Cooperazione di Agenti Informatici Corso di Laurea Specialistica in Informatica A.A. 2008/09 Prof. Alberto Postiglione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cooperazione di Agenti Informatici Corso di Laurea Specialistica in Informatica A.A. 2008/09 Prof. Alberto Postiglione"

Transcript

1 ooperazione di genti Informatici orso di Laurea Specialistica in Informatica /09 Prof. lberto Postiglione UD.2: Esempi di Giochi Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 ibliografia e Sitografia 06/04/2009 Dia 2 Lucchetti, Roberto Di duelli, scacchi e dilemmi. La teoria matematica dei giochi. runo Modadori Editore, 200 Pagine 25 Lucchetti, Roberto TEORI DEI GIOHI: una scienza bambina. (http:// /archivio/teoriagiochi.htm) Da Matematica, rivista online del gruppo di ricerca PRISTEM - Eleusi dell Università occoni di Milano. M. Guidotti Teoria dei giochi breve introduzione (http://www.galenotech.org/strategie.htm)

2 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 ibliografia e Sitografia 06/04/2009 Dia 3 F. elotti e G. Gambarelli Sistemi elettorali e Teoria dei Giochi (http://matematica.unibocconi.it/archivio/sistemielettorali.htm# ) Da Matematica, rivista online del gruppo di ricerca PRISTEM - Eleusi dell Università occoni di Milano. Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 GIOHI NON OOPERTIVI Vediamo adesso alcuni esempi di Giochi NON OOPERTIVI 06/04/2009 Dia 4 I giocatori non cooperano tra di loro (semplicemente perché non sono interessati a farlo) La teoria dei giochi è nata descrivendo giochi in cui si formano coalizioni (giochi cooperativi) Nash ha poi dato sviluppo al ramo dei Giochi Non ooperativi 2

3 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio : Test scolastico In Italia la valutazione di un compito è assoluta 06/04/2009 Dia 5 Negli US è relativa : il professore assegna Il voto massimo (m) al compito migliore Il voto minimo (p) al compito peggiore Divide poi l intervallo (p,m) in varie parti e assegna ad ogni studente un voto in base a questa scala di valutazione Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio : Test scolastico 06/04/2009 Dia 6 Il sistema adottato negli US tende a scoraggiare gli accordi tra studenti E se gli studenti si accordassero nel rispondere tutti allo stesso numero di domande? Il professore potrebbe assegnare a tutti il voto minimo Senza considerare la presenza di studenti carogna! iutare un collega può significare che il mio compito verrà valutato peggio del suo 3

4 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 7 Esempio : Test scolastico (metodo italiano) Il professore propone un test di 30 domande a una classe di 5 allievi Il suo criterio di valutazione è il seguente: Risposte esatte Voto Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 8 Esempio : Test scolastico (metodo italiano) Ogni studente può studiare Molto (M) bbastanza () Poco (P) Quanto si è disposti a perdere sul voto studiando di meno? Per calcolare il suo grado di soddisfazione sul risultato del test, ogni studente decide di applicare al suo voto un coefficiente k, riportato nella seguente tabella Livello di studio Molto bbastanza Poco oefficiente /2 2/3 4

5 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 9 Esempio : Test scolastico (metodo italiano) Si consideri infine il numero di risposte (e il voto relativo) alle quali ogni studente è in grado di rispondere in base al suo livello di impegno nello studio: Livello di studio Studente Marta Franco Luigi Maria Roberto Molto Domande Voto bbastanza Domande Voto Poco Domande Voto Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 0 Esempio : Test scolastico (metodo italiano) Marta deve cercare il massimo tra (/2*0, 2/3*9, *8), cioè il massimo tra (5, 6, 8) Per Marta studiare poco è più favorevole Maria deve cercare il massimo tra (/2*7, 2/3*4, *2), cioè il massimo tra (3.5, 2.66, 2) Per Maria studiare molto è più favorevole 5

6 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia Esempio : Test scolastico (metodo US) Siano p ed m i risultati peggiori e migliori (cioè il numero minimo e massimo di risposte corrette). La valutazione del compito viene così stabilita (prova con m=0 e p=0): Risposte esatte /0(9m+p) risposte esatte m /0(8m+2p) risposte esatte < /0(9m+p) /0(7m+3p) risposte esatte < /0(8m+2p) /0(6m+4p) risposte esatte < /0(7m+3p) /0(5m+5p) risposte esatte < /0(6m+4p) /0(4m+6p) risposte esatte < /0(5m+5p) /0(3m+7p) risposte esatte < /0(3m+6p) /0(2m+8p) risposte esatte < /0(2m+7p) /0(m+9p) risposte esatte < /0(m+8p) p risposte esatte < /0(m+9p) Voto Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 2 Esempio : Test scolastico (metodo US) Il professore ha diviso l intervallo (p,m) in 0 parti uguali, assegnando 0 al risultato che cade nell intervallo più a destra e a quello che cade nell intervallo più a sinistra Studente Molto Marta 30 Franco 26 Luigi 24 Maria 9 Roberto 6 Livello di studio bbastanza Poco Marta sa che impegnandosi bbastanza riuscirebbe comunque ad ottenere il massimo (26 domande) che può essere ottenuto solo da Franco se si impegnasse Molto. 6

7 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 3 Esempio : Test scolastico (metodo US) E se Marta si impegnasse Poco? In quali condizioni riuscirebbe a raggiungere comunque il massimo? Sarebbe sufficiente che Franco non si impegnasse Molto Oppure che il peggiore studente non rispondesse a più di 5 domande. Infatti in questo case il numero di domande a cui risponderebbe Marta in caso di Poco studio (24) cadrebbe sempre nel primo intervallo (in cui può al più esserci 26). Per calcolare matematicamente il valore di p basta impostare la diseguaglianza /0(9m+p) < 24 on m=26. Quindi /0(234+p)<24. Per cui p< Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 2: il gioco dei fiammiferi 06/04/2009 Dia 4 Stato iniziale: 2 mucchietti di 2 fiammiferi ciascuno Evoluzione: 2 giocatori, a turno, levano o 2 fiammiferi da un solo mucchietto Stato finale: Nessun fiammifero rimanente Risultato: chi toglie l ultimo perde. 7

8 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 2: il gioco dei fiammiferi 06/04/2009 Dia 5 GIOO FINITO Ogni giocatore ha a disposizione un numero finito di mosse Il gioco si conclude dopo un numero finito di mosse INFORMZIONE PERFETT. Infatti entrambi i giocatori conoscono tutta la storia passata, le possibili evoluzioni future e nessuna mossa è segreta per alcuno Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 2: il gioco dei fiammiferi <<INSERIRE LERO DEL GIOO>> 06/04/2009 Dia 6 8

9 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 3: Roulette Russa 06/04/2009 Dia 7 Stato iniziale: 2 giocatori e una rivoltella a sei colpi, con un colpo solo nel tamburo. Evoluzione: ogni giocatore mette euro nel piatto. Se il giocatore passa, mette euro nel piatto, altrimenti ne aggiunge e preme il grilletto. Se sopravvive allo sparo, rigira il tamburo e passa la pistola al secondo. Risultato: se entrambi sono vivi, si dividono il piatto; se sono morti il piatto è perso; se (solo) uno sopravvive, il piatto è suo. Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 3: Roulette Russa 06/04/2009 Dia 8 La struttura ad albero del gioco è descritta nella figura seguente, dove in ogni situazione finale è riportato il corrispondente guadagno del primo giocatore. Mossa del primo giocatore Mossa del secondo giocatore Si noti che in questo gioco ogni giocatore fa una sola mossa. Il grafo sarebbe molto più complesso per giochi con un grande numero di mosse Per curiosità: converrebbe sparare ad entrambi 9

10 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 3: Roulette Russa 06/04/2009 Dia 9 In questo caso oltre alla vincita del gioco sono presenti anche delle vincite in danaro. Il gioco è detto a SOMM ZERO, in quanto ciò che perde uno lo vince l altro. Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 4: La Morra inese 06/04/2009 Dia 20 I giocatori operano una scelta simultanea tra 3 oggetti: RT SSSO FORII arta vince con Sasso ma perde con Forbici Sasso vince con Forbici ma perde con arta Forbici vince con arta ma perde con Sasso 0

11 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 4: La Morra inese 06/04/2009 Dia 2 Il gioco lo si rappresenta utilizzando un formato matriciale, la matrice dei pagamenti nella quale corrisponde a Vincita dell attore che gioca sulle righe, 0 corrisponde Pareggio, - corrisponde a perdita dell attore che gioca sulle righe La mossa del giocatore corrisponde alla scelta di una riga e quella del giocatore 2 corrisponde alla scelta di una colonna Giocatore 2 arta Sasso Forbici arta 0 - Giocatore Sasso - 0 Forbici - 0 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 4: La Morra inese 06/04/2009 Dia 22 Non esiste una scelta a-priori razionale che garantisca la vincita a un qualsiasi giocatore (come avveniva invece per il gioco dei fiammiferi) Non è possibile prevedere, cioè, una scelta razionale da parte dei due giocatori

12 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 4: La Morra inese 06/04/2009 Dia 23 In questo caso spesso intervengono altri fattori a guidare le mosse dei giocatori d esempio, se il primo giocatore non gioca mai Sasso, il secondo potrebbe accorgersene e non giocare mai arta e quindi garantirsi maggiori possibilità di vittoria (avrebbe a disposizione 2 casi favorevoli e solo sfavorevole su 4) Giocatore 2 arta Sasso Forbici arta 0 - Giocatore Sasso - 0 Forbici - 0 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 5: La battaglia dei Sessi 06/04/2009 Dia 24 Laura e Luigi decidono di passare la serata fuori casa Laura preferisce lo Stadio e Luigi preferisce il inema La matrice che rappresenta le preferenze potrebbe essere: Luigi inema Stadio Laura inema Stadio (5, 0) (-, -) (-, -) (0, 5) In questo caso esistono 2 soluzioni possibili che, per i giocatori, non sono equivalenti (come sarebbe per un generico problema di ottimo) Nella teoria dei giochi la presenza di più equilibri costituisce una difficoltà maggiore. 2

13 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 6: Una votazione 06/04/2009 Dia 25 3 uomini politici devono decidere come aumentare le entrate Le possibilità sono 3 Diminuire le spese (provvedimento ) umentare le tasse (provvedimento ) Indebitare lo stato (provvedimento ) Politico Paperone Paperino Topolino Preferenze (in ordine decrescente) Nel caso in cui non si trovi un accordo di maggioranza il provvedimento adottato sarà quello del presidente (Paperone) Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 6: Una votazione 06/04/2009 Dia 26 Per analizzare il gioco bisognerebbe costruire una matrice tridimensionale. Noi costruiremo 3 matrici bidimensionali Topolino sceglie Paperino Topolino sceglie Paperino Topolino sceglie Paperino Paperone Paperone Paperone 3

14 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 6: Una votazione 06/04/2009 Dia 27 onsiderazione numero : L assioma della razionalità impone a Paperone di votare per il provvedimento (quello di suo maggior gradimento), perché Se Paperino e Topolino votano entrambi per lo stesso provvedimento (, o ), il voto di Paperone è ininfluente Se Paperino e Topolino non votano entrambi per lo stesso provvedimento (, o ), il voto di Paperone è determinante Ipotizzando quindi che Paperone voti sempre per, ci siamo ricondotti ad una sola matrice Paperone sceglie Paperino Topolino Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 Esempio 6: Una votazione 06/04/2009 Dia 28 onsiderazione numero 2: (eliminazione di strategie dominate) Paperino e Topolino non voteranno per il provvedimento a loro più sgradito ( per Paperino e per Topolino), quindi la matrice si riduce ulteriormente alla seguente: Paperone sceglie Paperino Topolino hiaramente i due uomini politici si accorderanno su che entrambi preferiscono ad 4

15 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 GIOHI OOPERTIVI 06/04/2009 Dia 29 Vediamo adesso alcuni esempi di Giochi OOPERTIVI Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 30 Esempio 7: La suddivisione di una somma 3 fratelli (ldo, Giovanni e Giacomo) devono dividersi Euro, a condizione che si mettano d accordo (a maggioranza) Ogni possibile coppia di fratelli sarebbe vincente (rappresentando la maggioranza) 5

16 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 3 Esempio 7: La suddivisione di una somma ldo e Giovanni decidono inizialmente di dividersi a metà. Prima di concludere, Giacomo va da ldo e gli propone: ad ldo (che incasserebbe di più rispetto a ) a Giacomo ldo torna da Giovanni e gli propone: ad ldo (che incasserebbe di più rispetto a e 2) a Giovanni (meno rispetto a, ma di più rispetto a 2) Giovanni accetta perché altrimenti perderebbe tutto. Ma prima di procedere va da Giacomo e gli propone: a Giacomo a Giovanni E così via, all infinito Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 32 Esempio 7: La suddivisione di una somma (pproccio NON ooperativo) L unica soluzione possibile è che il padre si tenga la somma di danaro, perché i figli non hanno trovato l accordo. (pproccio ooperativo) In alternativa, il buon senso propone di suddividere la somma in 3 parti uguali. 6

17 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 33 Esempio 8: La suddivisione degli utili L esempio che segue spiega perché in alcune condizioni i piccoli partiti presenti in una coalizione ottengano molto di più di quanto la loro forza farebbe ipotizzare, mentre altri possono anche non ottenere nulla. Supponiamo che, all interno di una coalizione omogenea (es centrosinistra o centrodestra), i rapporti di forza siano i seguenti: Partito D Percentuale 0% 2% 30% 39% Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 34 Esempio 8: La suddivisione degli utili In questi casi si applica una tecnica (detta indice di Shapley) che porta alla seguente suddivisione delle poltrone ministeriali: Partito D Ministeri 0 /3 /3 /3 7

18 Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 35 Esempio 8: La suddivisione degli utili Perché questa soluzione è accettata (ci sono partiti che non ottengono nulla, altri che ottengono meno della loro forza e altri che ottengono di più)? Nella coalizione la presenza di non è mai determinante nel prendere le decisioni a maggioranza Ogni altro componente è invece determinante quando si associa ad un altro componente (purchè non sia ) La ripartizione non è moralmente equa, ma riflette il fatto che la presenza di nel prendere decisioni è superflua. Prof lberto Postiglione ooperazione di genti Informatici (08/09) UD.2 06/04/2009 Dia 36 Esempio 9: Sistemi Elettorali e Teoria dei Giochi 8

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi A. Agnetis Questi appunti presentano alcuni concetti introduttivi fondamentali di Teoria dei Giochi. Si tratta di appunti pensati per studenti di Ingegneria Gestionale

Dettagli

Le schede di Sapere anche poco è già cambiare

Le schede di Sapere anche poco è già cambiare Le schede di Sapere anche poco è già cambiare LE LISTE CIVETTA Premessa lo spirito della riforma elettorale del 1993 Con le leggi 276/1993 e 277/1993 si sono modificate in modo significativo le normative

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Anno 1413 Il nuovo re d'inghilterra, Enrico V di Lancaster persegue gli ambiziosi progetti di unificare l'inghilterra e di conquistare la corona

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile)

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D1. COSA SONO LE ALTRE ATTIVITÀ FORMATIVE? D2. COME SI OTTENGONO

Dettagli

Suggerimenti sulla distribuzione del montepremi nei tornei

Suggerimenti sulla distribuzione del montepremi nei tornei Suggerimenti sulla distribuzione del montepremi nei tornei Scopo del documento Questo documento si propone di fornire alcuni suggerimenti agli organizzatori sulla distribuzione del montepremi nei tornei.

Dettagli

STATUTO DELL ACCADEMIA NAZIONALE DEI LINCEI (*)

STATUTO DELL ACCADEMIA NAZIONALE DEI LINCEI (*) 1 STATUTO DELL ACCADEMIA NAZIONALE DEI LINCEI (*) I - Costituzione dell Accademia Articolo 1 1. L Accademia Nazionale dei Lincei, istituzione di alta cultura, con sede in Roma, ai sensi dell art. 33 della

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4 I SUSSIDI ALLE ESPORTAZIONI NELL AGRICOLTURA E NEI SETTORI AD ALTA TECNOLOGIA 10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

DECRETA. ART. 1 Caratteristiche del Master

DECRETA. ART. 1 Caratteristiche del Master Il Rettore Decreto Rep. n 2185 Prot. n 25890 Data 30.06.2014 Titolo III Classe V UOR SOFPL VISTO lo Statuto del Politecnico di Milano; VISTO il D.M. 3.11.1999, n.509; VISTO Il D.M. 22.10.2004, n. 270;

Dettagli

REGEL - Registro Docenti

REGEL - Registro Docenti REGEL - Registro Docenti INFORMAZIONI GENERALI Con il Registro Docenti online vengono compiute dai Docenti tutte le operazioni di registrazione delle attività quotidiane, le medesime che si eseguono sul

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007

Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007 Before the Wind By Torsten Landsvogt For 2-4 players, age 10+ Phalanx Games, 2007 IMPAGINAZIONE DELLE REGOLE 1.0 Introduzione 2.0 Contenuto del gioco 3.0 Preparazione 4.0 Come si gioca 5.0 Fine del gioco

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Regolamento Nazionale Specialità "POOL 8-15" ( Buche Strette )

Regolamento Nazionale Specialità POOL 8-15 ( Buche Strette ) Regolamento Nazionale Specialità "POOL 8-15" ( Buche Strette ) SCOPO DEL GIOCO : Questa specialità viene giocata con 15 bilie numerate, dalla n 1 alla n 15 e una bilia bianca (battente). Un giocatore dovrà

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Tesi per il Master Superformatori CNA

Tesi per il Master Superformatori CNA COME DAR VITA E FAR CRESCERE PICCOLE SOCIETA SPORTIVE di GIACOMO LEONETTI Scorrendo il titolo, due sono le parole chiave che saltano agli occhi: dar vita e far crescere. In questo mio intervento, voglio

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

conquista il mondo in pochi minuti!

conquista il mondo in pochi minuti! conquista il mondo in pochi minuti! Il gioco di conquista e sviluppo più veloce che c è! Il gioco si spiega in meno di 1 minuto e dura, per le prime partite, non più di quindici minuti. Mai nessuno ha

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

DECRETA. ART. 1 Caratteristiche del Master

DECRETA. ART. 1 Caratteristiche del Master Il Rettore Decreto Rep. n 1339 Prot. n 13549 Data 29.04.2014 Titolo III Classe V UOR SOFPL VISTO lo Statuto del Politecnico di Milano; VISTO il D.M. 3.11.1999, n.509; VISTO Il D.M. 22.10.2004, n. 270;

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

1 Il criterio Paretiano e la "Nuova economia del Benessere"

1 Il criterio Paretiano e la Nuova economia del Benessere 1 Il criterio Paretiano e la "Nuova economia del Benessere" 1.1 L aggregazione di preferenze ordinali inconfrontabili e il criterio di Pareto L aggregazione delle preferenze individuali è problematica

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Guida Studenti per i servizi online: compilazione dei questionari per la valutazione della didattica Iscrizione agli appelli

Guida Studenti per i servizi online: compilazione dei questionari per la valutazione della didattica Iscrizione agli appelli Guida Studenti per i servizi online: compilazione dei questionari per la valutazione della didattica Iscrizione agli appelli v 4.0 1. Requisiti software Lo studente deve essere dotato di connessione internet

Dettagli

QUICK GUIDE ESAMI DI STATO

QUICK GUIDE ESAMI DI STATO QUICK GUIDE ESAMI DI STATO Le operazioni da eseguire sono semplici e lineari, ma è opportuno ricordarne la corretta sequenza nella quale vanno eseguite. Flusso delle operazioni da eseguire: 1. Inserimento

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Aiutare i propri figli a orientarsi dopo la scuola superiore attraverso il coaching

Aiutare i propri figli a orientarsi dopo la scuola superiore attraverso il coaching Aiutare i propri figli a orientarsi dopo la scuola superiore attraverso il coaching Premessa Aiutare i figli a orientarsi alla fine del quinquennio della scuola superiore, o sostenerli nella scelta di

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Rapporti e Proporzioni

Rapporti e Proporzioni Rapporti e Proporzioni (a cura Prof.ssa R. Limiroli) Rapporto tra numeri Il rapporto diretto tra due numeri a e b, il secondo dei quali diverso da zero, si indica con Ricorda a e b sono i termini del rapporto

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

IL MINISTRO DELL UNIVERSITA E DELLA RICERCA

IL MINISTRO DELL UNIVERSITA E DELLA RICERCA ALLEGATO I parametri e i criteri, definiti mediante indicatori quali-quantitativi (nel seguito denominati Indicatori), per il monitoraggio e la valutazione (ex post) dei risultati dell attuazione dei programmi

Dettagli

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri Giovanna Mayer Nucleo: Numeri Introduzione Tematica: Si propongono attività e giochi per sviluppare in modo più consapevole la capacità di confrontare frazioni, confrontare numeri decimali e successivamente

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Un gioco da brividi per 8 24 giocatori, da 8 anni in su. Contenuto. (Prima della prima partita rimuovete con cura i segnalini dalle fustelle.

Un gioco da brividi per 8 24 giocatori, da 8 anni in su. Contenuto. (Prima della prima partita rimuovete con cura i segnalini dalle fustelle. Un gioco da brividi per 8 24 giocatori, da 8 anni in su Nello sperduto villaggio di Tabula, alcuni abitanti sono affetti da licantropia. Ogni notte diventano lupi mannari e, per placare i loro istinti,

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

I redditi 2011 dichiarati dai cittadini di Trieste

I redditi 2011 dichiarati dai cittadini di Trieste I redditi 2011 dichiarati dai cittadini di Trieste N.B. Tutti i dati presentati in questo studio sono stati elaborati dall ufficio statistica del Comune (dott.ssa Antonella Primi) per esigenze di conoscenza

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Il bilancio con dati a scelta. Classe V ITC

Il bilancio con dati a scelta. Classe V ITC Il bilancio con dati a scelta Classe V ITC Il metodo da seguire Premesso che per la costruzione di un bilancio con dati a scelta si possono seguire diversi metodi, tutti ugualmente validi, negli esempi

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

Classe e ordinamento del Corso di studio (es. classe L24 ordinamento 270/04 oppure classe 15 ordinamento 509/99)

Classe e ordinamento del Corso di studio (es. classe L24 ordinamento 270/04 oppure classe 15 ordinamento 509/99) Mod. 6322/triennale Marca da bollo da 16.00 euro Domanda di laurea Valida per la prova finale dei corsi di studio di primo livello Questo modulo va consegnato alla Segreteria amministrativa del Corso a

Dettagli

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse Cos è Excel Uno spreadsheet : un foglio elettronico è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse I dati contenuti nelle celle possono essere elaborati ponendo

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli