Esempio: Modelli compartimentali per la farmacocinetica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esempio: Modelli compartimentali per la farmacocinetica"

Transcript

1 Esempio: Modelli compartimentali per la farmacocinetica I modelli compartimentali sono descrizioni matematiche tipicamente utilizzate per organismi biologici; in tali rappresentazioni un organismo viene considerato come suddiviso in parti tra di loro comunicanti dette compartimenti; questi compartimenti hanno la caratteristica che, al loro interno, le grandezze di interesse possono considerarsi uniforme. Un caso tipico è la concentrazione di sostanze, per esempio ormoni o farmaci, in diversi compartimenti dove tale concentrazione può, almeno in prima approssimazione, considerarsi uniforme. Come sempre, nella costruzione di un modello si cerca un compromesso tra l aderenza del modello alla realtà fisica e la semplicità del modello stesso: più i compartimenti sono mumerosi più il modello è accurato; d altro canto con la numerosità dei compartimenti considerati cresce anche la complessità del modello e la difficoltà (cruciale in questo ambito) a stimarne i parametri. Consideriamo, come esempio, la concentrazione di un farmaco nell organismo. L approssimazione più rozza che possiamo fare è quella di considerare un modello monocompartimentale (costituito cioè da un unico compartimento); tale approssimazione (che, pur molto rozza, è sufficientemente accurata da essere molto utilizzata nella pratica clinica) corrisponde a trascurare le differenze di concentrazione nei diversi tessuti e fluidi organici. La variabile che vogliamo controllare (uscita del sistema) è la concentrazione di farmaco nell organismo. Possiamo scegliere, come unica variabile di stato x del modello, la quantità di farmaco presente nell organismo. In tal modo si ha chiaramente y = x/v, dove V è il volume dell organismo. La concentrazione aumenta se il farmaco viene somministrato al paziente (ingresso del sistema) e diminuisce fisiologicamente attraverso i processi di metabolizzazione (in tale processo il farmaco viene trasformato dall organismo) ed eliminazione (attraverso i normali canali fisiologici: urine, feci, sudore, etc.). Indichiamo con u(t) l ingresso del sistema, ossia la quantità di farmaco somministrata al paziente nell unità di tempo. In prima approssimazione, si può spesso supporre che metabolizzazione ed eliminazione del farmaco siano proporzionali alla sua quantità di modo che l equazione per x risulta dx = ẋ = kx(t) + u(t) dt dove k è la costante di eliminazione dal compartimento. L ingresso u(t) è la portata 1

2 del farmaco somministrato. come nella figura seguente. Questo modello può essere rappresentato graficamente u(t) V Figure 1: Rappresentazione di un modello monocompartimentale per la concentrazione di un farmaco nell organismo. Il segnale u(t) si potrà considerare continuo nel caso in cui il farmaco venga somministrato per terapia endovenosa in modo continuo (fleboclisi); se invece, come più spesso accade, il farmaco è somministrato in modo concentrato in diversi istanti t i (per via orale o in qualunque altro modo) il segnale u(t) può essere modellizzato come un treno di impulsi centrati negli istanti in cui il farmaco viene somministrato: n u(t) = a i δ(t t i ) i=1 dove t i sono gli istanti in cui il farmaco viene somministrato e a i è la dose di farmaco somministrata all istante t i (come al solito, δ è la notazione per l impulso unitario). Abbiamo dunque un semplicissimo modello di stato che descrive la concentrazione del farmaco nell organismo: { k ẋ(t) = kx(t) + u(t) y(t) = cx(t) dove c := 1. La funzione di trasferimento è data da V W (s) = 1/V s + k. Si noti che, se k 0, il sistema è asintoticamente stabile e quindi anche semplicemente stabile e BIBO-stabile. Se k = 0 il modello è semplicemente stabile ma non asintoticamente stabile né BIBO-stabile. Il modello sembra essere lineare; tuttavia, le equazioni sono effettivamente lineari ma l insieme dove prendono valori i segnali non è uno spazio vettoriale! 2 I segnali x(t),

3 y(t) e u(t) possono assumere solo valori non negativi (la quantità di farmaco presente nell organismo e la sua concentrazione chiaramente non possono essere negative né si può pensare ad un ingresso u(t) a valori negativi che corrisponderebbe a estrarre farmaco dal paziente invece che somministrarglielo). In generale, il fatto che in questo tipo di modelli i segnali abbiano valori non negativi può comportare delle difficoltà molto notevoli nell analisi e nella sintesi del controllo: su queste problematiche è disponibile una letteratura vastissima il cui contenuto esula dagli scopi di questo corso. Modello bicompartimentale Invece del modello monocompartimentale, è possibile schematizzare l organismo con modelli più complessi che descrivono la realtà in modo più fedele. Per esempio, un modello a più compartimenti. Il più semplice di tali modelli è quello a due compartimenti o bicompartimentale. Sempre con riferimento alla dinamica di un farmaco, consideriamo l esempio di modello bicompartimentale rappresentato in figura. u(t) k 12 V 1 k 21 V 2 k 10 k 20 Figure 2: Rappresentazione di un modello a due compartimenti per la concentrazione di un farmaco. Il compartimento 1, di volume che indichiamo con V 1, è costituito dal plasma (la parte non corpuscolata del sangue) mentre il compartimento 2, di volume che indichiamo con V 2, rappresenta gli organi molto perfusi dai vasi sanguigni (cuore, fegato, reni etc.). Nell approssimazione legata al modello bicompartimentale si assume che la concentrazione del farmaco sia uniforme nei due compartimenti tra i quali può avvenire uno scambio di farmaco. Supponiamo che l ingresso u(t) sia la portata del farmaco somministrato per via endovenosa. Come prima, se il farmaco viene somministrato in modo continuo (fleboclisi), il segnale u(t) è continuo; se invece il farmaco è somministrato in modo concentrato in diversi istanti t i, il segnale u(t) può essere modellizzato 3

4 come un treno di impulsi centrati negli istanti delle iniezioni in cui il farmaco viene somministrato. La dinamica con cui il farmaco viene scambiato può spesso essere approssimata con un modello lineare: un certo flusso di farmaco passa dal compartimento 1 al compartimento 2 con una portata proporzionale alla concentrazione del farmaco nel compartimento 1 (e quindi anche alla quantità di farmaco presente nel compartimento 1: infatti tale quantità è legata alla concentrazione dalla relazione lineare c 1 = q 1 /V 1, dove c 1 è la concentrazione di farmaco nel plasma, q 1 è la quantità di farmaco nel plasma e V 1 è il volume del plasma). Denotiamo con k 12 la costante di proporzionalità fra la quantità di farmaco presente nel compartimento 1 e il flusso di farmaco che passa dal compartimento 1 al compartimento 2. Analogamente vi è uno scambio anche in direzione opposta e un certo flusso di farmaco passa dal compartimento 2 al compartimento 1 con una portata proporzionale alla quantità di farmaco nel compartimento 2: denotiamo con k 21 la relativa costante di proporzionalità. Inoltre, ciascun compartimento può avere un meccanismo di metabolizzazione e uno di eliminazione che (in modo perfettamente identico a quanto accadeva nel modello monocompartimentale) fanno complessivamente ridurre la quantità di farmaco nel compartimento stesso con una veolocità proporzionale alla quantità di farmaco presente nel compartimento. Indichiamo con k 10 la costante di proporzionalità relativa al compartimento 1 e con k 20 quella relativa al compartimento 2. Infine, supponiamo che il farmaco debba agire sul fegato e quindi l uscita che vogliamo controllare è la concentrazione del farmaco nel compartimento 2. Possiamo scegliere, come variabili di stato x 1 e x 2 del modello, le quantità di farmaco nel compartimento 1 e nel compartimento 2, rispettivamente. appena detto consegue subito che le equazioni di stato 1 hanno la forma { ẋ 1 (t) = ( k 10 k 12 )x 1 (t) + k 21 x 2 (t) + u(t) ẋ 2 (t) = ( k 20 k 21 )x 2 (t) + k 12 x 1 (t), mentre l equazione di uscita è ovviamente y(t) = (1/V 2 )x 2 (t). Queste equazioni si possono scrivere in forma compatta come { ẋ(t) = Ax(t) + bu(t) y(t) = cx(t) Da quanto abbiamo 1 Anche in questo caso valgono le considerazioni che abbiamo fatto per il modello monocompartimentale relativamente alla positività dei segnali di stato, ingresso e uscita del sistema. 4

5 dove x = [ x 1 x 2, A = [ k 10 k 12 k 21 k 12 k 20 k 21, b = [ 1 0, c = [0 1 V 2 La funzione di trasferimento risulta quindi data da W (s) = c(si A) 1 b = k 12 /V 2 (s + k 10 + k 12 )(s + k 20 + k 21 ) k 12 k 21. Si noti che det(si A) = (s + k 10 + k 12 )(s + k 20 + k 21 ) k 12 k 21 = s 2 + s(k 10 + k 12 + k 20 +k 21 )+k 10 k 20 +k 10 k 21 +k 12 k 20 è un polinomio che ha entrambi gli zeri a parte reale non positiva; anzi, se k 10 e k 20 sono entrambi diversi da zero, gli zeri del polinomio det(si A) hanno entrambi parte reale negativa: in questo caso quindi il sistema è asintoticamente stabile (e dunque anche semplicemente stabile e BIBO-stabile). Più in generale, si può dimostrare (ed è intuitivamente abbastanza evidente) che i modelli compartimentali di questo tipo sono sempre almeno semplicemente stabili. Se inoltre: 1. c è almeno un compartimento con un coefficiente di metabolizzazione/eliminazione k i0 non nullo, e 2. da ciascun compartimento con un coefficiente di metabolizzazione/eliminazione nullo il farmaco fluisce (in modo diretto o indiretto) verso un compartimento con un coefficiente di metabolizzazione/eliminazione non nullo allora il sistema è asintoticamente stabile. La risposta impulsiva del sistema (ottenuta dopo aver fissato il valore dei parametri k ij e V 2 ) è rappresentata in figura. Si noti che nella pratica clinica è particolarmente rilevante l integrale della risposta impulsiva che in tale ambito viene indicato con AUC (Area Under the Curve) e rappresenta l esposizione complessiva al farmaco iniettato. Possiamo osservare che: 1. La stima dei parametri del modello è un problema molto delicato trattato in dettaglio nella teoria dell identificazione. Nei modelli biologici e, in particolare, se si tratta di pazienti umani, la questione è particolarmente rilevante in quanto gli esperimenti utili a stimare i parametri non devono danneggiare il sistema. 5

6 Amplitude 0.6 Impulse Response Time (seconds) #10 4 Figure 3: Risposta impulsiva tipica di un modello bicompartimentale. 2. Il controllo a retroazione in questo caso è particolarmente complesso perché è tutt altro che banale misurare la concentrazione del farmaco negli organi molto perfusi. Per ovviare a questo problema di solito si preleva il segnale di concentrazione nel plasma (cosa piuttosto agevole) e a partire da tale concentrazione e dai parametri del modello si stima (attraverso un filtro) l uscita (cioè la concentrazione del farmaco negli organi molto perfusi). Il controllore poi calcola il segnale di ingresso non sulla base della misura dell uscita ma sulla base della stima dell uscita. 6

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in

3. Traccia il grafico della funzione scelta in un piano cartesiano avente in ascisse il tempo t espresso in ore e in PROBLEMA. 1 Americhe Stai seguendo un corso, nell'ambito dell'orientamento universitario, per la preparazione agli studi di Medicina. Il docente introduce la lezione dicendo che un medico ben preparato

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Introduzione ai sistemi dinamici

Introduzione ai sistemi dinamici Introduzione ai sistemi dinamici Prof. G. Ferrari Trecate, Prof. D.M. Raimondo Dipartimento di Ingegneria Industriale e dell Informazione (DIII) Università degli Studi di Pavia Fondamenti di Automatica

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che

Dettagli

Esercizi per il corso di Fondamenti di Automatica I

Esercizi per il corso di Fondamenti di Automatica I Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Accoppiamento elastico

Accoppiamento elastico Accoppiamento elastico Tutti gli accoppiamenti tra motore e carico ( o sensore ) non sono perfettamente rigidi, ma elastici. In generale tra gli alberi del motore e del carico si ha un giunto, quest'ultimo

Dettagli

Esercitazioni di Fisica 1

Esercitazioni di Fisica 1 Esercitazioni di Fisica 1 Ultima versione: 6 novembre 2013 Paracadutista (attrito viscoso). Filo con massa che pende da un tavolo. 1 Studio del moto di un paracadutista Vogliamo studiare il moto di un

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Risposta al gradino di un sistema del primo ordine

Risposta al gradino di un sistema del primo ordine 0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di

Dettagli

Un modello per la valutazione della qualità del verde

Un modello per la valutazione della qualità del verde Un modello per la valutazione della qualità del verde Consideriamo il nostro sistema ambientale come un area di verde naturale, ecologicamente protetta, in presenza di un ridotto numero programmato di

Dettagli

Come calcolare i parametri farmacocinetici

Come calcolare i parametri farmacocinetici Come calcolare i parametri farmacocinetici La conoscenza dei parametri farmacocinetici fondamentali di un farmaco è essenziale per comprendere in che modo esso venga trattato dall organismo e come sia

Dettagli

I CONTROLLORI PID. Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi:

I CONTROLLORI PID. Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi: I CONTROLLORI PID Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi: Blocco Proporzionale Blocco Integrale Blocco Derivativo Funzione

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici termici Elementi fondamentali Scrittura delle equazioni dinamiche Rappresentazione in variabili di stato Esempio di rappresentazione

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Analisi dei Sistemi Esercitazione 1

Analisi dei Sistemi Esercitazione 1 Analisi dei Sistemi Esercitazione Soluzione 0 Ottobre 00 Esercizio. Sono dati i seguenti modelli matematici di sistemi dinamici. ÿ(t) + y(t) = 5 u(t)u(t). () t ÿ(t) + tẏ(t) + y(t) = 5sin(t)ü(t). () ẋ (t)

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

Il farmaco generico, ormai ridefinito farmaco equivalente, è considerato essenzialmente simile al medicinale già in commercio (farmaco originatore)

Il farmaco generico, ormai ridefinito farmaco equivalente, è considerato essenzialmente simile al medicinale già in commercio (farmaco originatore) 1 Il farmaco generico, ormai ridefinito farmaco equivalente, è considerato essenzialmente simile al medicinale già in commercio (farmaco originatore) dal punto di vista qualitativo e quantitativo ma con

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

Antiwind-up. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Antiwind-up. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Antiwind-up (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Il progetto dei sistemi di controllo viene spesso effettuato utilizzando la teoria del controllo lineare che fornisce buone prestazioni

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

SECONDO METODO DI LYAPUNOV

SECONDO METODO DI LYAPUNOV SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

L elasticità e le sue applicazioni in economia Introduzione

L elasticità e le sue applicazioni in economia Introduzione L elasticità e le sue applicazioni in economia Introduzione Fino ad ora l analisi su domanda, offerta ed equilibrio di mercato è stata di tipo qualitativo. Se vogliamo avere una misura quantitativa degli

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Corso di Identificazione dei Modelli e Analisi dei Dati Prof. Sergio Bittanti Esercitazione di Laboratorio A.A. 2010-11 Sistemi dinamici lineari a tempo discreto 1. Si consideri il sistema dinamico a tempo

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

N(t+ t) N(t) = (a N a M )N(t) t. (0.9) Dalla (0.9) si ricava = (a N a M )N(t). (0.10)

N(t+ t) N(t) = (a N a M )N(t) t. (0.9) Dalla (0.9) si ricava = (a N a M )N(t). (0.10) 3.. Il modello esponenziale continuo Supponiamo di avere una popolazione composta di individui di una sola specie. Indichiamo con N(t) il numero di individui presenti al tempo t. Supponiamo inoltre che

Dettagli

Percentuali, problemi non ovvi

Percentuali, problemi non ovvi Percentuali, problemi non ovvi Variazioni assolute e variazioni relative (continua) Supponiamo che il prezzo di un bene all istante t sia p t = 120 all istante successivo t+1 il nuovo prezzo del bene è

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. SCHEMI A BLOCCHI

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  SCHEMI A BLOCCHI CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SCHEMI A BLOCCHI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

Sia y una grandezza che varia, in funzione del tempo, secondo la legge

Sia y una grandezza che varia, in funzione del tempo, secondo la legge Il tasso di crescita Sia y una grandezza che varia, in funzione del tempo, secondo la legge dove è un numero reale positivo diverso da 1 e è il valore che y assume nell istante t=0. Se a>1 la funzione

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria Gestionale  MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Introduzione alla δ di Dirac

Introduzione alla δ di Dirac UniPD Facoltà di Ingegneria a.a. 04-05 Insegnamento di SEGNALI E SISTEMI (ALSI - Finesso) Introduzione alla δ di Dirac La δ di Dirac è uno strumento matematico di grande utilità nello studio di segnali

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli