Esercizi di Ricerca Operativa II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Ricerca Operativa II"

Transcript

1 Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra sul rosso. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Si assuma infine che la curva di utilità abbia struttura u(x) = a be rx, e si determini l utilità di 50,00 Euro 2. Determinare quale dei seguenti due giocatori di roulette assegna maggiore utilità a 100,00 euro. Il primo giocatore decide per un unica puntata di 100,00 euro sul rosso. Il secondo giocatore, supponendo che non gli sia concesso di comportarsi come il primo giocatore, decide per due puntate successive di 50,00 euro sul rosso. Discutere le scelte di un decisore razionale che abbia la possibilità di scegliere fra le seguenti alternative i) non giocare, ii) puntare una sola volta come il primo giocatore, iii) puntare due volte come il secondo giocatore. Considerare entrambe le possibilità che il decisore si avverso o propenso al rischio. Discutere inoltre come cambierebbe il comportamento del decisore razionale se non gli fosse data la prima alternativa, cioè se fosse obbligato a giocare. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Giustificare le risposta calcolando l utilità dei 100,00 euro nelle varie situazioni. 3. Determinare quale dei seguenti due giocatori di roulette assegna maggiore utilità a 100,00 euro. Il primo giocatore decide per un unica puntata di 100,00 euro sul rosso. Il secondo giocatore, supponendo che non gli sia concesso di comportarsi come il primo giocatore, decide per una prima puntata di 50,00 euro sul rosso e, nel caso perdesse, per una seconda puntata sul rosso con i rimanenti 50,00 euro. Supporre che si stia giocando alla roulette americana che prevede lo zero e il doppio zero. Giustificare la risposta calcolando l utilità dei 100,00 euro nelle due situazioni, se necessario assumere che le funzioni utilità abbiano struttura u(x) = a be rx. 4. Ripetere gli esercizi (1-3) assumendo di essere in un contesto commerciale cioè che la lotteria favorisca il giocatore (investitore). In particolare ritenere che la probabilità di successo, i.e., che esca il rosso, sia. Discutere come cambiano i risultati degli esercizi (1-3). 1

2 5. Intervistando un vostro cliente per stimare la sua curva di utilità avete ottenuto i risultati indicati nella tabella successiva. payoff (in euro) Utilità -1000, , , , , Disegnare i punti della curva di utilità, indicare se il vostro cliente appare propenso o avverso al rischio, evidenziare eventuali andamenti inattesi della curva di utilità. 6. Siano dati due decisori. Il primo amministratore di una piccola azienda familiare con fatturato intorno ai ,00 euro l anno. L altro amministratore di una grande azienda. Indicare, giustificando la risposta quale tra i due decisori ritiene che ,00 euro abbiano maggiore utilità nel seguente contesto. E disponibile un appalto di cui costi di partecipazione sono ,00 euro, vi è l 80% di probabilità che non sorgano problemi e che quindi si abbia un ricavo di 1.000,00 euro, nel rimanente % dei casi si andrà invece incontro ad un ricavo ridotto uguale a ,00 euro. 7. Un vostro cliente deve decidere tra due investimenti. Il primo investimento produce un ricavo di Keuro con probabilità 1 2, di 40 Keuro con probabilità 3 7 e di 80 Keuro per le probabilità rimanenti. Il secondo investimento produce un ricavo di Q 80 Keuro con probabilità 3 4, di Keuro con probabilità 1 4. In precedenza il decisore aveva valutato uguale a 65 Keuro la certezza monetaria equivalente di un investimento che produceva un ricavo di Keuro con probabilità 1 3 e di 80 Keuro con probabilità 2 3. Assumendo che la funzione di utilità del decisore abbia struttura u(x) = a + bx + c x, determinare se il decisore è avverso, propenso o indifferente al rischio. Determinare inoltre quale è il valore che deve assumere Q affinché il decisore consideri le due alternative equivalenti. Risposte agli esercizi (1) Dal testo del problema si evince quanto segue: il giocatore preferisce partecipare a una lotteria con premi di 0,00 euro e 0,00 euro con rispettiva probabilità 18 e piuttosto di avere la certezza monetaria di euro, il valore atteso della puntata è = 94, 73 euro. Tutto ciò implica immediatamente che, in una valutazione dell utilità che avvenga all interno di valori monetari che abbia come estremi 0,00 e 0,00 euro,il giocatore assegna le seguenti utilità u(0, 00) = 0, u(0, 00) = 100, u(100, 00) 18 = 47, 36, infatti deve valere quanto segue u(100, 00) P (0, 00)u(0, 00)+ P (0, 00)u(0, 00), dove P (x) rappresenta la probabilità di vincere la somma x. In altre parole l utilità attesa della puntata alla roulette deve essere maggiore dell utilità di avere 100,00 euro. 2

3 Un approccio alternativo, forse più contorto, potrebbe essere il seguente. Si può affermare che la certezza monetaria equivalente di 94,73 euro è non superiore a 100,00 euro, i.e., CME(94, 73) Questo implica che il giocatore è, ovviamente, propenso al rischio. Conseguentemente l utilità di euro è non superiore a quella che il giocatore assegnerebbe a 94,73 euro se egli fosse indifferente al rischio. Se si assegna u(0, 00) = 0 e u(0, 00) = 100, in condizioni di indifferenza al rischio l utilità di 94,73 euro risulterebbe essere di 47,36. Da cui, nella situazione descritta di propensione al rischio, si ottiene u(100, 00) 47, 36. Per determinare l utilità di 50,00 euro si deve, inizialmente, stimare i valori dei parametri della funzione di utilità. Ponendo u(0, 00) = 0, u(0, 00) = 100, u(100, 00) = 47, 36 si ottengono le condizioni a = b, a be 0r = 100, a be 100r = 47, 36, da cui si giunge all equazione 1 e 100r 1 e 0r = 47, e quindi 0, 4736e 0r e 100r + 0, 5264 = 0. Si ottiene e 100r = 1 e e 100r = 1, La prima soluzione non è ammissibile, mentre la seconda conduce a r = 0, , da cui a = b = 0 1 e 0r = 423. Dai conti precedenti si giunge infine a u(50) = 423(e 0, ) = 23, 02. (2) Poste le seguenti utilità di riferimento u 1 (0, 00) = u 2 (0, 00) = 0, u 1 (0, 00) = u 2 (0, 00) = 100, l utilità percepita dal primo giocatore per euro è u 1 (100, 00) 47, 36 (vedi soluzione dell esercizio precedente). Per determinare l utilià u 2 (100, 00) del secondo giocatore bisogna osservare che in conseguenza della sua strategia di gioco possono ottenersi i seguenti risultati: i) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( 18 ) 2 = 0, 224, ii) il giocatore realizza 100,00 euro, la probabilità di tale evento è P (100, 00) = 2 18 = 0, 498, iii) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( ) 2 = 0, 277. Dato che il secondo giocatore ha deciso di puntare ne consegue che u 2 (100, 00) P (0, 00)u 2 (0, 00) + P (100, 00)u 2 (100, 00) + P (0, 00)u 2 (0, 00) da cui u 2 (100, 00) P (0,00)u 2(0,00)+P (0,00)u 2 (0,00) 1 P (100,00) = 44, 75. Assumendo che il primo giocatore abbia deciso per la propria strategia rifiutando la strategia del secondo giocatore, e interessante notare che il primo giocatore attribuisce maggiore utilità a 100,00 euro che il secondo, ovvero il primo giocatore è meno propenso al rischio che il secondo. Questo risultato non meraviglia, infatti la roulette non è una lotteria fair (equa) e quindi, a parità di capitale giocato, il valore atteso di puntate multiple è inferiore al valore atteso di una singola giocata. Si osservi inoltre che nel calcolo dell utilità del secondo giocatore si è dovuto supporre che le uniche due alternative che gli si presentavano erano non giocare o fare una doppia puntata. Infatti se si fosse proposta anche l alternativa scelta dal giocatore due non sia sarebbe trovato nessun valore ammissibile per l utilità. Il sistema u 2 (100, 00) p 2 u 2 (0, 00) + 2p(1 p)u 2 (100, 00) + (1 p) 2 u 2 (0, 00), u 2 (100, 00) pu 2 (0, 00) + (1 p)u 2 (0, 00) non ammette soluzione per nessun p < 0.5 (e neanche per alcun p > 0.5) e quindi tanto meno per p = 18. Anche questo risultato non meraviglia, infatti un giocatore propenso al rischio avrebbe giocato come il primo giocatore in quanto vi sono maggiori probabilità di vincere qualcosa in più rispetto al capitale iniziale. Il giocatore avverso al rischio semplicemente non avrebbe giocato. 3

4 Diverso è il caso in cui un giocatore sia obbligato a giocare, debba cioè scegliere se comportarsi come il primo o come il secondo giocatore. In questa situazione se il giocatore è propenso al rischio giocherà come il primo giocatore, se è avverso al rischio come il secondo. (3) In questo esercizio, bisogna fare attenzione al fatto che affinché le utilità dei due giocatori possano essere paragonate i loro valori massimo (100) e minimo (0) devono corrispondere agli stessi valori monetari. Poste le seguenti utilità di riferimento u 1 (0, 00) = u 2 (0, 00) = 0, u 1 (0, 00) = u 2 (0, 00) = 100, l utilità percepita dal primo giocatore per euro è u 1 (100, 00) 47, 36 (vedi soluzione dell esercizio precedente). Per determinare l utilià u 2 (100, 00) del secondo giocatore bisogna osservare che in conseguenza della sua strategia di gioco possono ottenersi i seguenti risultati: i) il giocatore realizza 150,00 euro, la probabilità di tale evento è P (150, 00) = 18 probabilità di tale evento è P (100, 00) = 18 = 0, 474, ii) il giocatore realizza 100,00 euro, la = 0, 249, iii) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = ( ) 2 = 0, 277, iv) il giocatore realizza 0,00 euro, la probabilità di tale evento è P (0, 00) = 0. Il quarto risultato è fittizio, ma mostra come possa essere giustificato il valore u 2 (0.00) = 100 per il secondo giocatore. Dato che il secondo giocatore ha deciso di puntare ne consegue che u 2 (100, 00) P (0, 00)u 2 (0, 00) + P (150, 00)u 2 (150, 00) + P (100, 00)u 2 (100, 00) + P (0, 00)u 2 (0, 00). Da quest ultima disequazione non è possibile determinare u 2 (100) dato che non è noto a priori il valore di u 2 (150). E quindi necessaria aggiungere l ipotesi che u 2 (x) = a be rx. Imponendo u 2 (0, 00) = 0 e u 2 (0, 00) = 100 si ottiene u 2 (x) = e rx 1 e 0r. Da cui la disequazione di interesse diventa e quindi 1 e 100r e 0r e 0r 1 e 0r 1 e 150r 18 1 e 100r + 1 e 0r 1 e 0r + ( ) 2 1 e 0r 1 e 0r 271(1 e 100r ) 171(1 e 150r ) 271e 100r 171e 150r Le soluzioni del equazione associata alla disuguaglianza sono rispettivamente r = 0 e r = La prima soluzione non è ammissibile, mentre la negatività della seconda soluzione indica che il decisore è propenso al rischio. Si ottiene quindi u 2 (100.00) e e = 47, 74. Le utilità percepita di euro dei due giocatori sono paragonabili. Infatti, la massima utilità percepita per euro compatibile con le scelte del secondo giocatore è solo leggermente superiore alla massima utilità percepita per euro compatibile con le scelte del primo giocatore. (5) Disegnando per punti la funzione di utilità si osserva che essa giace al di sopra della retta di indifferenza al rischio. Il decisore è quindi avverso al rischio. La curva presenta però un anomalia 4

5 nell intorno dei 6000,00 euro. Infatti essa presenta un andamento convesso non coerente con l avversione al rischio del decisore. Un decisore avverso al rischio ritiene infatti che la variazioni u di utilià indotte da una variazione x del payoff debbano decrescere al crescere del payoff stesso (da cui u(x) deve essere concava). In altre parole la variazione di utilità percepita dal decisore per una variazione del payoff di 10,00 euro deve essere minore nell intorno di 1000,00 euro piuttosto che nell intorno di,00 euro. (6) Per rispondere a questa domanda di devono fare un ipotesi aggiuntiva. In particolare si deve assumere che i decisori, avendo a disposizione lo stesso capitale, in situazioni identiche si comporterebbero nello stesso modo. Nel contesto proposto dalla domanda, se i decisori sono avversi al rischio, quello responsabile della piccola azienda darebbe maggiore utilità ai ,00 euro che quello responsabile della seconda azienda. Infatti un eventuale perdita di ,00 avrebbe maggiore impatto sulla piccola azienda che su quella grande. Sempre per gli stessi motivi, in caso di propensione al rischio, l amministratore della piccola azienda darebbe invece minore utilità ai ,00 euro che l amministratore della seconda azienda. (7) Inizialmente si devono determinare i valori dei parametri della funzione di utilità del decisore. E possibile fare ciò in base alle informazioni sull investimento passato. Posto u() = 0 e u(80) = 100, il valore dell utilità attesa di tale investimento risulta essere 66,6. Poiché il decisore ritenne il valore monetario equivalente uguale a 65 Keuro si deduce che u(65) = 66, 6. Osservando che il valore atteso dell investimento è uguale a 60 Keuro si può concludere che il decisore è (o per lo meno fu) propenso al rischio. Si noti infatti, che in condizione di indifferenza al rischio, risulterebbe essere uguale a 66,6 l utilità di 60 Keuro e non quella di 65 Keuro. Imponendo le condizioni u() = 0, u(80) = 100, u(65) = 66, 6 si ottiene u(x) , 5x x. (Si noti che i coefficienti della funzione di utilità sono volutamente arrotondati, in quanto è irrealistico pensare che si possano stimare in maniera esatta.) L utilità attesa del primo investimento risulta essere EU 1 = 1 2 u() u(40) u(80) = L utilità attesa del secondo investimento risulta essere EU 2 = 1 4 u() ,5 4u(Q) = 85, 5+1, 875Q+ Q. Ponendo EU 1 = EU 2 si ottiene Q = 12, 5 e Q = 41, 3 dove il risultato Q = 12, 5 è da escludere in quanto fuori dall intervallo considerato. 5

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA

Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA 1.1 Introduzione Fino ad ora abbiamo esaminato prevalentemente criteri di valutazione e scelte di investimenti nell ipotesi di operare in condizione

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1. Floating Point Notazione in virgola mobile N = M BE mantissa base esponente esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.6273 102 forma normalizzata: la mantissa ha una sola cifra

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi A. Agnetis Questi appunti presentano alcuni concetti introduttivi fondamentali di Teoria dei Giochi. Si tratta di appunti pensati per studenti di Ingegneria Gestionale

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

REGOLAMENTO PER L ANTICIPAZIONE DEL TRATTAMENTO DI FINE RAPPORTO DI LAVORO (LEGGE 29 MAGGIO 1982, N. 297)

REGOLAMENTO PER L ANTICIPAZIONE DEL TRATTAMENTO DI FINE RAPPORTO DI LAVORO (LEGGE 29 MAGGIO 1982, N. 297) REGOLAMENTO PER L ANTICIPAZIONE DEL TRATTAMENTO DI FINE RAPPORTO DI LAVORO (LEGGE 29 MAGGIO 1982, N. 297) 1) Beneficiari Hanno titolo a richiedere l anticipazione i lavoratori che abbiano maturato almeno

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

I contributi pubblici nello IAS 20

I contributi pubblici nello IAS 20 I contributi pubblici nello IAS 20 di Paolo Moretti Il principio contabile internazionale IAS 20 fornisce le indicazioni in merito alle modalità di contabilizzazione ed informativa dei contributi pubblici,

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Principio contabile internazionale n. 12 Imposte sul reddito

Principio contabile internazionale n. 12 Imposte sul reddito Principio contabile internazionale n. 12 Imposte sul reddito Finalità La finalità del presente Principio è quella di definire il trattamento contabile delle imposte sul reddito. L aspetto principale della

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Beni pubblici e analisi costi benefici

Beni pubblici e analisi costi benefici Beni pubblici e analisi costi benefici Arch. Laura Gabrielli Valutazione economica del progetto a.a. 2005/06 Economia pubblica L Economia pubblica è quella branca della scienza economica che spiega come

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 6: Equilibrio economico generale (part 2) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

(Atti non legislativi) REGOLAMENTI

(Atti non legislativi) REGOLAMENTI 24.12.2013 Gazzetta ufficiale dell Unione europea L 352/1 II (Atti non legislativi) REGOLAMENTI REGOLAMENTO (UE) N. 1407/2013 DELLA COMMISSIONE del 18 dicembre 2013 relativo all applicazione degli articoli

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Capitolo 10. LE SOSPENSIONI DEI LAVORI

Capitolo 10. LE SOSPENSIONI DEI LAVORI LE SOSPENSIONI DEI LAVORI 10.1- Profili generali della sospensione dei lavori. 10.2- Le sospensioni legittime dipendenti da forza maggiore. Casi in cui si tramutano in illegittime. 10.3- Le sospensioni

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli