STATISTICA DESCRITTIVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STATISTICA DESCRITTIVA"

Transcript

1 STATISTICA DESCRITTIVA Riassume e visualizza i risultati ottenuti in un esperimento o raccolti sul campo, con lo scopo di acquisire una certa familiarità con i dati prima di passare alle analisi statistiche inferenziali evidenziare nei dati tendenze inattese a priori che possono suggerire analisi non previste inizialmente o anche nuovi esperimenti o campionamenti identificare rapidamente eventuali errori nella trascrizione dei valori o nel loro inserimento al calcolatore identificare preliminarmente alcune caratteristiche dei dati che potrebbero precludere il successivo utilizzo di alcune tecniche statistiche comunicare ad altre persone brevemente, con logica ed ordine, le principali caratteristiche dei dati raccolti Attenzione: riassumere vuol quasi sempre dire perdere parte dell informazione

2 Cos è una variabile? o una qualsiasi caratteristica misurata o registrata in un unità campionaria. Generalmente le variabili sono indicate con lettere maiuscole e i valori che possono assumere con lettere minuscole, spesso indicizzati per indicare il valore assunto dalla variabile in una specifica osservazioni I valori che assume possono essere numerici oppure di semplice appartenenza ad una certa categoria o Variabili quantitative continue Peso, altezza, concentrazione, o Variabili quantitative discrete Numero uova, numero parassiti, numero piastre batteriche, o Variabili qualitative con valori ordinabili (scala ordinale) Abbondanza, stato di salute, aggressività, o Variabili qualitative con valori non ordinabili (scala nominale) = variabili categoriche Gruppo sanguigno, tipo di malattia, tipo mutazione, specie

3 Variabili risposta e variabili esplicative (dipendenti e indipendenti) Ipertensione arteriosa e rischio di ictus Piani edificio e lesione gatti Intensità di caccia e livelli di variabilità genetica 2 Nucleotide diversity (%) Level of hunting

4 Dati, frequenze e distribuzioni 22 nidi di merlo al momento dell involo e di avere contato in ciascuno di essi il numero di piccoli sopravvissuti o unità campionaria = nido o la femmina o variabile è quantitativa discreta. x 1 = 0; x 2 = 2; x 3 = 2; x 4 = 0; x 5 = 1; x 6 = 3; x 7 = 3; x 8 = 2; x 9 = 2; x 10 = 4; x 11 = 1; x 12 = 4; x 13 = 2; x 14 = 1; x 15 = 2; x 16 = 3; x 17 = 3; x 18 = 6; x 19 = 4; x 20 = 2; x 21 = 3; x 22 = 3, dove x i, indica il valore assunto dalla variabile X nella i-esima osservazione, con l'indice i che varia da 1 a n (n = 22 = dimensione del campione). classe di frequenza e tabella di frequenza: x i n i

5 In questo caso x i indica il valore assunto dalla variabile X nella i-esima classe, con l'indice i che varia da 1 a c, n i è il numero di volte che nel campione ricorre l'osservazione x i e c è il numero di classi (5 nel nostro caso) Chiaramente la somma di tutti gli n i deve dare n, ovvero i=c i=1 c n i = n i = n i = n i i=1 i = n distribuzione di frequenza: ossia alla distribuzione dei dati nelle diverse classi o distribuzione di probabilità o distribuzione di probabilità teorica diagramma a segmenti (o a barre) o capisco quali sono i valori che ricorrono più frequentemente o distribuzione unimodale, bimodale, multimodale? o Simmetrica o asimmetrica? Asimmetrica a destra o a sinistra? o capisco e l'intervallo di variazione della variabile analizzata

6 Si noti come nella tabella di frequenza è stata inserita anche una categoria, la 5, in cui non si rilevano osservazioni. Questo permette di costruire un diagramma a segmenti che rappresenti correttamente la distribuzione di frequenza dei dati.

7 Esempio di una distribuzione bimodale.

8 Distribuzioni contagiose o numero di animali che hanno contratto una certa parassitosi in 100 nidi di vespa o numero di piante in 100 quadrati di 1 metro x 1 metro

9 frequenze assolute (n i, dette anche numerosità) frequenze relative (f i, o, a volte, p i,), ovviamente varia tra 0 e 1 frequenza percentuale f i = p i = n i n f i (%)= f i 100 Il termine generico frequenza è spesso utilizzato per indicare cose diverse

10

11 Istogramma: quando la variabile analizzata assume molti valori diversi nel campione è una migliore rappresentazione della distribuzione di frequenza. Nell istogramma i dati vengono raggruppati in classi che includono tutti i valori in certo intervallo. Definizione classi o Regolette: radice di n; (1 + ln(n)/ln(2)) o Evitare la presenza di molte classi circa vuote o Limiti di classe (>= e <) o Buon senso

12

13 Distribuzioni di frequenza per le variabili di tipo qualitativo? Diagramma a segmenti (o a barre)

14 Diagramma a torta

15 Rappresentazione grafica della relazione tra due variabili numeriche Due variabili di tipo quantitativo misurate in ciascuna unità campionaria, o comunque di tipo ordinabile, la rappresentazione grafica delle singole osservazioni in un sistema di assi cartesiani diventa molto importante per evidenziare eventuali tendenze o associazioni. Scatterplot, o nube di punti (due esempi) E facile intuire che esiste una associazione tra le due variabili: le femmine di dimensioni maggiori depongono generalmente uova più grandi (a destra), e i maschi più brillanti generano figli più attraenti per le femmine. Associazione positiva, negativa e nulla

16 Inserisco una terza variabile In 30 località europee viene rilevato il livello di precipitazioni annue (mm di pioggia) e il ph medio delle piogge. Con il semplice utilizzo di simboli diversi (quadratini per le le località del Sud-Europa, asterischi per quelle del Nord-Europa), è possibile visualizzare in una nube di punti tre variabili (precipitazioni, ph e posizione geografica).

17 Diagramma a linee

18 . Tre esempi sulla differenza tra associazione e causazione Le variabili di confondimento creano problemi Gli studi sperimentali possono risolvere il problema

19 Rappresentazione tridimensionale di temperatura, umidità, e numero di specie misurate in 13 stazioni di campionamento.

20 Analisi di due (o più) variabili categoriche Tabella di contingenza (in questo caso, per 2 variabili categoriche)

21 Diagramma a barre raggruppate

22 Considerazioni generali sulla visualizzazione grafica - Chiarezza - Completezza - Onestà

23

24 Indici sintetici di una distribuzione Sintesi attraverso le distribuzioni di frequenza Ulteriori sintesi attraverso le o misure di tendenza centrale (o di posizione) cercano di identificare il valore "tipico" di una distribuzione, ovvero la posizione, nella scala della variabile analizzata, intorno alla quale si concentrano le osservazioni o misure di dispersione sintetizzano il grado di variabilità dei dati Le misure di tendenza centrale e di dispersione dovrebbero quindi rispecchiare, rispettivamente, la posizione e l ampiezza di una distribuzione di frequenza.

25

26 Conoscere la dispersione dei dati equivale a conoscere qualcosa sul valore di ogni singolo valore per la comprensione di un fenomeno. Se la dispersione è molto elevata, le singole osservazioni possono essere anche molto diverse, e quindi singolarmente di scarso valore. Si può dire quindi che all aumentare della dispersione il numero di osservazioni necessarie per trarre delle conclusioni generali a partire da un campione deve aumentare. Quando la variabilità è molto bassa può anche non essere necessario effettuare molte osservazioni, e forse nemmeno ricorrere alla statistica inferenziale.

27 Misure di tendenza centrale La media Media aritmetica. In genere quando si parla di media si intende la media aritmetica Media campionaria, della variabile X, la media campionaria viene indicata con x. x = n 1 n x i Media della popolazione µ= x i N La somma delle differenze dei singolo valori dalla media (detti scarti dalla media) è uguale a 0 e quindi la media si può considerare il baricentro del campione dove si bilanciano gli scarti. ( x i x )= x i x = nx nx = 0

28 Media a partire da una tabella di frequenza : x = c 1 x i n i n oppure x = x i f i c 1 Esempio Aplotipo x i n i A 51 5 B C D E F 63 4 x = c 1 x i n i n = = = 57,44 E se la variabile continua?

29 Proprietà della media la media implica la somma di valori numerici e quindi ha un significato solo per le variabili quantitative; risente molto dei valori estremi; se un singolo valore nel campione è per esempio molto più grande di tutti gli altri, la media non identifica un valore tipico del campione non è calcolabile se alcune osservazioni sono fuori scala nel caso di distribuzioni multimodali, la media raramente identifica un valore tipico

30 Esempio: Supponiamo di sacrificare 12 trote campionate in natura per contare in ciascuna di esse il numero di parassiti intestinali di una certa specie. Dati: 3, 2, 3, 4, 6, 2, 44, 8, 5, 3, 4, 2. La media di questi valori risulta essere 7,16, ma come è facile rendersi conto, questo valore non identifica certamente un valore tipico del campione. Questio a causa di un valore estremo, detto outlier. Esempio: Nove cavie sono sottoposte ad un test cognitivo all interno di un labirinto, e per ogni animale si misura il tempo impiegato a percorrere un certo tracciato. I risultati ottenuti, in minuti, sono i seguenti: Dati: 23,25, 29, 22, 15, >120, 32, 20,>120 In questo caso due valori sono fuori scala, e la media calcolata escludendo questi valori mancanti non rappresenterebbe correttamente l esperimento.

31 La mediana La mediana è il valore centrale in una serie di dati ordinati. Per esempio Dati: 30, 49, 74, 40, 63, 295, 60 Dati ordinati: 30, 40, 49, 60, 63, 74, 295 La mediana è quindi il valore che divide un campione di dati ordinati in due parti ugualmente numerose. In altre parole, metà dei valori nel campione sono più piccoli della mediana, e metà sono più grandi. E evidente quindi che la mediana è una misura della tendenza centrale. Se il numero di osservazioni n è dispari, la mediana è il valore che occupa la posizione (n+1)/2 nella serie ordinata dei dati (il quarto valore nell esempio appena visto). Se n è pari, la mediana è la media tra i 2 valori centrali, ossia la media dei valori nelle posizioni n/2 e n/2 +1. Nel caso di dati raccolti in una tabella di frequenza, è in genere sufficiente identificare la classe che contiene la mediana (la classe mediana).

32 Proprietà della mediana Il calcolo della mediana non implica l elaborazione dei dati numerici osservati o L informazione sul peso relativo dei singoli valori viene perduta. E spesso un buon indicatore della tendenza centrale di un set di dati è calcolabile anche se la variabile è qualitativa (ma deve essere ordinabile!) non risente dei valori estremi è calcolabile anche se alcune osservazioni sono fuori scala Esempi precedenti - la mediana del numero di parassiti nelle 12 trote è pari a 3,5 parassiti - la mediana del tempo impiegato dalla cavie nel labirinto è 25 minuti In entrambi i casi la mediana e facilmente calcolabile e indica bene (meglio della media) dove si concentrano le osservazioni. La mediana, però, soffre dello stesso inconveniente della media, ovvero può portare ad un valore assolutamente non rappresentativo quando la distribuzione non è unimodale.

33 La moda La moda è semplicemente il valore osservato più spesso nel campione. Dati: 0, 1, 5, 2, 2, 2, 3, 3, 3, 2, 4, 4, 1,2 vengono riassunti nella tabella di frequenza x i n i La moda è quindi pari a 2. Classe modale è quella che contiene il maggior numero di osservazioni. La stretta interpretazione della moda dovrebbe anche avere come conseguenza il fatto che praticamente tutte le distribuzioni osservate sono unimodali

34 Proprietà della moda La moda è una statistica molto semplice e intuitiva per riassumere una distribuzione di frequenza attraverso il suo picco più elevato. Anche se, come la mediana, non considera il peso delle singole osservazioni, ha alcune proprietà importanti: è possibile identificare la moda in qualsiasi tipo di variabile, quindi anche nelle variabili qualitative non ordinabili indica sempre un valore realmente osservato nel campione non è influenzata dai valori estremi nel caso di distribuzioni di frequenza molto asimmetriche, la moda è forse il miglior indice per descrivere la tendenza centrale di un campione è collegata direttamente al concetto di probabilità (che vedremo meglio nei prossimi capitoli): la moda di una popolazione è il valore della variabile con la la maggior probabilità di essere osservata

35 Questa distribuzione presenta una forte asimmetria a destra. La mediana ha valore 3 e la media 5.24, mentre la moda è uguale a 2.

36 Misure di dispersione Basate sulle differenze tra le singole osservazioni e la media (scarti dalla media) o Varianza o Deviazione standard o Coefficiente di variazione o Tutti i valori concorrono al calcolo di queste tre misure di dispersione (inclusi gli outliers) o L utilizzo di questi indici non è adatto allo studio della dispersione di variabili qualitative, Non basate sull elaborazione numerica dei dati o Range o Distanza interquartile.

37 La varianza La somma degli scarti della media è uguale a 0 o media degli scarti = 0 Se però ogni singolo scarto dalla media viene elevato al quadrato o La media degli scarti al quadrato, chiamata anche scarto quadratico medio, è la varianza. Varianza campionaria: s 2 = x i x ( ) 2 n 1,

38 La somma degli scarti quadratici al numeratore, chiamata devianza, può essere calcolata anche con le formule semplificate: Dev(X )= x i 2 ( x) 2 i n Infatti: 2 ( x i x ) ( ) = x i 2 + x 2 2x x i = x 2 i + n ( x i ) 2 2 n 2 x i n x i = x 2 i ( x i ) 2 n Così il calcolo (manuale) è più preciso. Perché? Attenzione però che concettualmente

39 Cosa c è di strano nel calcolo di s 2? o Dal punto di vista della statistica descrittiva potrei usare n al denominatore o Anche se fossero disponibili i dati riferiti a tutte le N unità campionarie della popolazione, allora σ 2 = ( x i µ ) 2 N Ma: o La varianza campionaria s 2, calcolata utilizzando n al denominatore è una stima distorta (una sottostima in questo caso) della varianza della popolazione σ 2 La media di un campione è imprecisa (non è uguale a µ) I valori tendono ad essere più vicini alla media campionaria di quanto non siano a µ Più il campione è piccolo, meno riesce a cogliere tutta la variabilità dei dati nella popolazione Tale distorsione (bias) si può correggere utilizzando il fattore n-1 a denominatore.

40 Nel caso di dati raggruppati in c classi di frequenza s 2 = c 1 n i ( x i x ) 2 n 1, Se poi i dati sono raccolti in classi corrispondenti ad un intervallo tra due valori, una stima di s 2 si può ottenere utilizzando la stessa espressione sostituendo x i con i valori centrali degli intervalli.

41 La deviazione standard L'unita di misura della varianza e l'unita di misura della deviazione standard La deviazione standard, s, indicata anche con l abbreviativo D.S. o DS, è data da: s=ds= s 2

42

43 Coefficiente di variazione E una sorta di deviazione standard rielaborata per evitare i cosiddetti effetti di scala. Esempio: Deviazione standard nella lunghezza del corpo dei maschi di Gambusia holbrooki (un piccolo pesce d acqua dolce) é uguale a 3.2 mm Deviazione standard nella lunghezza dei maschi territoriali di Zosterisessor ophiocephalus (il gò, un ghiozzo di laguna) sia pari 10.6 mm. I maschi di Gambusia sono meno variabili dei maschi di gò, ossia i maschi di Gambusia si assomigliano tra loro (per la lunghezza) più di quanto facciano quelli di gò? Forse la maggiore dispersione indicata dalla deviazione standard è solo un effetto della diversa dimensione media di queste due specie o Per esempio, la differenza nella lunghezza del femore tra due persone è senza dubbio di molte volte maggiore della differenza nella lunghezza della zampa di due maggiolini.

44 Quando cioè si vuole confrontare la dispersione tra variabili con medie molto diverse, si ricorre al CV CV= s x 100 Il coefficiente di variazione è dimensionale o Esempio: Siamo interessati a sapere se nel ghiro è più variabile la lunghezza della coda oppure la durata del letargo (variabili con unità di misura diverse) Nell esempio dei pesci, assumendo una lunghezza media di 29 mm per i maschi di gambusia e di 181 mm per i maschi di gò: CV(Gambusia) = 11% CV(gò) = 6 %, Un risultato di questo tipo suggerisce una conclusione molto diversa da quella basata sulla deviazione standard: la variabilità nelle dimensioni corporee è quasi doppia nei maschi di Gambusia rispetto a quelli di gò.

45 Il range Range = valore massimo valore minimo Descrizione molto rozza della dispersione dei dati o si basa solamente sui due valori estremi (ed è quindi altamente influenzata da questi) e non considera assolutamente la quale sia le distribuzione di frequenza dei dati tra essi.

46 La distanza interquartile Cosa sono i quartili? o Imparentati con la mediana, solo che invece di separare l insieme dei dati ordinati in due gruppi lo separano il quattro o Ogni gruppo contiene il 25% delle osservazioni: il primo quartile, Q 1, è il valore che separa il primo 25% delle osservazioni ordinate dal restante 75%, il secondo è la mediana, e il terzo quartile, Q 3, è il valore che separa il primo 75% delle osservazioni dal restante 25%. La distanza interquartile è data dalla differenza Q 3 -Q 1, e identifica quindi l intervallo centrale della distribuzione di frequenza all interno del quale cade il 50% delle osservazioni. E una misura della dispersione dei dati che non risente di eventuali valori estremi molto diversi dalla gran parte degli altri, e può essere calcolata anche quando i valori estremi sono fuori scala. L identificazione dei quartili non è banale quando il numero di osservazioni non è elevato o Cerco la mediana delle due metà dei dati

47 Risultati per dati prima autoamputazione: Mediana: 2.90; primo quartile: 2.34; terzo quartile: 3.045; distanza interquartile: 0.705

48 Diagramma Box-and-Whiskers (scatola e baffi) o Mediana, primo e terzo quartile, range (+ a volte valori estremi, cioè valori a una distanza dalla scatola superiore a 1.5 volte la distanza interquartile)

49 ESEMPI Fare la tabella di frequenza, l istogramma, e discutere la forma dell istogramma

50

51 Classi con ampiezze diverse. E corretto?

52 Distribuzione di frequenza e distribuzione di densità o Classi di ampiezza diversa La corretta e fedele rappresentazione della distribuzione dei dati è ottenuta quando l altezza di ogni rettangolo corrisponde non alla frequenza ma alla densità media dei valori all interno della classe corrispondente. E invece l area dei rettangoli a contenere l informazione relativa alla frequenza. Questa distinzione è teoricamente importante, anche se non sempre rilevante da un punto di vista pratico.

53 Qual è la tabella più appropriata per rappresentare i dati?

54 Che varaibile è rappresentata nei due istogrammi? Che variabile distingue i due istogrammi? Che grafico è rappresentato? Cosa suggeriscono i grafici?

55 Che tipo di grafico? Che tipo di associazione?

56 Numero di ondulazioni per secondo in serpenti che planano Calcolare media, varianza, deviazione standard, CV, mediana, distanza interquartile Relazione con distribuzione di frequenza se la distribuzione è normale

57 Che tipo di diagrammi? Che tipo di variabile nei due istogrammi? C e una variabile esplicativa e una risposta? Quali sono? In cosa differeriscono i due diagrammi? Conclusioni

58 Calcolare il numero medio di ore dopo la morte fino al rigor mortis. Calcolare la deviazione standard. Calcolare la mediana. Perché minore della media?

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

DIAPOSITIVE DI. BIOSTATISTICA (6 crediti, nuovo ordinamento) FONDAMENTI DI BIOMETRIA CON LABORATORIO (9 crediti, vecchio ordinamento)

DIAPOSITIVE DI. BIOSTATISTICA (6 crediti, nuovo ordinamento) FONDAMENTI DI BIOMETRIA CON LABORATORIO (9 crediti, vecchio ordinamento) Anno Accademico 2009-2010 Università degli Studi di Ferrara Corso di Laurea Triennale in Scienze Biologiche DIAPOSITIVE DI BIOSTATISTICA (6 crediti, nuovo ordinamento) FONDAMENTI DI BIOMETRIA CON LABORATORIO

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 LEZIONE ELEMENTI DI STATISTICA DESCRITTIVA PROF. CRISTIAN SIMONI Indice 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 1.1. Popolazione --------------------------------------------------------------------------------------------

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI Tre punti importanti o Dati e ipotesi In tutte le discipline scientifiche che studiano gli organismi viventi, molto raramente i dati ottenuti attraverso

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA Metodi Statistici e Probabilistici per l Ingegneria ELEMENTI DI STATISTICA DESCRITTIVA Corso di Laurea in Ingegneria Civile Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain E-mail:

Dettagli

Analisi dei dati. Statistica descrittiva

Analisi dei dati. Statistica descrittiva Analisi dei dati DATI GREZZI SINTESI DELLE OSSERVAZIONI ELABORAZIONE DATI Statistica descrittiva Si occupa dell analisi di un certo fenomeno relativo a un certo gruppo di soggetti (popolazione) sulla base

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Valori medi e misure della tendenza centrale

Valori medi e misure della tendenza centrale TERZA UNITA Valori medi e misure della tendenza centrale Una delle maggiori cause di confusione presso l uomo della strada nonché di diffidenza verso la statistica, considerata più un arte che una scienza,

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Statistica. Le rappresentazioni grafiche

Statistica. Le rappresentazioni grafiche Statistica Le rappresentazioni grafiche Introduzione Le rappresentazioni grafiche costituiscono uno dei mezzi più efficaci, sia per descrivere in forma visiva i risultati di numerose osservazioni riguardanti

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

ALLEGATO D ANALISI STATISTICA DEI DATI METEOROLOGICI

ALLEGATO D ANALISI STATISTICA DEI DATI METEOROLOGICI PROVINCIA AUTONOMA DI TRENTO AGENZIA PROVINCIALE PER LA PROTEZIONE DELL'AMBIENTE U.O. Tutela dell aria ed agenti fisici PIANO PROVINCIALE DI TUTELA DELLA QUALITÀ DELL ARIA ALLEGATO D ANALISI STATISTICA

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Elementi di statistica

Elementi di statistica Elementi di statistica Summer School: Data journalism e visualizzazione grafica dei dati! Flavon - 30 Agosto 2011! La statistica! Chi vi sta parlando? 2 La statistica! Chi vi sta parlando?! Cos è la Statistica?

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone Lezione 1- Introduzione Cattedra di Biostatistica Dipartimento di Scienze sperimentali e cliniche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Statistica medica e Biometria

Dettagli

Introduzione alla statistica descrittiva

Introduzione alla statistica descrittiva Dipartimento di Statistica Regione Toscana Comune di Firenze Progetto di diffusione della cultura Statistica Introduzione alla statistica descrittiva Carla Rampichini Dipartimento di Statistica G. Parenti

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI (sintesi da Prof.ssa Di Nardo, Università della Basilicata, http://www.unibas.it/utenti/dinardo/home.html) ISTOGRAMMA/DIAGRAMMA

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

INVALSI English Language Test

INVALSI English Language Test INVALSI English Language Test Rapporto scuola Scuola secondaria di primo grado Settembrini - Roma Pretest 2012 APPENDICE 1. Risultati dei singoli studenti Introduzione Questo rapporto presenta i risultati

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

PROGRAMMA FT-Graph-2

PROGRAMMA FT-Graph-2 PROGRAMMA FT-Graph-2 PROGRAMMA DI SVILUPPO GRAFICO CON STAMPA Elaborazione grafica con selezione dei dati. Si possono graficare e stampare tutti i file relativi alle apparecchiature della ECONORMA S.a.s.

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati.

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati. Indice 1 Descriviamo i Dati 1 1.1 L Informazione in Statistica................... 1 1.2 Variabili Qualitative....................... 5 1.2.1 Distribuzioni di Frequenza................ 5 1.2.2 Rappresentazioni

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it TRATTAMENTI PRELIMINARI DEI DATI Pulizia dei dati (data cleaning) = processo capace di garantire, con una certa soglia

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

C) DIAGRAMMA A SETTORI

C) DIAGRAMMA A SETTORI C) DIAGRAMMA A SETTORI Procedura: Determinare la percentuale per ciascuna categoria Convertire i valori percentuali in gradi d angolo Disegnare un cerchio e tracciare i settori Contrassegnare i settori

Dettagli