PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)"

Transcript

1 PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni)

2 La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità propria dei fenomeni reali raramente può essere colta attraverso la conduzione di singole analisi monodimensionali che ignorerebbero la struttura di correlazione e di interdipendenza tra le variabili. Queste considerazioni hanno condotto, nella seconda parte di questo libretto, alla definizione delle misure di connessione e di dipendenza tra variabili e alla costruzione di modelli funzionali volti alla comprensione delle cause di variabilità di una predeterminata variabile d interesse, detta variabile dipendente. L analisi statistica multivariata è un insieme di metodologie volte all analisi simultanea delle interrelazioni tra numerose variabili tra esse correlate. In Tabella II.. sono indicati i risultati grezzi delle rilevazione su 30 soggetti di due variabili, la statura e il peso corporeo, tra loro correlate. Accanto a queste, il ricercatore avrebbe potuto avere interesse a rilevare altre variabili quali, ad esempio, il genere o la regione di provenienza. L insieme delle misure o caratteristiche osservate dà luogo ad un insieme di dati (dataset), rappresentato nella sua forma generica in Tabella III.., nel quale ogni riga rappresenta una delle unità statistiche (dette anche casi) e ogni colonna le rilevazioni di una specifica delle V variabili per ciascun caso. Tabella III... Forma generale dei dataset V V... V V Caso v v v V Caso v v v V Caso 3 v 3 v 3 v 3V Caso v v... v V * A cura di Enrico di Bella.

3 4 Statistica descrittiva multidimensionale La struttura dei dati di Tabella III.. è quella tipicamente utilizzata dai fogli elettronici (Excel, Lotus --3, StarOffice Calc) e dai maggiori pacchetti statistici a interfaccia grafica (S-Plus, SPSS, Statistica, Minitab). Quando la dimensionalità del fenomeno oggetto di studio diviene elevata, all usuale notazione scalare, che richiede l attenta indicazione di apici e pedici per distinguere casi e variabili, viene spesso preferita una più agevole notazione matriciale per la quale ogni singolo caso è un punto nello spazio V-dimensionale. ella Tabella III.. sono riportate le lunghezze L dei salti che sei ragazzi, di statura S e peso P, hanno effettuato in una gara di atletica. Tabella III... Risultati grezzi della misurazione della lunghezza (in cm) L del salto effettuato da sei atleti di peso corporeo (in Kg) P e statura (in cm) S Ragazzi L P S La matrice dei dati, in genere indicata con X, si compone dei vettori colonna L, P e S, o, equivalentemente, dei vettori riga r i (i =,..., 6) rappresentanti i sei ragazzi: L =, P =, S =, r = r = r3 = r4 = r5 = r = 6 ( ) ( ) ( ) ( ) ( ) ( ) Risulta, quindi:

4 La notazione matriciale X = III... Richiami di calcolo matriciale Si ritiene opportuno richiamare brevemente alcune definizioni e proprietà delle matrici sebbene già note allo studente da precedenti corsi di matematica generale. Definizione III... (Matrice) Si definisce matrice p q un insieme A di pq elementi disposti in p righe e q colonne e si indica con a ij il valore dell i-ma riga e j-ma colonna. a a... a q a a... M A = M M O M ap ap... a pq Se A è una matrice p p, è detta quadrata di ordine p e i suoi elementi a ii (i =,,..., p) compongono la diagonale principale. Definizione III... (Vettore) Si definisce vettore una matrice A p (vettore colonna) o q (vettore riga). Definizione III..3. (Matrice diagonale) Una matrice quadrata A viene definita diagonale se i valori al di fuori della diagonale principale sono tutti nulli (a ij = 0, per i j).

5 6 Statistica descrittiva multidimensionale a a... M A = M M O M a pp Definizione III..4. (Matrice identità) Si definisce matrice identità I una matrice diagonale i cui valori non nulli sono tutti pari a uno (a ii =, per i =,,..., p) M A = M M O M Definizione III..5. (Matrice trasposta) La trasposta A di A è la matrice q p ottenuta commutando le righe con le colonne di A: Risulta, quindi: a ' ij = a i p, j q ji a a... a q a a... ap a a... aq a a... ap A= A' = M M O M M M O M a a... a a a... a p p pq q q pq Definizione III..6. (Matrice unità e matrice nulla) Si definisce matrice unità U p q la matrice p q i cui valori sono tutti pari a uno (a ij = i, j =,,..., p). Si definisce matrice nulla 0 p q la matrice p q i cui valori sono tutti pari a zero (a ij = 0 i, j =,,..., p). In particolare, se q =, si definiscono il vettore unità p e il vettore nullo 0 p. Definizione III..7. (Vettore delle frequenze) Si definisce vettore f delle frequenze il vettore colonna il valore del cui generico elemento f i corrisponde alle frequenze associate al vettore corrispondente alla i-ma riga della matrice A, matrice dei dati privata delle righe identiche. Se ciascuna modalità in cui il fenomeno si è espresso è unica, il vettore f coincide con p.

6 La notazione matriciale 7 Ad esempio, essendo X la matrice dei dati, risulta: X =, A = 3, 6 3 f = In presenza di fenomeni ad alta dimensionalità, è possibile ma raro che due o più righe della matrice X dei dati siano identiche. Per questa ragione frequentemente non si procede alla riorganizzazione dei dati in frequenze delle modalità osservate col risultato che A X e f p. Definizione III..8. (Traccia di una matrice) Si definisce traccia tr(a) di una matrice A quadrata di ordine p la somma degli elementi della diagonale principale: p tr( A ) = aii Definizione III..9. (Somma e differenza di matrici) Due matrici A e B possono essere sommate o sottratte solamente se hanno lo stesso numero p di righe e q di colonne. La matrice somma C = A + B di due matrici p q si ottiene sommando i valori di medesima posizione: i= c ij = a ij + b ij i p, j q Ad esempio: = = In modo analogo si ottiene la matrice differenza D = A B. Si noti che: A + B = B + A A + (B + C) = (A + B) + C Definizione III..0. (Prodotto di uno scalare per una matrice) Il prodotto di una matrice A p q e uno scalare (o numero reale) k risulta B = ka = Ak con b ij = ka ij per i p, j q.

7 8 Statistica descrittiva multidimensionale Definizione III... (Prodotto di matrici) La matrice C p r, prodotto di una matrice A p q e una matrice B q r, ha come elemento c ij ( i p, j r) la somma dei prodotti degli elementi della i-ma riga di A per gli elementi della j-ma colonna di B: Ad esempio: c ij = a i b j + a i b j a iq b qj = = = Si noti che: A(BC) = (AB)C A(B ± C) = AB ± AC AI = A (AB) = B A Definizione III... (Prodotto e divisione elemento per elemento) Date due matrici A e B p r si definisce matrice prodotto elemento per elemento la matrice C = A B p r, avente come generico elemento c ij = a ij b ij ( i p, j r). Analogamente si determina la matrice divisione elemento per elemento C = A B p r, avente come generico elemento c ij = a ij / b ij ( i p, j r). Ad esempio: q k = = /5 /6 = /7 4/8 Definizione III..3. (Determinante) Si definisce determinante di una matrice A quadrata di ordine p la somma algebrica di n! prodotti ognuno costituito da elementi appartenenti a righe e colonne diverse e con il segno più o meno a seconda che il numero r di permutazioni dei secondi indici, dopo aver ordinato gli elementi del prodotto in base al primo indice, sia pari o dispari: n! i= n i= ab r det( A) = A = ( ) a (III..) ir i ik kj

8 La notazione matriciale 9 ei casi più semplici, risulta: p =, A = (a ), a a p =, A =, a a det(a) = a p = 3, det(a) = a a a a a a a3 A = a a a3, si ottiene la regola di Sarrus, a3 a3 a 33 det(a) = a a a 33 + a a 3 a 3 + a 3 a a 3 a 3 a a 3 a a a 33 a a 3 a 3 Definizione III..4. (Matrice inversa ) Sia A una matrice quadrata con determinante non nullo, qualsiasi matrice A tale per cui A A = A A = I è detta inversa di A. La determinazione dell inversa di una matrice può essere un processo laborioso. Tuttavia qualsiasi software matematico-statistico ha una funzione predefinita per il calcolo rapido ed esatto delle matrici inverse. Definizione III..5. (Combinazioni lineari di vettori) Considerati v vettori di ordine p x, x,..., x v e v numeri reali k, k,..., k v, si definisce combinazione lineare dei v vettori la quantità k x + k x k v x v. Ad esempio, ricordando le definizioni III.., III..9 e III..0: = + = Definizione III..6. (Dipendenza e indipendenza lineare) Se un vettore è e- sprimibile come combinazione lineare di v vettori è detto linearmente dipendente da essi. Al contrario, se non esistono numeri reali tali per cui un vettore possa essere espresso come combinazione lineare dei v vettori è detto linearmente indipendente da essi. Per verificare la presenza o assenza di dipendenza Poiché le matrici delle quali sarà necessario, nel prosieguo, determinare l inversa saranno tutte matrici quadrate, per l inversione di matrici non quadrate si rimanda il lettore a testi specifici sull algebra delle matrici. Tra gli altri: Barabesi L., Fattorino L. (00) Introduzione all algebra delle matrici, Giuffrè.

9 0 Statistica descrittiva multidimensionale lineare si valuta l esistenza di valori reali k, k,..., k v non nulli tali per cui: k x + k x k v x v = 0 p. Definizione III..7. (Rango di una matrice) Il rango Rank(A), o caratteristica, di una matrice A p q è il numero massimo di righe o colonne linearmente indipendenti. Ad esempio, dalle due matrici X e Y: X=, Y = è possibile estrarre i seguenti vettori colonna: x =, = =, = 3 x 4 y y 4 Si può verificare che, non esistendo costanti non nulle k e k tali per cui: k x + k x = 0 x e x sono linearmente indipendenti e la matrice X ha rango pari a, mentre k y + k y = 0 per ogni coppia di valori proporzionale a k = e k =. Conseguentemente y e y sono linearmente dipendenti e la matrice Y ha rango pari a. elle applicazioni statistiche si hanno matrici di dati n p essendo n il numero di unità statistiche osservate e p il numero di variabili rilevate. In genere il numero di osservazioni è maggiore del numero di variabili studiate e quindi il rango della matrice dei dati è inferiore o pari a p. Se il rango fosse inferiore a p, ad esempio pari a p, si potrebbe esprimere una delle variabili oggetto di studio come funzione lineare delle altre p. Questa situazione, se riferita, ad e- sempio, a variabili esplicative di un modello di regressione multivariata può generare taluni problemi nell individuazione dei parametri del modello in quanto equivale a una inconsapevole duplicazione di alcune di queste variabili. III..3. Una notazione compatta Come precedentemente accennato, la notazione matriciale permette di esprimere in forma compatta tutte le formule sino ad ora utilizzate. ella trattazione

10 La notazione matriciale che segue, per semplicità, si opererà in ipotesi di assenza di riorganizzazione dei dati in serie statistica (cfr. Definizioni I.. e III..7). Sia X una matrice di dati composta da righe (cioè osservazioni) e V colonne (e quindi variabili). La media aritmetica delle V variabili di X è espressa dalla quantità: μ X = X ' (III..) el caso in cui V = risulta, infatti: X ' = ( x x... x ) = ( x + x x ) = x = i M i Quando V è maggiore di uno, la (III..) è un vettore riga di ordine V il cui i- mo generico elemento è la media della variabile corrispondente alla i-ma colonna di X. Ad esempio: X= X' = Richiamando la I.3., si definisce varianza il risultato dell operazione di e- levazione a quadrato della media quadratica delle distanze intercorrenti tra le singole misurazioni e la loro media aritmetica. La notazione matriciale permette di estendere tale definizione nel modo seguente: Definizione III..8. (Matrice delle covarianze) Data una matrice X di dati composta da righe (casi) e v colonne (variabili), si definisce matrice delle varianze e covarianze (o, più semplicemente, matrice delle covarianze) la matrice: VX = ( X X' ) '( X X' ). Gli elementi di posizione v ij rappresentano la covarianza esistente tra l i-ma

11 Statistica descrittiva multidimensionale e la j-ma variabile. In particolare, per j = i, si ottiene la varianza della i-ma variabile. Ricorrendo alla (I.3.5) la matrice delle covarianze può essere determinata ricorrendo alla seguente scomposizione: VX = X' IX X' U X Le matrici I e U associano a ciascuna modalità una sola frequenza. Una loro opportuna modifica consente di operare su dati riorganizzati in serie statistica. Risulta, quindi, che la varianza è espressa dalla quantità: essendo: I U VX = X' = ' X X SX L I U K S = = M M O M K Qualora le variabili fossero espresse come singoli vettori colonna di dati di medesima lunghezza, ad esempio X e Y, ricordando la II.4.5 la misura della covarianza risulta: = μ μx μy = XI ' Y XU ' ' Y = XSY L individuazione dell espressione matriciale di medie, varianze e covarianze di due o più variabili permette, tramite semplice sostituzione, la riscrittura in tale forma di altre rilevanti quantità, quali, ad esempio: il coefficiente di correlazione lineare tra X e Y: ρ = = X Y XSY ' ( XSX ' ) ( YSY ' ) Si noti che l operatore radice quadrata a denominatore si applica a uno scalare e quindi non è un operazione in senso matriciale.

12 La notazione matriciale 3 il rapporto di correlazione lineare: ρ XSY = = ( XSX ' ) ( YSY ' ) ' Anche in questo caso, l elevamento a quadrato viene effettuato su uno scalare e quindi non comporta alcuna difficoltà di calcolo. i coefficienti della retta di regressione X * Y = a+ bx : T XSY ' a = μy μ ' X = Y X X XSX '. XSY ' b = = XSX ' la varianza spiegata e residua dalla retta di regressione Y = ρy = = X ( XSY ' ) XSX ' * Y = Y Y = YSY ' ( XSY ' ) XSX '. * Y = a+ bx : * i coefficienti del modello multivariato lineare Y = a+ bx +cz essendo: a = μ μ μ Z XZ YZ X YZ XZ Y X Z XZ XZ XZ XZ b= = Z XZ YZ X YZ XZ, c XZ XZ XZ XZ μy = Y ', μx = X ', μz = Z ' = XSY ', XZ = XSZ ', YZ = YSZ ' X = XSX ', Z = ZSZ ' el prossimi paragrafi i medesimi risultati, in forma più generale ed elegante, saranno ottenuti direttamente dalla forma matriciale. XZ

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Sistemi di forze: calcolo grafico

Sistemi di forze: calcolo grafico UNTÀ D3 Sistemi di forze: calcolo grafico TEOA Uso del CAD nei procedimenti grafici 2 appresentazione grafica dei vettori 3 Poligono delle forze 4 Poligono delle successive risultanti 5 Poligono funicolare

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

Studiare argomenti trattati. Esercizi 3, 5 e 6 pag.169 2/2 MARTEDÌ LAB - studio del moto rettilineo uniforme mediante rotaia a cuscino d aria.

Studiare argomenti trattati. Esercizi 3, 5 e 6 pag.169 2/2 MARTEDÌ LAB - studio del moto rettilineo uniforme mediante rotaia a cuscino d aria. Data giorno Attività svolte Compiti assegnati 2/3 MARTEDÌ LAB - filmato Tempo e orologi e questionario di comprensione in classe sul filmato visto. 25/2 GIOVEDÌ Esercizi. Es. 40 e 41 pag.196 24/2 MERCOLEDÌ

Dettagli

Pre Test 2008... Matematica

Pre Test 2008... Matematica Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri

Dettagli

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali)

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali) RICERCHE DI MERCATO 5.6 Analisi Fattoriale (Componenti Principali) Prof. L. Neri Dip. di Economia Politica Premessa Come evidenziato in precedenza l approccio di segmentazione per omogeneità prevede la

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Bilancio Bilancio consolidato

Bilancio Bilancio consolidato Bilancio Bilancio consolidato Un metodo di calcolo per muoversi nel labirinto delle partecipazioni di Amedeo De Luca (*) In questo contributo si fonisce un metodo di calcolo dei tassi di partecipazione

Dettagli

Lezioni di Econometria. Gianni Amisano

Lezioni di Econometria. Gianni Amisano Lezioni di Econometria Gianni Amisano Febbraio 1999 2 Premessa Queste note, che costituiscono il materiale di riferimento per gli studenti del corso di econometria attivato presso la Facoltà di Economia

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

MATLAB (1) Introduzione e Operazioni con array

MATLAB (1) Introduzione e Operazioni con array Laboratorio di Informatica per Ingegneria elettrica A.A. 2010/2011 Prof. Sergio Scippacercola MATLAB (1) Introduzione e Operazioni con array N.B. le slide devono essere utilizzate solo come riferimento

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

STIMARE valori ed eseguire ANALISI DI REGRESSIONE

STIMARE valori ed eseguire ANALISI DI REGRESSIONE STIMARE valori ed eseguire ANALISI DI REGRESSIONE È possibile impostare una serie di valori che seguono una tendenza lineare semplice oppure una tendenza con crescita esponenziale. I valori stimati vengono

Dettagli

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI EEMENTI TRIANGOARI E TETRAEDRICI A ATI DIRITTI Nella ricerca di unificazione delle problematiche in vista di una generalizzazione delle procedure di sviluppo di elementi finiti, gioca un ruolo importante

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli