Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili"

Transcript

1 E u prodotto dell esperimeto Le variabili casuali/3 La variabile casuale è ua fuzioe che associa ad ogi eveto dell'uiverso degli eveti uo ed u solo umero reale. Esempio Si suppoga che che le segueti coppie di lettere siao equiprobabili L'itroduzioe della "X" semplifica l'uiverso degli eveti perché lo trasloca ell'asse reale Sia "X" la variabile casuale: X=umero di vocali ella coppia Variabile casuale a) Costruire la distribuzioe di probabilità b) Rappresetarla graficamete X = x i è u eveto a) La corrispodeza tra eveti e valori della X è uivoca, ma o ecessariamete biuivoca: u dato valore della X può derivare da eveti diversi

2 Esercizio U esperimeto saggia la praticabilità del gree di ua buca da golf co il tiro di 4 pallie. L esito è icerto, ma riteiamo che la probabilità di madare la pallia i buca sia del 70%. Idichiamo co Y= umero di pallie i buca. A) Quali soo gli eveti di iteresse? B) Quali probabilità soo associate ai valori della Y? ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0000,,, ; 000,,, ; 000,,, ; 00,,, ; 000,,, ; 00,,, ; 00,,, ; S = ( 0,,, )( 000,,, ); ( 00,,, );( 00,,, ); ( 0,,,);( 0,,, 0) ;( 0,,,); ( 0,,, );(,,,); a 4 a P[ ( xxxx,,, )]= ; dove a = umero di " " ella quatera Y { 034,,,, }; PY ( = y)= { , , , 0. 46, } Riflessioe Se l obiettivo dell esperimeto è lo studio della variabile casuale perché o cocetrarsi direttamete sulla sua fuzioe di distribuzioe (X, p)? Studio delle V.C. discrete Ua v.c. discreta è ota attraverso la sua distribuzioe di probabilità formata dai valori possibili e dalle probabilità loro associate Esperimeto Eveti che geerao il valore della X a Probabilità 0 frazioe (discreto) area (cotiuo b Valore (discreto) Valori (cotiuo) X Il miuscolo idica i valori possibili cioè Perchè le costituiscao delle probabilità è ecessario che: DISTRIBUZIONE DI PROBABILITA' I feomei soggetti alla sorte o ascoo co il loro bravo modello, ma occorre decifrarlo, se possibile, i u opportuo esperimeto. Dopo che ciò è avveuto e per tutti i casi ricoosciuti aaloghi si può adottare direttamete il modello di distribuzioe. Esempio Numero di teste i u lacio di tre moete equilibrate

3 Sitesi delle variabili casuali I particolare Si possoo ricodurre le v.c. a pochi parametri descrittivi delle caratteristiche pricipali: CENTRALITA - VARIABILITA - ASIMMETRIA Media aritmetica poderata (Valore atteso) EX ( )= xp i= i i già discusse per le rilevazioi empiriche. dove E sta per Expectatio cioè aspettativa, valore atteso Variaza L'idea è che il verificarsi più o meo probabile di certi eveti risulta legato ad aspetti compresibili e oti della variabile casuale. Simbologia e defiizioi o cambiao: si sostituiscoo le frequeze co le probabilità σ ( X) = xi pi µ i=

4 Esempio U modello assega le probabilità ai valori secodo la formula di seguito riportata e di cui è dato u esempio i figura per = Esercizio La autocarrozzeria RUG.PAL effettua 5 diverse categorie di iterveti ed ogi settimaa ripete lo stesso umero di iterveti per ogi categoria. pi ()= i per i = 0,,,, ; Gli icassi soo i segueti: a) Qual'è l'icasso atteso per ua settimaa qualsiasi? Calcolare il valore atteso i µ= i = = i= 0 b) Qual'è la variaza dell'icasso atteso? Esercizio Equità dei giochi Calcolare lo scarto quadratico medio se =0 Alcui feomei si maifestao co probabilità speculari rispetto al cetro. U modello che rispode a tale requisito è: p i = µ=0; σ=4.45 Qui si può adoperare il foglio elettroico ( ) i* i 6 ( )( ) ; i = 0,,,, U gioco d azzardo si dice EQUO se le poste dei giocatori soo proporzioali alle rispettive probabilità di vicita ESEMPIO: Nel lacio del dado l uscita sigola è data 5:. Per ua putata di 5, i caso di vicita dovrei icassare 30 (i miei 5 più 5 di vicita. Se perdo, il baco dovrebbe tratteere solo restituire 4 per compesare le sue maggiori probabilità: = = La speraza matematica E(G) è l importo certo che si è disposti a pagare per ricevere i cambio u importo aleatorio maggiore

5 Equità dei giochi/ Se p è la probabilità di vicere ua scommessa G i cui vi sia la promessa di vicere ua cifra x co probabilità p e di perdere y co probabilità (-p) l esito atteso è: E( G)= xp y( p)= xp y + yp = ( x + y) p y Perché il gioco sia equo si deve avere y x EG ( )= 0 ( x+ yp ) y = 0 p =, p x + y = x + y Ovvero: p x = y p Se perdo co probabilità/30, quado vico debbo icassare X = = = 9 Esempio Nella roulette americaa decidete di giocare $ Y sul ero co P(N)=8/38 e P(N c )=0/38 (i questo tipo di roulette ci soo lo 0 ed il 00 di colore verde). Se esce il ero ricevete Y (iclusivi della vostra putata). E u gioco equo? 0 X = 38 0 = = Se il gioco fosse equo putado 7$ se e dovrebbero icassare 7+.*7 cioè la giocata più l equa vicita. Ivece di (.*7)=56.97 di vicita il casiò dà 54. Questo si spiega per le spese orgaizzative, di mautezioe e gestioe, ma lo scarto dell % è alto. La tassa sulla stupidità Se Ciccillo si gioca 5 per u ambo sulla ruota di Cagliari (perché comicia co la sua lettera) la sua aspettativa di guadago è 7090 x = 800 = = Il gestore pada ivece 50 volte la posta cioè 50. La differeza è i parte da attribuire alle spese di orgaizzazioe, ma possoo icidere co ua decurtazioe del 30%? Il lotto ed altri giochi gestiti dallo stato soo iiqui e sarebbe stupido giocarci qualora ci fossero alterative più coveieti Tuttavia, la tassa sulla dabbeaggie dei giocatori trova parziale giustificazioe ell iteresse pubblico co cui si impiegao i fodi così otteuti. Dal discreto al cotiuo Le distribuzioi di probabilità già viste servoo a rappresetare delle caratteristiche discrete L isieme dei valori possibili è formato da puti isolati che possoo essere cotati cioè posti i corrispodeza biuivoca co l isieme dei umeri aturali. Soo iadatte per descrivere il comportameto di quatità i cui valori ricadoo i u itervallo di umeri reali: Distaze,pesi, altezze, etc. Per affrotare questi aspetti è ecessario ampliare il ostro bagaglio di strumeti d'aalisi

6 La fuzioe di desità La fuzioe di desità di ua v.c. cotiua "X" è Le ^ deriva dal fatto che la probabilità o può essere egativa. La ^ estede a tutto l'asse reale il campo di variazioe della X. L'itervallo (a,b) dove f(x)>0 è detto SUPPORTO della v.c. Nota sulla distribuzioe di probabilità I geere, la distribuzioe di u dato aspetto delle uità iserite ella popolazioe o può essere ricostruita a partire dalle dalla situazioe sperimetale. Talvolta lo schema probabilistico forisce distribuzioi del tutto itrattabili. La 3^ deriva dal fatto che l'eveto certo deve avere probabilità il simbolo " " idica l'itegrale della f(x) i (a,b) cioè la misura dell'area sottesa alla curva della fuzioe f(x) ell'itervallo (a,b) N.B. La f(x) o dà la probabilità di X, ma è proporzioale alla probabilità che X ricada i u itervallo ifiitesimo cetrato su X. Compito della Statistica è di defiire dei "modelli" di distribuzioe e di aiutare a scegliere quello più adatto alla particolare situazioe di studio. Tra i tati modelli proposti e sviluppati dalla statistica studieremo i dettaglio solo il modello gaussiao La curva ormale (o gaussiaa) E' il modello di probabilità più oto e più usato i statistica Sigificato del parametro "µ" La desità è uimodale e l ordiata massima si raggiuge per X=µ (la moda) π La tilde si legge distribuito come x µ σ e X ~ N( µ, σ) h( x)= ; <µ< ; σ > 0 σ π Media aritmetica µ Variaza σ Quidi, il parametro µ rappreseta il valore più probabili oché il valore atteso e quello che bipartisce il supporto dei valori. Cambiado µ si modifica la collocazioe del grafico La curva è simmetrica itoro a µ L adameto campaulare e simmetrico della curva Normale sta ad idicare che: ) Gli scostameti egativi dal cetro soo altrettato probabili di quelli positivi; ) I valori soo addesati itoro al cetro; 3) Gli scostameti si verificao co probabilità decrescete ma mao che divetao gradi i valore assoluto. Al variare di µ il grafico resta ialterato ella sua forma. Si modifica solo la sua localizzazioe: più a destra se µ aumeta; più a siistra se µ dimiuisce

7 Sigificato del parametro "σ" Il σ corrispode allo scarto quadratico medio. La curvatura del grafico della distribuzioe ormale cambia due volte iflessioe i corrispodeza dei puti x=µ ± σ. Ioltre La fuzioe di ripartizioe La formula della Normale è complicata e l'itegrale Quidi è calcolato co metodi di approssimazioe umerica Al dimiuire di σ : > due puti di flesso tedoo ad accetrarsi; > L ordiata massima aumeta a causa del maggiore addesameto itoro al cetro della distribuzioe. Esprime la probabilità di osservare u valore della ormale tra a e b Curva ormale stadardizzata Geeralizzazioe E possibile esprimere la v.c. Normale i uità stadard Le tre diverse ormali Soo ricoducibli ad ua sola co la trasformazioe. σ= σ= σ= La fuzioe di desità è ora Idicata co N(0,) Z=(X-µ)/σ Come è oto le variabili stadardizzate hao media zero e variaza uo Le aree sottese a X~(µ,σ) soo idetiche a quelle Della Z~N(0,) dopo aver trasformato la X i uità stadard

8 Calcolo delle aree sottese alla curva =DISTRIB.NORM.ST() Esercizio Importaza della ormale Sia X ormale co media µ=6 e deviazioe stadard σ=5. Risiede el fatto che moltissimi feomei possoo esservi rappresetati. Ifatti, la ormale serve da efficace approssimazioe di molte altre variabili casuali cotiue e discrete. Già el 7 secolo, Galileo discusse il comportameto delle misurazioi delle distaze astroomiche avedo i mete il modello ormale della compesazioe tra errori di sego opposto.

9 Uso della ormale/ Si è rilevato l errore (rispetto ad u valore prefissato) el peso di u campioe di 60 lotti µ= ˆ. 683, s = Uso della ormale/ Suppoiamo che le vedite di vestiti di u egozio specializzato seguao la distribuzioe Normale co ua media di 36 vedite al gioro ed ua deviazioe stadard di 9 vedite al gioro. Calcolare la probabilità che i u dato gioro si vedao più di vestiti Ipotizziamo che tali valori siao validi per tutti i possibili lotti. Se si sceglie a caso u lotto, qual è la probabilità che l errore el peso sia compreso tra -0.5 e P( 05. x 05. )= P z = P 038. z = Φ( 07. ) Φ( 038. )= = 0. % ( ) La t di Studet Questo modello è molto simile a quello gaussiao, ma ha code più "spesse (ordiate estreme più alte) χ (chi-quadrato) Questo modello è defiito per i soli o egativi e preseta ua marcata asimmetria positiva Ache i questo caso l'elemeto caratterizzate soo "i gradi di libertà" cioè g La variaza è superiore all'uità, ma si avvicia ad uo all'aumetare di "" ( ) = ( ) = E χ g, Var χ g Per g superiore a 30 la distribuzioe del χ si avvicia a quella gaussiaa L'elemeto caratterizzate della t di Studet soo "i gradi di libertà" cioè l'ampiezza campioaria ridotta di ua uità: -. ( "-" è il parametro della t di Studet) Per ogi grado di libertà esiste ua t di Studet, sebbee queste divetio poco distiguibili per 60. La distribuzioe del χ si icotra ello studio campioario della variabilità. Questa è importate elle aalisi cliiche e el cotrollo della qualità RA NGE 0. CM 6 ARTERY INDEX Questa v.c. è stata aalizzata da W.S. Gosset, el 906, che firmò l'articolo co lo pseudoimo "STUDENT" ed è da allora ota come "La t di Studet" ADULT SIZE

10 Riassuto L esperimeto casuale è ua prova il cui esito è soggetto alla sorte I geere o siamo iteressati a tutto l esperimeto, ma a suoi aspetti particolari: le variabili casuali. Esperimeto Scelta casuale di ua persoa abboata ad ua pay-tv Variabili casuali Caale su cui è sitoizzata la TV al mometo del cotatto (omiale) Numero di cambi di caale ogi 5 miuti (discreta) Tempo di accesioe domeicale ella fascia oraria 4-8 (cotiua) Casuale è l esperimeto, casuali sarao i valori osservati. Le variabili casuali soo figlie dell esperimeto casuale Riassuto/ Ad ogi modalità della variabile omiale o discreta, l esperimeto casuale forisce i dote ua probabilità: i forma tabellare o co ua formula Esperimeto Scelta casuale di ua persoa iscritta elle liste elettorali del comue di Serrao Variabili casuali Coalizioe per cui ha itezioe di votare Coalizioe Tedeza Destra 0.3 Cetro 0. Siistra 0. Altre Numero di votazioi a cui ha partecipato 3 ( i ) p per i i = =,,, altrove VOTE DEMOCRAT Riassuto/3 Per le variabili cotiue l assegazioe può avveire solo per classi di modalità ovvero co ua fuzioe di desità Esperimeto Corso di chiusura di u titolo alla borsa valori Variabile casuale Tasso di redimeto i base al valore di chiusura Riassuto/4 Le probabilità (come tabella o come formula) derivao: Dalle codizioi sperimetali Dall aspetto descritto dalla variabile casuale Da iformazioi aggiutive Classi di probabilità Tasso Probabilit da -5.0 a da -.5 a da 0.0 a da +.5 a da +5.0 a La statistica ha elaborato molti modelli sia per le variabili omiali e discrete che per le variabili cotiue. Molti possoo essere studiati e approfoditi el libro di testo (appredimeto libero) Fuzioe di desità ( ) x + 5 hx ( )= 75 0 x 75 ( ) 5< x 0 0< x Nel prosieguo aalizzeremo: U solo tipo di esperimeto: estrazioe di u campioe da ua lista di uità U solo modello di variabile casuale: la ormale

11 Statistica descrittiva ed ifereziale L escussioe delle uità del campioe rispetto alle variabili produce il data set { } C= X, X,, X cioè m osservazioi su di uità. Nel ostro corso m= o. Statistica descrittiva La STATISTICA DESCRITTIVA mira alla orgaizzazioe, all aalisi tabellare e grafica oché al calcolo di gradezze sitetiche di ciò che si è riveuto ella rilevazioe E ache ota come aalisi esplorativa (Exploratory Data Aalisys) proposta soprattutto dall americao J.W. Tukey el 977 Si parla di STATISTICA DESCRITTIVA se il data set è aalizzato per quello che è seza uo sfodo su cui proiettare i dati Emitteti Ascolti Emitteti Ascolti Emitteti Ascolti Emitteti Ascolti Radiouo 766 Radioverderai 79 R.D.S. 67 Lattemiele 45 Radiodue 637 Isoradio 594 Rete Radio cuore 35 Radiotre 458 Radio deejay 3687 RTL 0.5 Radio Maria 05 Stereorai 8 Radio italia SMI 378 Radio Radicale 54 Italia Network 056 CNR 468 Radio Motecarlo 460 Radio Kiss Kiss 393 Kiss Kiss Italia Classic 786 I breve, si cofigura come ua trattazioe prelimiare idispesabile per affrotare uo studio complesso. Utilizza teciche elemetari, soprattutto grafiche. Valore massimo per Radiouo; miimo per Isoradio; c è u gruppo che si addesa itoro a ascolti. Le reti pubbliche soo più diffuse di quelle commerciali Statistica ifereziale Logica della Ifereza statistica Iizia laddove il data set è visto come la puta di u iceberg. Le situazioi i cui la statistica si è più affermata soo gli esperimeti replicabili all ifiito I dati soo solo ua delle possibili realizzazioi e riguardao ache gli ascolti che potevao esserci, ma o ci soo stati oché gli ascolti che ci sarao o potrao esserci i futuro. Le esigeze cooscitive si limitao spesso a poche caratteristiche dell esperimeto: valore atteso e variaza di ua o più variabili. Tali caratteristiche soo spesso i parametri del modello che descrive il comportameto delle variabili casuali. ES PE RIM EN T O MODELLO I che modo ed i che misura possiamo estedere agli ascolti poteziali le quatità calcolate sui valori osservati? Questa è STATISTICA INFERENZIALE Il modello di casualità è approssimabile dalla variabile casuale ormale Come sfruttare al meglio le iformazioi del campioe per determiare il valore dei parametri? PA RA M E T RI Ca m p io e

12 Le procedure ifereziali Ciò che iteressa il ostro corso è: La stima putuale E' la procedura più semplice: i base alle osservazioi campioarie si ottiee il valore da sostituire al parametro da stimare LA STIMA DEI PARAMETRI PUNTUALE: quado si propoe u sigolo valore come stima di u parametro dell variabile casuale. INTERVALLARE: quado si propoe u vetaglio di valori ragioevoli come stime. Valori possibili el campioe LA VERIFICA DI IPOTESI Da esperieze precedeti o dalla logica delle idagii si può supporre che i parametri abbiao determiati valori. Soo compatibili co le risultaze campioarie? C'è da aspettarsi u certo scarto tra la stima putuale ed il parametro icogito, ma i geere o coosciamo é l'etità é il sego dell errore Gli stimatori Lo stimatore è ua fuzioe NOTA dei valori iclusi i u campioe casuale. Il suo valore è la STIMA E caratteristica quatitativa della popolazioe dalla quale il campioe è stato estratto. Esempi di stimatori: ESEMPIO: Stimatore e stima Quale stipedio si può aspettare la maager di ua USL? Si sceglie u campioe casuale diciamo di =3 maager già i servizio e si calcola il valore atteso della loro retribuzioe. Suppoiamo che sia il valore "65 mila euro" è ua STIMA del salario ipotetico, la media campioaria è uo STIMATORE del salario. La stima è il valore assuto dallo stimatore per u campioe cioè i uo specifico puto dell uiverso dei campioi =θ^ il valore può variare da campioe a campioe Uo stimatore è detto aturale se ciò che si calcola el campioe è i stretta aalogia co ciò che si deve stimare ella popolazioe Stima Valori possibili del parametro θ

13 Esempio L'estrazioe del campioe produce la -tupla i cui elemeti soo le osservazioi campioarie Ogi -tupla, a sua volta, produce u valore dello stimatore Esempio: Si esamia u campioe casuale di 0 imprese e si rileva X il umero di dipedeti regolari. Il valore della X è casuale perché o è certa quale azieda fiirà el campioe Calcoliamo alcui stimatori Osservazioi campioarie La distribuzioe degli stimatori Lo stimatore è ua variabile casuale coessa all esperimeto: estrazioe casuale di u campioe. Cooscere la sua distribuzioe ci serve per descrivere l adameto dei risultati che si possoo osservare replicado il piao di campioameto. Dobbiamo ricordare che Stimare qualcosa sigifica dare u valore a quel qualcosa La stima otteuta da u campioe può essere diversa da quella otteuta co u altro campioe La stima tede differire dal parametro da stimare, ma se coosciamo la distribuzioe campioaria dello stimatore possiamo quatificare probabilisticamete l errore La distribuzioe degli stimatori/ Per costruire la distribuzioe di uo stimatore si debboo cosiderare tutti i possibili campioi di ampiezza prefissata "" Esempio: Ua popolazioe è composta dai valori {, 3, 5}. Si estrae, co reimmissioe, u campioe di ampiezza =. Idichiamo co X il valore osservato ella ª estrazioe e co X quello osservato ella ª. Costruiamo la distribuzioe dello stimatore Basta elecare tutti i campioi di ampiezza = otteibili dalla popolazioe e vedere che valori assume "T". La distribuzioe degli stimatori/3 Degli stimatori ci iteressa : il valore atteso: E(T) k i i= ( ) ( ) = = ET TPr T T il valore atteso è il valore della media aritmetica di "T" calcolata su tutti i possibili campioi di ampiezza. E otteuto come somma poderata dei valori distiti T di moltiplicati per le rispettive probabilità. i Se la media E(T)=θ cioè il parametro da stimare, allora T è uo stimatore NON DISTORTO I valori soo poi accorpati per assegare correttamete le probabilità: Lo scarto E(T) - θ è detto Bias (baias)

14 La distribuzioe degli stimatori/4 illustrazioe La variaza: σ k ( ) = i ( ) i= k Ti T T E T Pr T T = ET k i= [ ] ( = i) [ ] ( ) Bias elevato, moderata variabilità Bias moderato, elevatata variabilità La variaza dello stimatore dà ua idicazioe delle fluttuazioi campioarie cioè quatifica le differeze tra i suoi valori poteziali ei diversi campioi. Se la variaza dello stimatore tede a zero all aumetare dell ampiezza del campioe, allora lo stimatore è cosiderato CONSISTENTE (COERENTE) Bias elevato, elevata variabilità Bias moderato, moderata variabilità Esempio Riprediamo la distribuzioe della statistica ella popolazioe {,3,5} e per campioi di ampiezza = Scelta tra stimatori diversi Per ogi parametro della v.c. può proporsi più di uo stimatore Poiché lo stimatore idica come utilizzare le iformazioi campioarie per stimare i parametri oi sceglieremo quello che Calcoliamo il valore atteso e la variaza di "T" Distribuzioe dello stimatore Le utilizza TUTTE (cioè lo stimatore o deve disperdere alcua iformazioe di quelle icluse el campioe). Le utilizza i modo EFFICIENTE (cioè o deve essere possibile avere migliore coosceza di ciò che è icogito cambiado stimatore) I media T assume valore 7.6 co ua variaza vicio a ceto. Per stabilire tali codizioi dovremmo cooscere la distribuzioe dello stimatore, ma può bastare la coosceza del suo valore atteso e della variaza.

15 Statistiche L Gli stimatori che più ci iteressao soo delle fuzioi delle osservazioi campioarie {X,X,,X } del tipo: Legge dei gradi umeri Di solito si igora la variabile casuale che può descrivere i modo soddisfacete u dato aspetto della popolazioe. Di cosegueza o è possibile costruire la distribuzioe di uo stimatore. L = i= w X i () i Ioltre, uo stesso stimatore ha ua distribuzioe campioaria diversa i dipedeza del tipo di variabile casuale che descrive la popolazioe. C è ua via d uscita? La legge dei gradi umeri! dove gli soo dei "pesi" che esprimoo il cotributo a L " delle diverse osservazioi faceti parti dello stimatore. La otazioe X (i) idica che i valori delle osservazioi campioarie soo state ordiate i seso crescete. Se la distribuzioe o è ota, ma il campioe casuale è abbastaza umeroso e le estrazioi soo idipedeti (o virtualmete tali) è possibile approssimare la distribuzioe degli stimatori co il MODELLO NORMALE Le statistiche L (cioè lieari) soo tali perché le osservazioi campioarie vi compaioo co poteza uo Suppoiamo che : Teorema del limite cetrale siao estrazioi casuali co reimmissioe da ua popolazioe descritta da ua v.c. co variaza fiita Allora, all'aumetare di "", il poligoo delle frequeze dello stimatore espresso i uità stadard L E( L) σ( L ) dove L = i= w X i () i Esempi Somma del lacio di dadi (sorte beiga) S = X + X + +X ES ( ) = *3.5; σ ( S) = 35 ; Z = S *3.5 * per = Tede ad essere be approssimato dalla curva Normale stadardizzata ) Il bias e la variaza tedoo a zero Oscillazioi di u titolo di borsa (sorte selvaggia) Alcue di queste possoo essere catastrofiche o superpositive e o c è covergeza alla ormale perché la variaza è ifiita

16 Quicux ) Le biglie etrao ell imbuto dai vari fori ) Le biglie escoo dall imbuto ua alla volta 3) Le biglie rimbalzao a caso tra i vari pioli 4) Ogi biglia imbocca uasola scaalatura T.L.C. / Il teorema del limite cetrale è u risultato fodametale della statistica Co esso è possibile stabilire la distribuzioe di vari stimatori seza cooscere quale sia il modello che descrive la casualità dell esperimeto Ad esempio, per la media campioaria: Risultato fiale X ~ N µ, σ La media campioaria è u caso particolare di statistica L co pesi W i =/ per i=,,, Quado può essere applicato tale risultato? ) Le estrazioi campioarie debboo essere idipedeti. ) L'ampiezza del campioe deve essere grade. 3) L aspetto cosiderato deve essere il risultato di molte cocause 4) No ci deve essere ua causa predomiate rispetto alle altre Esempio Qual'è la probabilità che u feomeo soggetto a variazioi casuali esprima ua media campioaria compresa i ±σ/ dalla media della popolazioe di parteza? Occorre calcolare: Esercizio La produzioe di ua liea di biscotti utilizza macchiari tali che il coteuto i grammi delle cofezioi sia ua v.c. X co µ=450 e σ=30. Calcolare la probabilità che il coteuto medio di ua scatola di 5 cofezioi sia almeo di 460g. il peso medio è ua v.c. data dalla media dei sigoli pesi: sfruttado il T.L.C. si ha: Se la produzioe è realizzata i modo da o geerare dipedeza elle varie cofezioi ricorroo le codizioi del T.L.C. e quidi

17 Stima delle proporzioi Spesso si è iteressati a sapere quale porzioe "π" di ua popolazioe possiede ua certa caratteristica (uità speciali) Se si estrae u campioe casuale co reimmissioe si è di frote ad u variabile casuale biaria (0,) i cui il " è la estrazioe di ua uità speciale co "π" come probabilità di otteerla. Distribuzioe della frazioe campioaria Poichè il umeratore della frazioe è la somma di "" variabili biarie ricorroo le codizioi del T.L.C. per cui la distribuzioe di "H", all'aumetare di "", diveta: Lo stimatore aturale di "π" è : X i se la i esima è speciale i= H = co X i = 0 altrimeti ESEMPIO Ua partita di circuiti itegrati iclude il 30% di pezzi difettosi. Si estrae u campioe casuale di 500 pezzi. Qual'è la probabilità che la frazioe di pezzi difettosi sia iferiore a 0.3? Quidi H è ua statistica L. La legge dei gradi umeri scatta se Esercizio Schema dell ifereza statistica I u campioe casuale di =00 studeti si soo trovate 36 (H=0.8) d'accordo sull'uiversità "a distaza come equivalete a quella da loro frequetata. Determiare la probabilità che, replicado il campioe, la proporzioe campioaria rimaga compresa tra.5 e = ( ) H P(. 5 H 4. 5)= P = P. 0 Z = ( ) il 97% di TUTTI I POSSIBILI campioi costruiti ipotizzado che sia π=0.8 avrà ua proporzioe compresa tra il.5% ed il 4.5%,

18 Test delle ipotesi No si è più alla ricerca di u valore (o u itervallo di valori) da sostituire al parametro icogito, ma si deve stabilire quale, tra due ipotesi, è più probabilmete VERA Se la decisioe si potesse basare sulla coosceza totale si avrebbe ua coclusioe defiitiva: l'ipotesi è VERA o FALSA. Come i molte scieze sperimetali o potremo dimostrare vera o falsa ua affermazioe. Potremo solo affermare: è più coerete o meo coerete co i ostri dati campioari. Formalismo dei Test L'IPOTESI STATISTICA H 0 è ua asserzioe verificabile su di ua variabile casuale. I geere riguarda i suoi parametri. Suppoiamo di cooscere la fuzioe di desità della v.c.: f(x;θ) di cui igoriamo il valore del parametro θ. I geere, la H 0 ipotizza u certo valore del parametro e e valuta la sua coformità co i dati campioari È detta ulla perché, di H 0 : θ θ 0 = 0 solito, iete cambia se viee accettata il valore è scelto i base a varie cosiderazioi: Dalla logica dell'esperimeto Da esperieze precedeti o idagii pilota E' u livello critico (baselie) E' u livello desiderato Formalismo del Test/ Cosideriamo L'UNIVERSO DEI CAMPIONI di ampiezza cioè l'isieme di tutte le possibili realizzazioi della -tupla La statistica test E l aello di cogiuzioe tra uiverso dei campioi e valori del parametro =3 La distribuzioe della statistica test T(X;θ) è fuzioe: I tale spazio, il campioe estratto è solo u puto. ( ) Del campioe casuale X, X,, Del parametro da stimare: θ X L'idea del test è di assegare ad ogi campioe ua probabilità detta LIVELLO OSSERVATO DI SIGNIFICATIVITA (p-value) Le statistiche test più i uso soo del tipo: TX;θ T θ σ T ( )= ( ) e i base a questo decidere sull ipotesi H 0. Spesso T(X;θ) è lo stimatore aturale del parametro a cui soo riferite le ipotesi

19 ESEMPIO: Applicazioe/ Ua docete sa che -storicamete- i risultati dei suoi esami scritti hao µ=5, σ=3. Però, ell ultima prova, i risultati dei primi 0 compiti soo molto scadeti. Che si tratti u corso ad alta desità di ciucci? Ipotesi ulla H0 : ( µ 5) = 0 Ipotesi alterativa H : µ< 5 Applicazioe/ N.B. si è sostituito l eveto puto µ=3 co l eveto itervallo µ 3 Come statistica test sembra ovvio scegliere la media campioaria. La docete rifiuterà H 0 se il voto medio osservato el campioe sarà molto più piccolo di 5. Il fatto che si rifiuti H 0 o implica ecessariamete che accetti H. Potrebbe ache decidere di riviare la decisioe i attesa di avere più dati. L ipotesi alterativa è iserita soprattutto per stabilire la direzioe del test Applicazioe/3 Dopo aver corretto altri 5 compiti risulta che, su questi, si ha ˆµ=7 A questo puto sorge u altro dubbio: che l assistete del corso, imbraato come ua foca, abbia mischiato i compiti co quelli della classe advaced Ipotesi ulla H0 : ( µ 5) = 0 Ipotesi alterativa H : µ> 5 La direzioe del test è ora verso i valori alti poiché i valori iferiori a 5 o fao sorgere questo tipo di dubbio Lo scarto 5-7 è poco compatibile co l ipotesi sebbee o ci siao evideze fortissime cotro. U valore superiore maggiore o uguale di 7 lo si può trovare ell % dei campioi da popolazioi aveti media 5. L assistete si salva. ˆ P( µ ˆ 7 µ= 5 ) P µ P Z..... = ( ) = = 0 5 Esempio La dott.ssa Agelia Romao propoe ua procedura d'ufficio che riduce i tempi medi rispetto agli attuali µ=75 miuti, pur coservado lo stesso σ=9. Ipotesi ulla H0 : ( µ 75) = 0 Ipotesi alterativa H : µ< 75 Si cosidera u campioe di =5 pratiche. Quidi la media del c -sotto H- 0 sarà approssimata dalla gaussiaa co µ=75 e σ=9/ 5=.80 Nel campioe si trova µ=69 ˆ. 8 Qual è la probabilità di otteere u valore della statistica test iferiore o uguale del valore osservato se ma media della popolazioe è 75? ˆ. ˆ P( µ ˆ µ= 75 ) P µ P.... = µ = 0 009

20 Esempio L'ammiistratore delegato, Sig.ra Rosetta Gaudio, di ua fabbrica di peumatici sta valutado la modifica della trama del prodotto leader. Lo studio di fattibilità segala che la uova trama è coveiete se la vita media dei prodotti supera le miglia i codizioi stadard. Ipotesi ulla H0 : ( µ 0' 000) = 0 Ipotesi alterativa H : µ> 0' 000 U campioe di =6 prototipi viee provato dado luogo a Si sa che σ= L'ammiistratore Gaudio che deve fare? ˆ P( µ ˆ µ= ) P µ = µ ˆ ˆ P P.. = µ < = P-value Idica la probabilità che valori della statistica test -iferiori o uguali a quello osservato- siao sopravveuti solo per effetto della sorte. Quidi, il P-value misura la probabilità di sbagliare, elle codizioi date, se si rifiuta l ipotesi ulla Nuova procedura ammiistrativa Ipotesi ulla H0 : ( µ 75) = 0, P value = La uova procedura potrebbe essere o migliorativa rispetto alla vecchia solo i casi su 000 (circa). E bee rifiutare H 0 Nuovo peumatico Ipotesi ulla H0 : ( µ 0' 000) = 0, P value = La uova trama è migliorativa circa ua volta su 3. No è cosigliabile rifiutare H 0. Precisazioi Rispetto all'ipotesi che il parametro abbia u valore prefissato ci soo tre casi: H0 : θ = θ0 ; H : θ < θ 0 H0: θ = θ0 ; H : θ > θ 0 H0: θ = θ0 H : θ = θ 0 Nei primi due il test è uidirezioale (o ad ua coda), el terzo è bidirezioale (o a due code). Guida Se P -value %. Aldilà di ogi ragioevole dubbio si può rifiutare H 0 Se % P -value 5%. Ci soo buoe ragioi per rifiutare H 0 Se 5% P -value 0%. Ci soo ragioi per rifiutare H 0, ma o soo del tutto coviceti Se P -value > 0%. E cosigliabile o rifiutare H 0 Coda iferiore Coda superiore p-value I valori soo solo apparetemete bassi. p-value p-value Le codizioi di applicabilità dei test (ad esempio la distribuzioe ormale) soo valide solo i parte). Il giudizio sull'etità dello scarto tra valore campioario ed ipotesi è espresso i base alla distribuzioe della statistica test Di cosegueza, solo ua forte evideza può covicere a rifiutare l ipotesi ulla (agolatura coservativa)

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

INTRODUZIONE ALLA STATISTICA

INTRODUZIONE ALLA STATISTICA Liceo Scietifico -Idirizzo giuridico ecoomico aziedale -Idirizzo operatore turistico Via Rossi/Casacampora, 3-80056 Ercolao (Na) Tel. (+39)08 7396340 (+39)08 7774666 - Fax (+39) 08739669 Cod. Mecc NAISO00G

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c.

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c. I LEZIONE Il ostro iteto è aalizzare i dettaglio i metodi di cifratura che si soo susseguiti el corso della storia prestado particolare attezioe all impiato matematico che e cosete la realizzazioe Iiziamo

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S S0 X k, co X k k co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti e ideticamete

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Appunti di matematica Percorso

Appunti di matematica Percorso Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA iteret: www.cedamscuola.it e-mail:

Dettagli

Capitolo 2 CALCOLO DELLE PROBABILITÀ

Capitolo 2 CALCOLO DELLE PROBABILITÀ CORSO DI LAUREA IN ECONOMIA AZIENDALE (Note didattiche) Bruo Chiadotto Fabrizio Cipollii Capitolo CALCOLO DELLE PROBABILITÀ Il calcolo delle probabilità, ato el cotesto dei giochi d azzardo si è sviluppato

Dettagli

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ARGOMENTI TRATTATI: VARIABILI CASUALI DISCRETE VARIABILI CASUALI CONTINUE DISEGUAGLIANZA DI TCHEBYCHEFF TEOREMA DEL LIMITE CENTRALE

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA 1 Introduzione Il termine statistica venne introdotto nel diciassettesimo secolo col significato di

CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA 1 Introduzione Il termine statistica venne introdotto nel diciassettesimo secolo col significato di CAPITOLO ZERO ELEMENTI DI STATISTICA DESCRITTIVA Itroduzioe Il termie statistica vee itrodotto el diciassettesimo secolo col sigificato di scieza dello stato, volta a raccogliere e ordiare iformazioi utili

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità 1 Elemeti di calcolo delle probabilità 5 1. Itroduzioe La statistica è ua scieza, strumetale ad altre, cocerete la determiazioe dei metodi scietifici da seguire per raccogliere, elaborare e valutare i

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici Piao Lauree Scietifiche 2010-2011 Laboratorio di Autovalutazioe per il migliorameto della preparazioe per i corsi di laurea scietifici Caserta, 14 febbraio 2011 Prof.ssa Maria Cocozza Quate possibilità

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli