Scelte scelte in in condizioni di d incertezza 6.1 a. Ibenicontingentisonoilconsumo se esce uno eilconsumo se esce due, tre, quattro, cinque o sei. Consumo se non esce uno 240 Vincolo di bilancio

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Utilità Attesa (Cap. 24 Hey)

Utilità Attesa (Cap. 24 Hey) Utilità Attesa (Cap. 24 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO.

Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO. TEORIA MATEMATICA DEL PORTAFOGLIO FINANZIARIO ELEMENTI DI TEORIA DELL UTILITÀ Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO. es. Generica operazione

Dettagli

Modelli dinamici per le decisioni temi di esame svolti

Modelli dinamici per le decisioni temi di esame svolti Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Francesco Mason Modelli dinamici per le decisioni temi di esame svolti Quaderno di Didattica n. 34/2010 Marzo 2010 I Quaderni

Dettagli

Utilità Attesa. Solito preambolo e qualche richiamo alle scelte rischiose:

Utilità Attesa. Solito preambolo e qualche richiamo alle scelte rischiose: Utilità Attesa Solito preambolo e qualche richiamo alle scelte rischiose: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio

Dettagli

6.4 Risposte alle domande di ripasso

6.4 Risposte alle domande di ripasso Economia dell informazione e scelta in condizioni di incertezza 45 6.4 Risposte alle domande di ripasso 1. Se si potesse falsificare il segnale, questo cesserebbe di essere un segnale perché diventerebbe

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Le operazioni di assicurazione e la teoria

Le operazioni di assicurazione e la teoria Capitolo 1 Le operazioni di assicurazione e la teoria dell utilità 1.1 Introduzione In questo capitolo si discutono alcuni aspetti di base della teoria delle assicurazioni. In particolare, si formalizza

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

3 Scegliere quando il mondo è incerto

3 Scegliere quando il mondo è incerto 3 Scegliere quando il mondo è incerto (Parte del cap. 3 di I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nel capitolo precedente abbiamo

Dettagli

5.7. Assicurazione, selezione e equilibri di separazione.

5.7. Assicurazione, selezione e equilibri di separazione. ELBORTO SULL BSE DEL PR ON LINE 5.7 DI NICIT-SCOPP, ECONOMI DEI CONTRTTI (versione CZ del 10.12.2012) 5.7. ssicurazione, selezione e equilibri di separazione. In questo paragrafo esaminiamo l attività

Dettagli

Giochi ripetuti. Gianmaria Martini

Giochi ripetuti. Gianmaria Martini Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione fornisce la principale motivazione economica dell esistenza

Dettagli

Scelta intertemporale: Consumo vs. risparmio

Scelta intertemporale: Consumo vs. risparmio Scelta intertemporale: Consumo vs. risparmio Fino a questo punto abbiamo considerato solo modelli statici, cioè modelli che non hanno una dimensione temporale. In realtà i consumatori devono scegliere

Dettagli

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo. LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

di informazione asimmetrica:

di informazione asimmetrica: Informazione asimmetrica In tutti i modelli che abbiamo considerato finora abbiamo assunto (implicitamente) che tutti gli agenti condividessero la stessa informazione (completa o incompleta) a proposito

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 24 Il mercato dei beni UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 24 Il mercato dei beni Prof. Gianmaria Martini Domanda ed offerta Uno degli schemi logici fondamentali dell analisi economica

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Scelte Rischiose (cap. 23 Hey)

Scelte Rischiose (cap. 23 Hey) Scelte Rischiose (cap. 23 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

TEMPO E RISCHIO. Il valore del denaro è funzione del tempo in cui è disponibile

TEMPO E RISCHIO. Il valore del denaro è funzione del tempo in cui è disponibile Esercitazione TEMPO E RISCHIO Il valore del denaro è funzione del tempo in cui è disponibile Un capitale - spostato nel futuro si trasforma in montante (capitale iniziale più interessi), - spostato nel

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

Le operazioni di assicurazione

Le operazioni di assicurazione Le operazioni di assicurazione Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline 1 Lezione 1: Le operazioni di assicurazione Condizione di indifferenza Condizione di equità 2 Premio equo, premio

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Economia dell Informazione. Cap. 12

Economia dell Informazione. Cap. 12 Economia dell Informazione Cap. 12 Informazione completa Significa che non esistono gap informativi rispetto a nessuna delle situazioni connesse agli scambi: sui beni disponibili, sui loro prezzi, sulla

Dettagli

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione Valore dell impresa e decisioni di investimento. Irrilevanza della struttura patrimoniale in condizioni di certezza (prima versione, aprile 2013; versione aggiornata, aprile 2014) Massimo A. De Francesco

Dettagli

Scegliere quando il mondo è incerto

Scegliere quando il mondo è incerto Scegliere quando il mondo è incerto (Tratto da I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nei capitoli precedenti abbiamo studiato

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esempi di domande per l esame di Economia Monetaria. Supponete che la funzione di utilità di un agente sia u x. La remunerazione è rappresentata da un prospetto incerto, che prevede un reddito di 800 nel

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 9 marzo 2010 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2010.html TEOREMI DI ESISTENZA TEOREMI DI ESISTENZA Teorema

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

Elementi di economia Economia dell informazione

Elementi di economia Economia dell informazione Elementi di economia Economia dell informazione Dott.ssa Michela Martinoia michela.martinoia@unimib.it Corso di laurea in Scienze del Turismo e Comunità Locale A.A. 2014/15 Informazione completa Significa

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only. In un mercato del lavoro competitivo esistono due tipi di lavoratori, quelli con alta produttività L A, che producono per 30 $ l'ora, e quelli con bassa produttività, L B, che producono per 5 $ l'ora.

Dettagli

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012 ESERCIZIO 1 Nella tabella che segue sono riportate le variazioni percentuali, rispetto all anno precedente, del fatturato di un azienda. Sulla base dei dati contenuti in tabella a) Determinare i numeri

Dettagli

ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro

ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro ECONOMIA DEL LAVORO Lezioni di maggio (testo: BORJAS) L offerta di lavoro Offerta di lavoro - Le preferenze del lavoratore Il luogo delle combinazioni di C e L che generano lo stesso livello di U (e.g.

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015

ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 ESERCIZI IMPOSTE E IRPEF ECONOMIA PUBBLICA 2015 Esercizio 1 Si consideri un imposta sul reddito personale con aliquota marginale t costante del 20% e detrazione, f, pari a 1.000 dall imposta dovuta. Nel

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

L azzardo morale e il modello principale-agente

L azzardo morale e il modello principale-agente L azzardo morale e il modello principale-agente L azzardo morale e il problema principale agente Il modello principale agente è uno strumento fondamentale per analizzare le relazioni economiche caratterizzate

Dettagli

ESERCITAZIONI MACROECONOMIA 2

ESERCITAZIONI MACROECONOMIA 2 ESERCITAZIONI MACROECONOMIA 2 CAPITOLO 10 Crescita: i fatti principali 1) Spiegate cosa si intende per convergenza nella teoria della crescita e mostrate il grafico con cui si rappresenta. 2) Spiegate

Dettagli

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007 Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 27. Bobo e Bubi affrontano la loro prima crisi familiare a causa della mancanza di una lavastoviglie. Decidono pertanto di acquistarne

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Istituto L. Einaudi Montebelluna Elaborato di Fisica dicembre 2010. Grafico della retta e rappresentazione di fenomeni

Istituto L. Einaudi Montebelluna Elaborato di Fisica dicembre 2010. Grafico della retta e rappresentazione di fenomeni Grafico della retta e rappresentazione di fenomeni Soluzioni degli esercizi di dicembre 00 Nota. In ogni esercizio: rappresentare graficamente i fenomeni individuati; eseguire tutti i passaggi matematici

Dettagli