Moto armonico. A.Solano - Fisica - CTF

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moto armonico. A.Solano - Fisica - CTF"

Transcript

1 Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza

2 Moto periodico Si definisce periodico un moto che si ripete ad intervalli di tempo regolari. A C h h L intervallo di tempo necessario per compiere l intero ciclo di oscillazione (Aà Cà A) è detto periodo. >> Unità di misura nel SI à secondo (s) B In numero di oscillazioni complete nell unità di tempo è detto frequenza f = 1 T >> Unità di misura nel SI à hertz (Hz) = 1/s

3 Moto armonico semplice: il sistema massa-molla Una massa m, collegata ad una molla, è libera di oscillare su una superficie orizzontale priva di attrito. Quando la molla è a riposo ha una sua lunghezza caratteristica e non esercita forze sulla massa. Sia =0 la posizione della massa quando la molla è a riposo à posizione di equilibrio

4 Moto armonico semplice: la forza elastica di richiamo Se si sposta la massa m dalla posizione di equilibrio ad una generica posizine, la molla, compressa o allungata, esercita una forza per riportare m nella posizione iniziale à forza elastica di richiamo! F = k! 0 1 k à costante elastica della molla à spostamento dalla posizione di equilibrio Oscillatore armonico semplice: sistema oscillante caratterizzato da una forza di richiamo direttamente proporzionale allo spostamento dalla posizione di equilibrio e di verso opposto a questo.

5 Moto armonico semplice POSIZIONE DI EQUILIBRIO (=0) Forza di richiamo nulla 0 A MOLLA ALLUNGATA (>0) Forza di richiamo negativa -A 0 MOLLA COMPRESSA (<0) Forza di richiamo positiva La massa m portata nella posizione A e lasciata libera oscillerà tra le posizioni A e -A

6 Accelerazione di un corpo in moto armonico semplice! F = k!! F = m! a k! = m! a! a = k m! POSIZIONE DI EQUILIBRIO (=0) Accelerazione nulla! a MOLLA ALLUNGATA, MASSIMO SPOSTAMENTO (=A)! a -A 0 A 0 Accelerazione massima a = k m A MOLLA COMPRESSA, MASSIMO SPOSTAMENTO (=-A) Accelerazione massima a = k m A

7 Velocità di un corpo in moto armonico semplice Accelerazione non nulla à velocità variabile nel tempo MOLLA ALLUNGATA, MASSIMO SPOSTAMENTO (=A) Velocità nulla Punto di inversione del moto 0 A POSIZIONE DI EQUILIBRIO (=0) Velocità massima -A 0 MOLLA COMPRESSA, MASSIMO SPOSTAMENTO (=-A) Velocità nulla Punto di inversione del moto

8 Spostamento di una massa attaccata ad una molla A A à ampiezza Lo spostamento di una massa attaccata ad una molla ha un andamento temporale sinusoidale o cosinusoidale.

9 Rappresentazione matematica del moto armonico semplice a = k m a = dv dt = d dt (d dt ) = d 2 dt 2 d 2 dt = k 2 m d 2 k dt 2 m = ω 2 = ω 2 d 2 dt 2 = ω 2 Equazione differenziale del secondo ordine Soluzione: famiglia di funzioni (t) la cui derivata seconda è uguale alla funzione stessa cambiata di segno e moltiplicata per ω 2 Le funzioni seno e coseno si comportano così Soluzione: (t) = Acos(ωt +φ)

10 Verifica della soluzione trovata (t) = Acos(ωt +φ) d dt = d [Acos(ωt +φ)] = ωasen(ωt +φ) dt = v(t) d 2 dt 2 = d dt [ ωasen(ωt +φ)] = ω 2 Acos(ωt +φ) (t) = a(t) d 2 dt 2 = ω 2 1. Abbiamo verificato che l equazione è soddisfatta 2. Abbiamo derivato l andamento della velocità in funzione del tempo 3. Abbiamo derivato l andamento dell accelerazione in funzione del tempo

11 Parametri del moto armonico (t) = Acos(ωt +φ) T A Equazione del moto (legge oraria) A à ampiezza: massimo valore della posizione del corpo nella direzione sia positiva che negativa >> Unità di misura nel SI à metro(m) φ à fase iniziale (in radianti) k m = ω 2 ω = k m ω à pulsazione >> Unità di misura nel SI à rad/s T = 2π ω = 2π m k f = 1 T = ω 2π = 1 2π k m T à periodo: tempo impiegato dal corpo a compiere una oscillazione completa >> Unità di misura nel SI à secondo (s) f à frequenza: numero di oscillazioni complete nell unità di tempo >> Unità di misura nel SI à hertz (Hz)

12 Significato della fase iniziale La fase iniziale φ non modifica la forma della funzione ma la trasla lungo l asse delle ascisse. 1.5% 1% 0.5% 1.5% φ = -π/4 1% 0.5% φ = 0 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5% 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5%!1%!1.5% y=cos(t-π/4)!1%!1.5% y=cos(t) 1.5% 1% φ = -π/2 La fase iniziale determina l istante in cui il movimento raggiunge l ampiezza massima. 0.5% 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5%!1%!1.5% y=cos(t-π/2) Come l ampiezza è determinato dalle condizioni inizlali del moto Se a t=0 il corpo parte dalla posizione di massimo spostamento =A la fase iniziale è nulla.

13 ω = k m = 2π T t Riassumendo ωt posizione velocità accelerazione (t) = Acos(ωt) v(t) = Aωsen(ωt) a(t) = Aω 2 cos(ωt) (a) 0 0 Massimo positivo =A v=0 Massima a = -Aω 2 (b) T/4 π/2 Posizione di equilibrio =0 Massima v = -Aω a = 0 (c) T/2 π Massimo negativo = -A v=0 Massima a = Aω 2 (d) (e) 3T/4 T 3π/2 2π Posizione di equilibrio =0 Massimo positivo =A Velocità massima v = Aω v=0 a = 0 Massima a = -Aω 2

14 L energia nel moto armonico semplice(1) 0 A Forza di richiamo esercitata da una molla:! F = k! varia durante lo spostamento Se il corpo di massa m si sposta da i a f, la forza di richiamo compie un lavoro L f L = k d = k d = 1 2 k 2 f ( 1 2 k 2 i ) = 1 2 k 2 i 1 2 k f i f i Il lavoro dipende solo dalla posizione iniziale e finale della massa m à La forza di richiamo della molla è una forza conservativa 2 Possiamo definire un energia potenziale elastica U = 1 2 k2 >> Unità di misura nel SI à joule (J) L =U i U f = 1 2 k 2 i 1 2 k 2 f

15 L energia nel moto armonico semplice(2) Se l unica forza che agiste sul corpo di massa m è la forza di richiamo della molla, l energia meccanica totale si conserva. L energia cinetica e potenziale variano ma la loro somma rimane costante U = 1 2 k2 = 1 2 k A2 cos 2 (ωt) K = 1 2 mv2 = 1 2 m A2 ω 2 sen 2 (ωt)

16 L energia nel moto armonico semplice(3) ω = k m = 2π T t ωt U=1/2k 2 K=1/2mv 2 E=U+K (a) 0 0 U massima 1 2 ka ka2 (b) T/4 π/2 0 K massima 1 2 m(aω)2 1 2 ka2 (c) T/2 π U massima 1 2 ka ka2 (d) (e) 3T/4 T 3π/2 2π 0 U massima 1 2 ka2 K massima 1 2 m(aω) ka2 1 2 ka2

17 Molla verticale Una massa m appesa ad una molla verticale ne causa l allungamento Posizione di equilibrio senza la massa appesa Posizione di equilibrio con la massa appesa La massa oscilla intorno alla nuova posizione di equilibrio ( 0 ); per gli altri aspetti le oscillazioni sono uguali a quelli di una molla orizzontale La molla è in equilibrio quando esercita una forza verso l alto uguale al peso della massa. k 0 = mg 0 = mg k

18 Il moto circolare uniforme è una composizione di moti armonici semplici Mentre il punto materiale P si muove di moto uniforme con velocità v sulla circonferenza di raggio r, le sue proiezione sugli assi e y, si muovono di moto armonico t = 0 θ = 0 θ = ωt P = r cos(θ) = r cos(ωt) y P = rsen(θ) = rsen(ωt) = r cos(ωt π 2 ) r y y P! ω! r θ! v P P Il moto circolare corrisponde alla composizione di due moti armonici che si effettuano in due direzioni ortogonali e sono sfasati di π/2 La pulsazione ω dei due moti armonici corrisponde alla velocità angolare del moto circolare uniforme

19 Il pendolo semplice Il pendolo semplice è un sistema meccanico costituito da una massa m appesa ad un filo inestensibile di massa trascurabile di lunghezza L Il pendolo è in equilibrio quando la massa è sulla verticale del punto di sospenzione. Se spostato dalla posizione di equilibrio il pendolo oscilla intorno a tale posizione. θ F mg Forza di richiamo F = mg sen(θ) ~ mg θ (componente della forza peso tangente alla traiettoria) Nel regime di piccole oscillazioni, il pendolo si muove di moto armonico semplice Il periodo di oscillazione T si determina come: T = 2π L g

20 Oscillazioni smorzate In molti sistemi fisici si verificano perdite di energia meccanica per effetto di forze dissipative quali l attrito o la resistenza dell aria E = 1 2 ka2 Se E diminuisce, l ampiezza A delle oscillazioni diminuisce Oscillazioni smorzate Le forze dissipative non sono semplici da descrivere analiticamente. Spesso si fa lʼ ipotesi che siano proporzionali alla velocità v con cui oscilla il corpo (es. resistenza dell aria). La forza di smorzamento si oppone al moto! F s = γ! v Velocità del corpo Coefficiente di smorzamento (>0) >> Unità di misura nel SI: kg/s

21 Se Coefficiente di smorzamento piccolo γ 2 4m 2 < k m ossia A 0 e -γt/2m γ 2 < 4mk ampiezza decresce esponenzialmente nel tempo: A=A 0 e -γt/2m la frequenza di oscillazione diventa f ' = 1 2π k m γ 2 4m 2 Se γ 2 << 4mk f ' 1 2π k m il corpo oscilla con una frequenza circa uguale alla frequenza che avrebbe in assenza di forze di smorzamento ma l ampiezza dell oscillazione decresce esponenzialmente.

22 Se Coefficente di smorzamento grande γ 2 4mk il sistema torna nella posizione di equilibrio senza oltrepassarla à non oscilla γ 2 > 4mk γ 2 = 4mk Condizione di smorzamento critico: il sistema torna nella posizione di equilibrio nel tempo minimo Alcuni sistemi meccanici (ammortizzatori auto) sono progettati in modo da avvicinarsi alla condizione di smorzamento critico

23 Oscillazioni forzate È possibile aumetare l energia di un sistema oscillante o integrare l energia persa a causa di forze dissipative applicando una forza esterna periodica che compie un lavoro positivo. f 0 à frequenza naturale del pendolo f 0 = 1 T = 1 2π g L Se si fa oscillare avanti e indietro il punto di sospensione il pendolo continua ad oscillare. Poiché si forza il pendolo, le oscillazioni sono dette forzate. In presenza di forze non conservative, se il punto di sospensione del pendolo viene tenuto fermo, le oscillazioni si smorzano rapidamente. La risposta del sistema dipende dalla frequenza f del movimento della mano. Se f f 0, l ampiezza dell oscillazione può diventare piuttosto grande.

24 Risonanza Se la frequenza f della forza sollecitante è circa pari alla frequenza naturale f 0 dell oscillatore à risonanza CURVE DI RISONANZA à Ampiezza del moto oscillatorio al variare della frequenza della forza esterna sollecitante Curve diverse si riferiscono a diverse condizioni di smorzamento (à diversi valori di coefficiente di smorzamento) Frequenza propria dell oscillatore non smorzato Frequenza della forza esterna sollecitante f Per piccoli smorzamenti le curve di risonanza hanno un picco alto e stretto quando f f 0 l ampiezza delle oscillazioni può diventare particolarmente grande sistemi selettivi Smorzamento grande à l ampiezza varia poco al variare di f

25 Vibrazioni molecolari e moto armonico Molti sistemi e problemi complicati si possono ricondurre allo studio dell oscillatore armonico lineare È possibile schematizzare una molecola come un insieme di masse puntiformi (atomi) collegate da molle (legame chimico). Caso più semplice: molecola biatomica lineare Gli atomi legati in una molecola compiono continuamente moti vibrazionali attorno alle loro posizioni di equilibrio (X EQ ). X EQ X MAX X EQ MOTO DI STIRAMENTO (STRECHING) Le masse si allontanano fino a quando arrivano al massimo dellʼ elongazione (X MAX ) ripassano per la posizione di equilibrio (X EQ ) X MIN avvicinarsi ad una distanza X MIN ripassano per la posizione di equilibrio. E così via

26 La massa ridotta Dati due punti materiali di massa M 1 ed M 2 che si muovono solo in virtù di forze di mutua interazione, il moto di uno (M 2 ) rispetto allʼ altro (M 1 ) può essere trattato come se questʼ ultimo fosse fermo, con lʼ unico accorgimento di sostituire alla massa M 2 la massa ridotta μ. EQ EQ M 1 M 2 La frequenza di vibrazione della molecola biatomica lineare f 0 = 1 2π Se una molecola assorbe radiazione di una determinata frequenza, vuol dire che può vibrare a quella frequenza Tale frequenza può essere determinata sperimentalmente con la spettroscopia infrarossa e dà informazioni sulla forza del legame (k) spettroscopia-ir-1/ k µ

27 Oscillatore armonico classico e quantistico Le molecole si comportano in realtà come oscillatori quantistici In meccanica quantistica l energia di un oscillatore armonico può assumere solo valori discreti l energia dello stato fondamentale non è nulla. ω = k µ (stessa ω ricavata nel caso classico) h = costante di Plank = J s

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

L Oscillatore Armonico

L Oscillatore Armonico L Oscillatore Armonico Descrizione del Fenomeno (max 15) righe Una molla esercita su un corpo una forza di intensità F=-kx, dove x è l allungamento o la compressione della molla e k una costante [N/m]

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Esercizio. Fisica - M. Obertino

Esercizio. Fisica - M. Obertino In un ambiente in cui è stato fatto il vuoto lascio cadere in caduta libera da una stessa altezza una piuma di 10 g, una sfera di legno di 200 g e una pallina di ferro di 1 g e misuro i tempi di caduta.

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

I seguenti grafici rappresentano istantanee dell onda di equazione:

I seguenti grafici rappresentano istantanee dell onda di equazione: Descrizione matematica di un onda armonica La descrizione matematica di un onda è data dalla seguente formula : Y ; t) A cos( k ω t + ϕ ) () ( ove ω e k, dette rispettivamente pulsazione e numero d onda,

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il Capitolo 15 Oscillazioni 15.1 L oscillatore armonico Abbiamo in precedenza (pag. 8) già considerato il caso dell oscillatore armonico, il y caso cioè di un corpo che oscilla sotto l azione di una forza

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

Lezione XVI Impulso, forze impulsive e urti

Lezione XVI Impulso, forze impulsive e urti Lezione XVI Impulso, forze impulsive e urti 1 Impulso di una forza Sempre nell ambito della dinamica del punto materiale, dimostriamo il semplice teorema dell impulso, che discende immediatamente dalla

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

3.8 - Attrito Radente

3.8 - Attrito Radente 3.8 - Attrito Radente 3.8 - Attrito Radente Nel movimento di un corpo su una superficie SCABRA o attraverso mezzi viscosi (aria,acqua) vi è una resistenza al moto dovuta all interazione del corpo con la

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Cap 7 - Lavoro ed energia Lavoro di una forza costante

Cap 7 - Lavoro ed energia Lavoro di una forza costante N.Giglietto A.A. 2005/06-7.3 - Lavoro di una forza costante - 1 Cap 7 - Lavoro ed energia Abbiamo visto come applicare le leggi della dinamica in varie situazioni. Spesso però l analisi del moto spesso

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Problemi di paragrafo

Problemi di paragrafo Problemi di paragrafo 1 No, la forza da applicare diminuisce ma la distanza aumenta, quindi il lavoro compiuto resta costante. 2 1 J 1 kg 1 m 1 s 10 g 10 cm 1 s 10 erg. 3 Quando la componente della forza

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

Studio delle oscillazioni di un pendolo fisico

Studio delle oscillazioni di un pendolo fisico Studio delle oscillazioni di un pendolo fisico Materiale occorrente: pendolo con collare (barra metallica), supporto per il pendolo, orologio, righello. Richiami di teoria Un pendolo fisico è costituito

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

VELOCITA' CRITICHE FLESSIONALI

VELOCITA' CRITICHE FLESSIONALI VELOCITA' CRITICHE FLESSIONALI Si consideri un albero privo di massa recante in posizione intermedia un corpo puntiforme di massa "M". Se la massa viene spostata dalla sua posizione di equilibrio in direzione

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero LICEO CLASSICO L. GALVANI Sommario Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N-... 1 Per studenti che hanno frequentato all estero... 1 Prova di Riferimento di Fisica per gli studenti

Dettagli

Teorema dell impulso o della quantità di moto. Teorema delle forze vive o dell energia cinetica

Teorema dell impulso o della quantità di moto. Teorema delle forze vive o dell energia cinetica Teorema dell impulso o della quantità di moto estensione ai sistemi: f = ma = m Δv Δt secondo teorema del centro di massa (cancellazione delle forze interne) Teorema delle forze vive o dell energia cinetica

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 21 lezione (15 / 12 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

ENERGIA POTENZIALE GRAVITAZIONALE

ENERGIA POTENZIALE GRAVITAZIONALE ENERGIA POTENZIALE GRAVITAZIONALE mg z 1 Quando il corpo arriva all altezza z 2 possiede un energia cinetica che all inizio non aveva z 2 Un oggetto che si trova in posizione elevata ha una capacità di

Dettagli

ESERCIZIO 1. 5N 2Kg 1Kg

ESERCIZIO 1. 5N 2Kg 1Kg ESERCIZIO 1 Una mano spinge due corpi su una superficie orizzontale priva di attrito, come mostrato in figura. Le masse dei corpi sono Kg e 1 Kg. La mano esercita la forza di 5 N sul corpo di Kg. 5N Kg

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

CAPITOLO. 1 Gli strumenti di misura Gli errori di misura L incertezza nelle misure La scrittura di una misura 38

CAPITOLO. 1 Gli strumenti di misura Gli errori di misura L incertezza nelle misure La scrittura di una misura 38 Indice LA MATEMATICA PER COMINCIARE 2 LA MISURA DI UNA GRANDEZZA 1 Le proporzioni 1 2 Le percentuali 2 3 Le potenze di 10 3 Proprietà delle potenze 3 4 Seno, coseno e tangente 5 5 I grafici 6 6 La proporzionalità

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli