Moto armonico. A.Solano - Fisica - CTF

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moto armonico. A.Solano - Fisica - CTF"

Transcript

1 Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza

2 Moto periodico Si definisce periodico un moto che si ripete ad intervalli di tempo regolari. A C h h L intervallo di tempo necessario per compiere l intero ciclo di oscillazione (Aà Cà A) è detto periodo. >> Unità di misura nel SI à secondo (s) B In numero di oscillazioni complete nell unità di tempo è detto frequenza f = 1 T >> Unità di misura nel SI à hertz (Hz) = 1/s

3 Moto armonico semplice: il sistema massa-molla Una massa m, collegata ad una molla, è libera di oscillare su una superficie orizzontale priva di attrito. Quando la molla è a riposo ha una sua lunghezza caratteristica e non esercita forze sulla massa. Sia =0 la posizione della massa quando la molla è a riposo à posizione di equilibrio

4 Moto armonico semplice: la forza elastica di richiamo Se si sposta la massa m dalla posizione di equilibrio ad una generica posizine, la molla, compressa o allungata, esercita una forza per riportare m nella posizione iniziale à forza elastica di richiamo! F = k! 0 1 k à costante elastica della molla à spostamento dalla posizione di equilibrio Oscillatore armonico semplice: sistema oscillante caratterizzato da una forza di richiamo direttamente proporzionale allo spostamento dalla posizione di equilibrio e di verso opposto a questo.

5 Moto armonico semplice POSIZIONE DI EQUILIBRIO (=0) Forza di richiamo nulla 0 A MOLLA ALLUNGATA (>0) Forza di richiamo negativa -A 0 MOLLA COMPRESSA (<0) Forza di richiamo positiva La massa m portata nella posizione A e lasciata libera oscillerà tra le posizioni A e -A

6 Accelerazione di un corpo in moto armonico semplice! F = k!! F = m! a k! = m! a! a = k m! POSIZIONE DI EQUILIBRIO (=0) Accelerazione nulla! a MOLLA ALLUNGATA, MASSIMO SPOSTAMENTO (=A)! a -A 0 A 0 Accelerazione massima a = k m A MOLLA COMPRESSA, MASSIMO SPOSTAMENTO (=-A) Accelerazione massima a = k m A

7 Velocità di un corpo in moto armonico semplice Accelerazione non nulla à velocità variabile nel tempo MOLLA ALLUNGATA, MASSIMO SPOSTAMENTO (=A) Velocità nulla Punto di inversione del moto 0 A POSIZIONE DI EQUILIBRIO (=0) Velocità massima -A 0 MOLLA COMPRESSA, MASSIMO SPOSTAMENTO (=-A) Velocità nulla Punto di inversione del moto

8 Spostamento di una massa attaccata ad una molla A A à ampiezza Lo spostamento di una massa attaccata ad una molla ha un andamento temporale sinusoidale o cosinusoidale.

9 Rappresentazione matematica del moto armonico semplice a = k m a = dv dt = d dt (d dt ) = d 2 dt 2 d 2 dt = k 2 m d 2 k dt 2 m = ω 2 = ω 2 d 2 dt 2 = ω 2 Equazione differenziale del secondo ordine Soluzione: famiglia di funzioni (t) la cui derivata seconda è uguale alla funzione stessa cambiata di segno e moltiplicata per ω 2 Le funzioni seno e coseno si comportano così Soluzione: (t) = Acos(ωt +φ)

10 Verifica della soluzione trovata (t) = Acos(ωt +φ) d dt = d [Acos(ωt +φ)] = ωasen(ωt +φ) dt = v(t) d 2 dt 2 = d dt [ ωasen(ωt +φ)] = ω 2 Acos(ωt +φ) (t) = a(t) d 2 dt 2 = ω 2 1. Abbiamo verificato che l equazione è soddisfatta 2. Abbiamo derivato l andamento della velocità in funzione del tempo 3. Abbiamo derivato l andamento dell accelerazione in funzione del tempo

11 Parametri del moto armonico (t) = Acos(ωt +φ) T A Equazione del moto (legge oraria) A à ampiezza: massimo valore della posizione del corpo nella direzione sia positiva che negativa >> Unità di misura nel SI à metro(m) φ à fase iniziale (in radianti) k m = ω 2 ω = k m ω à pulsazione >> Unità di misura nel SI à rad/s T = 2π ω = 2π m k f = 1 T = ω 2π = 1 2π k m T à periodo: tempo impiegato dal corpo a compiere una oscillazione completa >> Unità di misura nel SI à secondo (s) f à frequenza: numero di oscillazioni complete nell unità di tempo >> Unità di misura nel SI à hertz (Hz)

12 Significato della fase iniziale La fase iniziale φ non modifica la forma della funzione ma la trasla lungo l asse delle ascisse. 1.5% 1% 0.5% 1.5% φ = -π/4 1% 0.5% φ = 0 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5% 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5%!1%!1.5% y=cos(t-π/4)!1%!1.5% y=cos(t) 1.5% 1% φ = -π/2 La fase iniziale determina l istante in cui il movimento raggiunge l ampiezza massima. 0.5% 0% 0% 2% 4% 6% 8% 10% 12% 14%!0.5%!1%!1.5% y=cos(t-π/2) Come l ampiezza è determinato dalle condizioni inizlali del moto Se a t=0 il corpo parte dalla posizione di massimo spostamento =A la fase iniziale è nulla.

13 ω = k m = 2π T t Riassumendo ωt posizione velocità accelerazione (t) = Acos(ωt) v(t) = Aωsen(ωt) a(t) = Aω 2 cos(ωt) (a) 0 0 Massimo positivo =A v=0 Massima a = -Aω 2 (b) T/4 π/2 Posizione di equilibrio =0 Massima v = -Aω a = 0 (c) T/2 π Massimo negativo = -A v=0 Massima a = Aω 2 (d) (e) 3T/4 T 3π/2 2π Posizione di equilibrio =0 Massimo positivo =A Velocità massima v = Aω v=0 a = 0 Massima a = -Aω 2

14 L energia nel moto armonico semplice(1) 0 A Forza di richiamo esercitata da una molla:! F = k! varia durante lo spostamento Se il corpo di massa m si sposta da i a f, la forza di richiamo compie un lavoro L f L = k d = k d = 1 2 k 2 f ( 1 2 k 2 i ) = 1 2 k 2 i 1 2 k f i f i Il lavoro dipende solo dalla posizione iniziale e finale della massa m à La forza di richiamo della molla è una forza conservativa 2 Possiamo definire un energia potenziale elastica U = 1 2 k2 >> Unità di misura nel SI à joule (J) L =U i U f = 1 2 k 2 i 1 2 k 2 f

15 L energia nel moto armonico semplice(2) Se l unica forza che agiste sul corpo di massa m è la forza di richiamo della molla, l energia meccanica totale si conserva. L energia cinetica e potenziale variano ma la loro somma rimane costante U = 1 2 k2 = 1 2 k A2 cos 2 (ωt) K = 1 2 mv2 = 1 2 m A2 ω 2 sen 2 (ωt)

16 L energia nel moto armonico semplice(3) ω = k m = 2π T t ωt U=1/2k 2 K=1/2mv 2 E=U+K (a) 0 0 U massima 1 2 ka ka2 (b) T/4 π/2 0 K massima 1 2 m(aω)2 1 2 ka2 (c) T/2 π U massima 1 2 ka ka2 (d) (e) 3T/4 T 3π/2 2π 0 U massima 1 2 ka2 K massima 1 2 m(aω) ka2 1 2 ka2

17 Molla verticale Una massa m appesa ad una molla verticale ne causa l allungamento Posizione di equilibrio senza la massa appesa Posizione di equilibrio con la massa appesa La massa oscilla intorno alla nuova posizione di equilibrio ( 0 ); per gli altri aspetti le oscillazioni sono uguali a quelli di una molla orizzontale La molla è in equilibrio quando esercita una forza verso l alto uguale al peso della massa. k 0 = mg 0 = mg k

18 Il moto circolare uniforme è una composizione di moti armonici semplici Mentre il punto materiale P si muove di moto uniforme con velocità v sulla circonferenza di raggio r, le sue proiezione sugli assi e y, si muovono di moto armonico t = 0 θ = 0 θ = ωt P = r cos(θ) = r cos(ωt) y P = rsen(θ) = rsen(ωt) = r cos(ωt π 2 ) r y y P! ω! r θ! v P P Il moto circolare corrisponde alla composizione di due moti armonici che si effettuano in due direzioni ortogonali e sono sfasati di π/2 La pulsazione ω dei due moti armonici corrisponde alla velocità angolare del moto circolare uniforme

19 Il pendolo semplice Il pendolo semplice è un sistema meccanico costituito da una massa m appesa ad un filo inestensibile di massa trascurabile di lunghezza L Il pendolo è in equilibrio quando la massa è sulla verticale del punto di sospenzione. Se spostato dalla posizione di equilibrio il pendolo oscilla intorno a tale posizione. θ F mg Forza di richiamo F = mg sen(θ) ~ mg θ (componente della forza peso tangente alla traiettoria) Nel regime di piccole oscillazioni, il pendolo si muove di moto armonico semplice Il periodo di oscillazione T si determina come: T = 2π L g

20 Oscillazioni smorzate In molti sistemi fisici si verificano perdite di energia meccanica per effetto di forze dissipative quali l attrito o la resistenza dell aria E = 1 2 ka2 Se E diminuisce, l ampiezza A delle oscillazioni diminuisce Oscillazioni smorzate Le forze dissipative non sono semplici da descrivere analiticamente. Spesso si fa lʼ ipotesi che siano proporzionali alla velocità v con cui oscilla il corpo (es. resistenza dell aria). La forza di smorzamento si oppone al moto! F s = γ! v Velocità del corpo Coefficiente di smorzamento (>0) >> Unità di misura nel SI: kg/s

21 Se Coefficiente di smorzamento piccolo γ 2 4m 2 < k m ossia A 0 e -γt/2m γ 2 < 4mk ampiezza decresce esponenzialmente nel tempo: A=A 0 e -γt/2m la frequenza di oscillazione diventa f ' = 1 2π k m γ 2 4m 2 Se γ 2 << 4mk f ' 1 2π k m il corpo oscilla con una frequenza circa uguale alla frequenza che avrebbe in assenza di forze di smorzamento ma l ampiezza dell oscillazione decresce esponenzialmente.

22 Se Coefficente di smorzamento grande γ 2 4mk il sistema torna nella posizione di equilibrio senza oltrepassarla à non oscilla γ 2 > 4mk γ 2 = 4mk Condizione di smorzamento critico: il sistema torna nella posizione di equilibrio nel tempo minimo Alcuni sistemi meccanici (ammortizzatori auto) sono progettati in modo da avvicinarsi alla condizione di smorzamento critico

23 Oscillazioni forzate È possibile aumetare l energia di un sistema oscillante o integrare l energia persa a causa di forze dissipative applicando una forza esterna periodica che compie un lavoro positivo. f 0 à frequenza naturale del pendolo f 0 = 1 T = 1 2π g L Se si fa oscillare avanti e indietro il punto di sospensione il pendolo continua ad oscillare. Poiché si forza il pendolo, le oscillazioni sono dette forzate. In presenza di forze non conservative, se il punto di sospensione del pendolo viene tenuto fermo, le oscillazioni si smorzano rapidamente. La risposta del sistema dipende dalla frequenza f del movimento della mano. Se f f 0, l ampiezza dell oscillazione può diventare piuttosto grande.

24 Risonanza Se la frequenza f della forza sollecitante è circa pari alla frequenza naturale f 0 dell oscillatore à risonanza CURVE DI RISONANZA à Ampiezza del moto oscillatorio al variare della frequenza della forza esterna sollecitante Curve diverse si riferiscono a diverse condizioni di smorzamento (à diversi valori di coefficiente di smorzamento) Frequenza propria dell oscillatore non smorzato Frequenza della forza esterna sollecitante f Per piccoli smorzamenti le curve di risonanza hanno un picco alto e stretto quando f f 0 l ampiezza delle oscillazioni può diventare particolarmente grande sistemi selettivi Smorzamento grande à l ampiezza varia poco al variare di f

25 Vibrazioni molecolari e moto armonico Molti sistemi e problemi complicati si possono ricondurre allo studio dell oscillatore armonico lineare È possibile schematizzare una molecola come un insieme di masse puntiformi (atomi) collegate da molle (legame chimico). Caso più semplice: molecola biatomica lineare Gli atomi legati in una molecola compiono continuamente moti vibrazionali attorno alle loro posizioni di equilibrio (X EQ ). X EQ X MAX X EQ MOTO DI STIRAMENTO (STRECHING) Le masse si allontanano fino a quando arrivano al massimo dellʼ elongazione (X MAX ) ripassano per la posizione di equilibrio (X EQ ) X MIN avvicinarsi ad una distanza X MIN ripassano per la posizione di equilibrio. E così via

26 La massa ridotta Dati due punti materiali di massa M 1 ed M 2 che si muovono solo in virtù di forze di mutua interazione, il moto di uno (M 2 ) rispetto allʼ altro (M 1 ) può essere trattato come se questʼ ultimo fosse fermo, con lʼ unico accorgimento di sostituire alla massa M 2 la massa ridotta μ. EQ EQ M 1 M 2 La frequenza di vibrazione della molecola biatomica lineare f 0 = 1 2π Se una molecola assorbe radiazione di una determinata frequenza, vuol dire che può vibrare a quella frequenza Tale frequenza può essere determinata sperimentalmente con la spettroscopia infrarossa e dà informazioni sulla forza del legame (k) spettroscopia-ir-1/ k µ

27 Oscillatore armonico classico e quantistico Le molecole si comportano in realtà come oscillatori quantistici In meccanica quantistica l energia di un oscillatore armonico può assumere solo valori discreti l energia dello stato fondamentale non è nulla. ω = k µ (stessa ω ricavata nel caso classico) h = costante di Plank = J s

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Lez. 9 Moto armonico

Lez. 9 Moto armonico Lez. 9 Moto armonico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137 2 1 Un

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt Moti piani su traiettorie qualsiasi In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. n ˆ P ˆ t traiettoria La velocità in ogni punto della

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

L Oscillatore Armonico

L Oscillatore Armonico L Oscillatore Armonico Descrizione del Fenomeno (max 15) righe Una molla esercita su un corpo una forza di intensità F=-kx, dove x è l allungamento o la compressione della molla e k una costante [N/m]

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν Moti periodici In generale possiamo definire periodici quei fenomeni che si ripetono ad intervalli regolari rispetto ad una variabile indipendente come il tempo, lo spazio o una combinazione di entrambi.

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

Esercizio. Fisica - M. Obertino

Esercizio. Fisica - M. Obertino In un ambiente in cui è stato fatto il vuoto lascio cadere in caduta libera da una stessa altezza una piuma di 10 g, una sfera di legno di 200 g e una pallina di ferro di 1 g e misuro i tempi di caduta.

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Oscillazioni ed onde meccaniche

Oscillazioni ed onde meccaniche Capitolo Oscillazioni ed onde meccaniche 1. Il moto periodico Quali sono le caratteristiche del moto periodico? Una particella si muove di moto periodico quando continuamente ripassa per le stesse posizioni

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Argomenti di questa lezione (esercitazione)

Argomenti di questa lezione (esercitazione) Lezione mecc n.22 pag 1 Argomenti di questa lezione (esercitazione) Ancora esercizi di meccanica, in preparazione della prima prova in itinere Lezione mecc n.22 pag 2 Lezione mecc n.22 pag 3 Lezione mecc

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 :

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 : Il moto armonico 1. Definizione di moto armonico Un punto P si muove di moto circolare uniforme lungo la circonferenza Γ in figura, con velocità angolare. Considero uno dei diametri della circonferenza

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

Cognome...Nome...matricola...

Cognome...Nome...matricola... Cognome......Nome......matricola...... Facoltà di Ingegneria. Padova Luglio Corso di Laurea in Ingegneria Meccanica II a Squadra. II ppello Fisica Problema - Meccanica ( Punti ****) Un asta sottile e omogenea

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1)

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1) III ESERCITAZIONE 1. Lavoro Una particella è sottoposta ad una forza F =axy û x ax û y, dove a=6 N/m e û x e û y sono i versori degli assi x e y. Si calcoli il lavoro compiuto dalla forza F quando la particella

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il

Oscillazioni. Capitolo L oscillatore armonico Abbiamo in precedenza (pag. 228) già considerato il caso dell oscillatore armonico, il Capitolo 15 Oscillazioni 15.1 L oscillatore armonico Abbiamo in precedenza (pag. 8) già considerato il caso dell oscillatore armonico, il y caso cioè di un corpo che oscilla sotto l azione di una forza

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 1 Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 2 28 aprile 2006 Esercizio 2 Nella

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

3.8 - Attrito Radente

3.8 - Attrito Radente 3.8 - Attrito Radente 3.8 - Attrito Radente Nel movimento di un corpo su una superficie SCABRA o attraverso mezzi viscosi (aria,acqua) vi è una resistenza al moto dovuta all interazione del corpo con la

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

I seguenti grafici rappresentano istantanee dell onda di equazione:

I seguenti grafici rappresentano istantanee dell onda di equazione: Descrizione matematica di un onda armonica La descrizione matematica di un onda è data dalla seguente formula : Y ; t) A cos( k ω t + ϕ ) () ( ove ω e k, dette rispettivamente pulsazione e numero d onda,

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 17/04/013 Quesiti 1. Una massa si trova al centro di un triangolo equilatero di lato L = 0 cm ed è attaccata con tre molle di costante

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Lezione XVI Impulso, forze impulsive e urti

Lezione XVI Impulso, forze impulsive e urti Lezione XVI Impulso, forze impulsive e urti 1 Impulso di una forza Sempre nell ambito della dinamica del punto materiale, dimostriamo il semplice teorema dell impulso, che discende immediatamente dalla

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica 1 - AA 014/15 Emanuele Fabbiani 19 febbraio 015 1 Oscillazioni 1.1 Esercizio 1 (TE 31-Gen-01, Ing. IND) Durante un terremoto le oscillazioni orizzontali del pavimento di una stanza provocano

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

OPZIONE SPECIFICA FISICA ED APPLICAZIONI DELLA MATEMATICA

OPZIONE SPECIFICA FISICA ED APPLICAZIONI DELLA MATEMATICA Lugano, 16 giugno 007 Liceo Cantonale Lugano 1 Viale C Cattaneo 4 CH-6900 Lugano Tel +41/91/8154711 Fax +41/91/8154709 EAME CRITTO DI MATURITÀ 006/007 OPZIONE PECIFICA FIICA ED APPLICAZIONI DELLA MATEMATICA

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Problemi di paragrafo

Problemi di paragrafo Problemi di paragrafo 1 No, la forza da applicare diminuisce ma la distanza aumenta, quindi il lavoro compiuto resta costante. 2 1 J 1 kg 1 m 1 s 10 g 10 cm 1 s 10 erg. 3 Quando la componente della forza

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli