Costruite un grafo che rappresenti la situazione del torneo (in modo che siano rappresentate le squadre e le partite). Che tipo di grafo ottenete?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Costruite un grafo che rappresenti la situazione del torneo (in modo che siano rappresentate le squadre e le partite). Che tipo di grafo ottenete?"

Transcript

1 IL TORNEO DI CALCIO Avete un gruppo di sei squadre che devono sfidarsi in un torneo di calcio. Il torneo deve essere circolare e di sola andata, cioè ogni squadra deve giocare una partita contro ciascuna altra squadra. Costruite un grafo che rappresenti la situazione del torneo (in modo che siano rappresentate le squadre e le partite). Che tipo di grafo ottenete? 1) Utilizzando il grafo che avete costruito provate poi a determinare quante partite vengono giocate in totale? 2) Rispondete alla domanda precedente nel caso in cui le squadre siano 100?

2 IL PROBLEMA DEL TRAGHETTO Un traghettatore (t) è stato incaricato di far attraversare un fiume a un lupo (l), una pecora (p) e un cavolo (c). La sua barca a remi può trasportare soltanto uno di questi carichi alla volta e inoltre non può lasciare il lupo solo con la pecora o la pecora sola con il cavolo. Come dovrà procedere? Esiste una soluzione e se si una sola o quante? Provate a riscrivere il testo del problema precedente utilizzando un grafo, e da questo provate a dedurre se ci sono soluzioni e quante.

3 TI CONOSCO O NON TI CONOSCO? Problema 1 Qualcuno raccontò di essersi trovato una volta in una comunità costituita in totale da 12 persone in cui risultava che: 1. Ognuno conosceva esattamente altre 5 persone; 2. Ognuno apparteneva a qualche terna di persone che si conoscevano l un l altro a due a due; 3. Non c erano quaterne di persone che si conoscevano l un l altro a due a due; 4. Non c erano però nemmeno quaterne di persone che non contenessero almeno una coppia di persone che si conoscevano; 5. Ognuno poteva trovare tra coloro che non conosceva una persona con cui non aveva alcuna conoscenza in comune. È possibile secondo voi? Il dottor Abracadabrus, sentito questo racconto, aggiunge che a lui era capitato di trovarsi in un altra comunità in cui erano soddisfatte le stesse condizioni 2., 3., 4., ma, al posto di 1., valeva la seguente 1. Ognuno conosce esattamente altre 6 persone; inoltre una di queste conoscenze lo può presentare a tutto il resto del gruppo. È possibile secondo voi?

4 Problema 2 Siamo in treno, in uno scompartimento che contiene sei persone. Provate a dimostrare che, fra queste sei persone, ce ne sono sicuramente: - o tre che si conoscono (nel senso che, comunque si scelgano due persone fra queste tre, allora le due persone si conoscono) - oppure tre che non si conoscono (nel senso che, comunque si scelgano due persone fra queste tre, allora le due persone non si conoscono). Un grafo potrà essere di aiuto

5 IL CAVALLO DEGLI SCACCHI Sapete tutti come si muove il cavallo nel gioco degli scacchi. Ecco qualche problema per il quale può essere utile una schematizzazione attraverso un grafo: Problema 1 Un problema classico è quello di decidere se è possibile un percorso del cavallo che passi, una e una sola volta, attraverso tutte le caselle della scacchiera. Ve lo proponiamo qui su due mini-scacchiere, una scacchiera quadrata 4 4 e una scacchiera a forma di croce. Se il percorso è possibile, descrivetelo; se non è possibile, giustificate questa impossibilità.

6 Problema 2 Partiamo ora da una scacchiera ancora più piccola, di sole 9 caselle (3 3) e disponiamo nei 4 angoli i quattro cavalli, precisamente mettiamo i due cavalli bianchi nei due angoli superiori e i due cavalli neri negli angoli inferiori. È possibile con una serie di mosse spostare i cavalli in modo da arrivare alla situazione invertita (i due cavalli bianchi nei due angoli inferiori e i due cavalli neri nei due angoli superiori)? Ed è possibile spostarli in modo da arrivare alla posizione qui sotto in figura? Se è possibile, descrivete come; se non è possibile, giustificate questa impossibilità.

7 COSTRUIRE POLIEDRI Avete a disposizione dei quadrati, dei pentagoni regolari, degli esagoni regolari, che si possono saldare insieme a formare dei poliedri. Siamo interessati a due tipi di poliedri: Tipo (A) sono poliedri le cui facce sono solo quadrilateri e esagoni, con la condizione che in ogni vertice arrivano esattamente tre facce. Tipo (B) sono poliedri le cui facce sono solo pentagoni e esagoni, con la condizione che in ogni vertice arrivano esattamente tre facce. Fra i poliedri di tipo (A) c è anche il cubo (6 quadrati e 0 esagoni); fra i poliedri di tipo (B) c è anche il dodecaedro regolare (12 pentagoni e 0 esagoni); mentre, in entrambi i casi, non è possibile usare solo esagoni (perché... ). Prima di rispondere alle seguenti domande, provate a costruire un po di poliedri di tipo (A) e un po di poliedri di tipo (B). Domanda 1 Provate a contare le facce quadrate e esagonali dei poliedri di tipo (A) che avete costruito: Cubo Q = 6 E = 0 Poliedro 1 Q= E =. Poliedro 2 Q= E =. Poliedro 3 Q= E =. Provate a contare le facce pentagonali e esagonali dei poliedri di tipo (A) che avete costruito: Dodecaedro regolare P = 12 E = 0 Poliedro 1 P= E =. Poliedro 2 P= E =. Poliedro 3 P= E =.

8 Domanda 2 Siamo pronti a scommettere che per tutti i poliedri di tipo (A) avete trovato Q=6, e per tutti i poliedri di tipo (B) avete trovato P=12 In realtà nel definire i poliedri di tipo (A) e (B) non abbiamo richiesto che le facce fossero proprio quadrati e esagoni regolari, ovvero pentagoni e esagoni regolari; ci bastavano quadrilateri, pentagoni, esagoni qualsiasi. Non avete qui il materiale per provare a costruire altri poliedri con facce non necessariamente regolari, però si può provare a semplificarci la vita disegnandone solo il grafo degli spigoli. Disegnate qui sotto due grafi di poliedri di tipo (A) e due grafi di poliedri di tipo (B) e contatene le facce (A) Q=.., E=. (A) Q=.., E=. (B) P=.., E=. (B) P=.., E=. Domanda 3 Avete ancora ottenuto sempre 6 facce di quattro lati per i poligoni di tipo (A) e 12 facce pentagonali per i poliedri di tipo (B)! È legittimo il sospetto che non si tratti di una casualità, ma di una necessità Provate a dimostrarlo. Un suggerimento: se V è il numero dei vertici, S il numero di spigoli, F il numero delle facce, si ha che V-S+F=2.

9 GERMOGLI E CAVOLINI DI BRUXELLES Vi proponiamo in questa scheda due giochi. Si tratta di giochi carta-e-penna, per due persone. Potete semplicemente provare a giocarci, a coppie; oppure potete provare a rispondere alle domande che vi poniamo in fondo. Il primo gioco: germogli Si parte segnando sul foglio, con disposizione arbitraria, un certo numero di punti. I due giocatori giocano a turno e ciascuna mossa consiste delle operazioni seguenti: Disegnare un arco, che connetta due dei punti segnati sul foglio (i due punti possono essere anche coincidenti, cioè questo arco potrebbe anche essere un cappio che parte da e arriva in uno dei punti sul foglio) Segnare un nuovo punto su questo arco Gli archi possono essere disegnati arbitrariamente (non ci sono vincoli su lunghezza e forma) PURCHÉ rispettino le seguenti regole: Un arco non può intersecare gli altri archi già disegnati; Da ogni punto escono al massimo tre archi. Perde il primo giocatore che non riesce al suo turno a disegnare un arco valido. Il secondo gioco: cavolini di Bruxelles Si parte segnando sul foglio, con disposizione arbitraria, un certo numero di crocette a quattro braccia (in questo gioco quindi da ogni punto non potranno uscire più di 4 archi). I due giocatori giocano a turno e ciascuna mossa consiste delle operazioni seguenti: Disegnare un arco, che connetta due delle braccia che escono da una stessa croce oppure due braccia di due croci diverse. Segnare su questo arco una nuova croce (che avrà quindi due braccia libere e due già occupate dall arco che si è disegnato). Come nel gioco precedente, gli archi possono essere disegnati arbitrariamente (non ci sono vincoli su lunghezza e forma) PURCHÉ non intersechino gli altri archi già disegnati in precedenza. Perde il primo giocatore che non riesce al suo turno a disegnare un arco valido.

10 Alcune domande 1. In uno di questi giochi l esito è prevedibile in partenza: in quale e perché? 2. Perché siamo sicuri che entrambi i giochi finiscono (ovvero non è possibile, con le regole dichiarate, andare avanti all infinito)? 3. Sapete dare una stima, nell uno e nell altro caso, di quando finiscono? ovvero, sapete stimare il numero massimo di mosse del gioco in funzione del numero di punti da cui siete partiti?

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

I Solidi Regolari??-??- 2001

I Solidi Regolari??-??- 2001 I Solidi Regolari??-??- 2001 Cosa sono i Solidi Platonici 1 I Solidi Platonici sono solidi convessi delimitati da facce costitute da poligoni regolari tutti uguali tra loro. Un Solido di questo genere

Dettagli

Matematica Discreta 2005 Esercizi di preparazione

Matematica Discreta 2005 Esercizi di preparazione Matematica Discreta 2005 Esercizi di preparazione Esercizio 1. Supponiamo di avere un rettangolo di cartone di dimensioni intere n e m e di tagliarlo successivamente secondo la seguente regola: togliamo

Dettagli

L economia: i mercati e lo Stato

L economia: i mercati e lo Stato Economia: una lezione per le scuole elementari * L economia: i mercati e lo Stato * L autore ringrazia le cavie, gli alunni della classe V B delle scuole Don Milanidi Bologna e le insegnati 1 Un breve

Dettagli

di Kai Haferkamp per 2-5 giocatori dagli 8 anni in su

di Kai Haferkamp per 2-5 giocatori dagli 8 anni in su di Kai Haferkamp per 2-5 giocatori dagli 8 anni in su Traduzione e adattamento a cura di Gylas per Giochi Rari Versione 1.0 Novembre 2001 http://www.giochirari.it e-mail: giochirari@giochirari.it NOTA.

Dettagli

La competizione è serrata e la posta è alta. In fatti la posta è l hotel-casinò che stai costruendo.

La competizione è serrata e la posta è alta. In fatti la posta è l hotel-casinò che stai costruendo. PREMESSA (pag.2) Sei un multimilionario Non avendo niente di meglio da fare, tu e i tuoi amici multimilionari vi siete incontrati e avete deciso di sfidarvi nel vedere chi riesce a costruire il più prestigioso

Dettagli

Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore

Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore In queste note troverete suggerimenti e osservazioni per attività che traggono spunto dal problema

Dettagli

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_09.qxp 15-04-2009 20:23 Pagina 5 Kangourou Italia Gara del 19 marzo 2009 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Hai

Dettagli

REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014

REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014 REGOLAMENTO MONOPOLY QUALIFICAZIONI REGIONALI 2014 SCOPO DEL GIOCO Essere il giocatore più ricco al termine di una partita a tempo o l ultimo concorrente in gioco dopo che tutti gli altri sono finiti in

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

In Action with Math. Competizione e Strategia: Teoria dei Giochi. Giulia Bernardi, Roberto Lucchetti. 5 novembre 2014

In Action with Math. Competizione e Strategia: Teoria dei Giochi. Giulia Bernardi, Roberto Lucchetti. 5 novembre 2014 In Action with Math Competizione e Strategia: Teoria dei Giochi Giulia Bernardi, Roberto Lucchetti 5 novembre 2014 1 / 16 Roulette russa Altri esempi Teorema di Zermelo Descrizione del gioco Due giocatori

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA

INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA Anno scolastico 2012/2013 1 Indice Componenti del gruppo di lavoro pag. 2 Premessa pag. 3 Descrizione dell'attività di laboratorio pag. 4 Verifica

Dettagli

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO Soluzioni Giochi di Archimede 05 Fase Istituto GARA BIENNIO. Nel paese Gnallucci circolano quattro monete: dobloni, zecchini, talleri e fufignezi. Un doblone vale quanto uno zecchino più un tallero e un

Dettagli

Kangourou della Matematica 2011 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2011. Quesiti

Kangourou della Matematica 2011 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2011. Quesiti Kangourou della Matematica 2011 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2011 Quesiti 1. Un lungo viaggio Quando a Londra sono le 17.00, a S. Francisco sono le 09.00 (dello stesso

Dettagli

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Corso di formazione rivolto a insegnanti delle Superiori Giuseppe Accascina accascina@dmmm.uniroma1.it

Dettagli

Segui passo passo le istruzioni e potrai giocare le tue sfide online. Puoi già capirlo, è facile, divertente e eccitante.

Segui passo passo le istruzioni e potrai giocare le tue sfide online. Puoi già capirlo, è facile, divertente e eccitante. COME GIOCARE ONLINE? Segui passo passo le istruzioni e potrai giocare le tue sfide online. Puoi già capirlo, è facile, divertente e eccitante. 0. PERSONALIZZA IL TUO AVATAR Puoi accedere a tutte le sezioni

Dettagli

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD

Dettagli

Reiner Knizia TADSCH MAHAL UN GIOCO DI INFLUENZA E DI POTERE IN INDIA

Reiner Knizia TADSCH MAHAL UN GIOCO DI INFLUENZA E DI POTERE IN INDIA Reiner Knizia TADSCH MAHAL UN GIOCO DI INFLUENZA E DI POTERE IN INDIA E in gioco il controllo dell India all inizio del 18 secolo. Il regime dei Gran Mogol, che durava da 200 anni, sta crollando, anche

Dettagli

16/05/2008. Continua sporadicamente ad occuparsi di matematica; muore tra le convulsioni, probabilmente per una lesione al cervello

16/05/2008. Continua sporadicamente ad occuparsi di matematica; muore tra le convulsioni, probabilmente per una lesione al cervello La probabilità Gli inizi della teoria della probabilità possono farsi risalire a Fermat e a un grande genio matematico che si dedicò invece al misticismo: Blaise (1623-1669) si dedicò alla matematica fin

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

ALCUNE PROPOSTE PER INSEGNARLO

ALCUNE PROPOSTE PER INSEGNARLO I primi Giochi Easy : Il Palleggio ALCUNE PROPOSTE PER INSEGNARLO Insalata Mista. (stimolare l abitudine all utilizzo del palleggio) Dal palleggio in libertà tuttocampo dei bambini, dividere il campo in

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06 Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA Il progetto sulla Terza Dimensione Queste attività si

Dettagli

giocare con le forme

giocare con le forme IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice A caccia

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Regole:! La prova è individuale. E' vietato l'uso di calcolatrici di qualunque tipo.! Vi è una sola

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Socio/relazionale: partecipazione attiva al gioco, in forma agonistica, collaborando con gli altri

Socio/relazionale: partecipazione attiva al gioco, in forma agonistica, collaborando con gli altri Federazione Italiana Pallacanestro Settore Giovanile Minibasket e Scuola Lezioni Integrate Minibasket I Fondamentali con palla Traguardi di Competenza. Partiamo dalle linee guida: Motorio/funzionale padronanza,

Dettagli

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Una grande nave cargo

Dettagli

LA GEOMETRIA NELLE PIASTRELLE

LA GEOMETRIA NELLE PIASTRELLE LA GEOMETRIA NELLE PIASTRELLE Supponiamo di dover pavimentare delle superfici molto estese e vogliamo evitare le classiche composizioni quadrate, rettangolari o a spina di pesce, per rendere meno banale

Dettagli

COME NON PERDERE TEMPO NEL NETWORK MARKETING!

COME NON PERDERE TEMPO NEL NETWORK MARKETING! COME NON PERDERE TEMPO NEL NETWORK MARKETING Grazie per aver scaricato questo EBOOK Mi chiamo Fabio Marchione e faccio network marketing dal 2012, sono innamorato e affascinato da questo sistema di business

Dettagli

HARE & TORTOISE REGOLAMENTO (PER TUTTE LE VERSIONI)

HARE & TORTOISE REGOLAMENTO (PER TUTTE LE VERSIONI) HARE & TORTOISE REGOLAMENTO (PER TUTTE LE VERSIONI) Le seguenti regole si applicano a tutte le versioni del gioco, anche se ogni edizione può avere delle differenze. Ci sono quattro principali gruppi di

Dettagli

I COLORI DELLE CARTE ( SUITS )

I COLORI DELLE CARTE ( SUITS ) Il Pyramid è un gioco di carte giocato nella serie originale di Battlestar Galactica. Nella nuova serie non è scomparso ma viene chiamato Full Colors mentre il termine Pyramid è ora riferito ad uno sport

Dettagli

di Dirk Henn per 2-6 giocatori dai 10 anni in su

di Dirk Henn per 2-6 giocatori dai 10 anni in su di Dirk Henn per 2-6 giocatori dai 10 anni in su Traduzione e adattamento a cura di Gylas per Giochi Rari Revisione a cura di Leles Versione 1.1 Gennaio 2010 http://www.giochirari.it e-mail: giochirari@giochirari.it

Dettagli

ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI

ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI Con l intento di proseguire l osservazione sulle competenze che i bambini posseggono nei confronti della matematica è stata intrapresa una rivisitazione del

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

Nel gioco Mercurius, i giocatori interpretano i ruoli di potenti e ricchi borghesi nell Olanda del XVII secolo, il cui obiettivo è di moltiplicare la

Nel gioco Mercurius, i giocatori interpretano i ruoli di potenti e ricchi borghesi nell Olanda del XVII secolo, il cui obiettivo è di moltiplicare la Nel gioco Mercurius, i giocatori interpretano i ruoli di potenti e ricchi borghesi nell Olanda del XVII secolo, il cui obiettivo è di moltiplicare la propria ricchezza, speculando sulla borsa di Amsterdam.

Dettagli

2. Un teorema geniale e divertente anche per la scuola elementare

2. Un teorema geniale e divertente anche per la scuola elementare 051-056 BDM 56 Maurizi imp 21.5.2008 11:49 Pagina 51 II. Didattica 2. Un teorema geniale e divertente anche per la scuola elementare Lorella Maurizi 1 51 Ho proposto ai bambini di una classe quinta della

Dettagli

TICHU NANJING (per 4 giocatori)

TICHU NANJING (per 4 giocatori) TICHU NANJING (per 4 giocatori) Le carte Sono di quattro tipi (Jade/Sword/Pagoda/Star) (Giada-verde/Spada-nero/Pagoda-blu/Stella-rosso) di 13 valori ognuna che corrispondono alle carte del Poker. L Asso

Dettagli

GIOVANILI: SCHEMI OFFENSIVI Matteo Picardi

GIOVANILI: SCHEMI OFFENSIVI Matteo Picardi GIOVANILI: SCHEMI OFFENSIVI Matteo Picardi Ogni squadra necessita di un attacco organizzato in maniera da creare spazi liberi per guadagnare punti facili. Tuttavia, soprattutto con le squadre giovani,

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

QUESTIONARIO DI GRADIMENTO

QUESTIONARIO DI GRADIMENTO QUESTIONARIO DI GRADIMENTO Il BRUCO Asilo Nido e Scuola d Infanzia Via Case Basse San Vittore, 24 Pavia www.asiloilbruco.com Tel. 0382.1726.241 Tel. 393.900.6211 Cari Genitori, il questionario è stato

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

I N T R O D U Z I O N E

I N T R O D U Z I O N E REGOLAMENTO INTRODUZIONE Anno Domini è un gioco di strategia e conquista. ambientato nel medioevo. Il miglior modo per imparare a giocare è quello di leggere attentamente il regolamento, passo dopo passo.

Dettagli

TARGET Un gioco sulla conoscenza del diabete per tutte le età

TARGET Un gioco sulla conoscenza del diabete per tutte le età TARGET Un gioco sulla conoscenza del diabete per tutte le età Da Sandra J. Hollenberg - Tradotto da Elena Ascari by Sandra J. Hollenberg www.grandmasandy.com Suggerimenti per il download: Questa prima

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:..

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:.. Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Primaria Classe Quarta Codici Scuola:..... Classe:.. Studente:. Spazio per l etichetta

Dettagli

Non-Trading-Card-Game

Non-Trading-Card-Game Non-Trading-Card-Game Questo gioco è la rivisitazione di Pokemon TCG; sono state modificate le regole e aggiustati alcuni effetti di carte. Ciò significa che costruire mazzi giocabili dipende dalla vostra

Dettagli

FANTACAMPIONATO www.nerazzurra.tk

FANTACAMPIONATO www.nerazzurra.tk FANTACAMPIONATO www.nerazzurra.tk PRIMA FASE L ISCRIZIONE REGOLAMENTO Prima di tutto tengo a precisare che l iscrizione al fantacalcio del sito nerazzurra.tk dell anno 2004-2005, è assolutamente gratuita.

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti Kangourou della Matematica 015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 015 Quesiti 1. La busta La figura mostra in che modo, ripiegando opportunamente un foglio di carta a forma di

Dettagli

Io Misuro Tu Misuri Noi Misuriamo. Attività rivolta a alunni di classe II della Scuola Primaria

Io Misuro Tu Misuri Noi Misuriamo. Attività rivolta a alunni di classe II della Scuola Primaria Io Misuro Tu Misuri Noi Misuriamo Attività rivolta a alunni di classe II della Scuola Primaria DA DOVE NASCE L ATTIVITÀ? Dal comune problema di voler misurare la lunghezza. Per scegliere qualcosa di vicino

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Super farmer è un gioco creato in Varsavia nel 1943 con il nome

Super farmer è un gioco creato in Varsavia nel 1943 con il nome I S T R U Z I O N I L autore: Karol Borsuk Illustrazioni: Piotr Socha pr o f. K ar ol B or s u k Super farmer è un gioco creato in Varsavia nel 1943 con il nome di Hodowla Zwierzątek (La Piccola Fattoria

Dettagli

1. LA MOTIVAZIONE. Imparare è una necessità umana

1. LA MOTIVAZIONE. Imparare è una necessità umana 1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali

Dettagli

MATEMITICA. Quesito del mese/2

MATEMITICA. Quesito del mese/2 LICEO SCIENTIFICO STATALE Francesco R e di L I C E O S C I E N T I F I C O L I C E O L I N G U I S T I C O FUTURO PRESENTE MATEMITICA un progetto all'interno di "We are Redi for the Future" PRESENTA: Quesito

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

Perché affrontare il tema dell inquinamento?

Perché affrontare il tema dell inquinamento? Perché affrontare il tema dell inquinamento? Il problema dell'inquinamento dell'aria a Piacenza è serio e grave. Naturalmente sappiamo che non è grave solo nella nostra città, ma in tutta l Emilia Romagna

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 6584 (cell.: 40 47 47 952) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (1-12-07) - Olimpiadi

Dettagli

Il Signor Cubo e i suoi amici

Il Signor Cubo e i suoi amici Il Signor Cubo e i suoi amici Il Signor Cubo e i suoi amici TRACCIA DELL ITINERARIO: 1. Il docente presenta un cubo che ha decorato come se fosse un personaggio. Gli allievi lo trovano in classe e lo descrivono.

Dettagli

Da 2 a 4 Giocatori Autore Martin Wallace

Da 2 a 4 Giocatori Autore Martin Wallace Traduzione La Strada Da 2 a 4 Giocatori Autore Martin Wallace Scopo del Gioco Ogni giocatore, impersona un Ricco Mercante ed è alla ricerca di Nuovi Mercati nelle crescenti cittadine che vi permetteranno

Dettagli

Giochi di strategia Ines Marazzani NRD - Bologna

Giochi di strategia Ines Marazzani NRD - Bologna Giochi di strategia Ines Marazzani NRD - Bologna Questo articolo è stato oggetto di pubblicazione in: Marazzani I. (2001). Giochi di strategia. La Vita Scolastica. 3, 41-45. Introduzione Lasciare che i

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

Come è l intensità della luce quando ti allontani dalla sorgente luminosa?

Come è l intensità della luce quando ti allontani dalla sorgente luminosa? Ciao! Ti ricordi quale era il problema allora? Riprendiamolo brevemente. La posizione reale di una stella può essere diversa da quello che ti sembra, ma quelle che vediamo più deboli sono veramente tali?

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 087 65843 (cell.: 340 47 47 95) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (3--07) - Olimpiadi

Dettagli

Clickomania con Blockly

Clickomania con Blockly Clickomania con Blockly Violetta Lonati Sommario Clickomania è un solitario, noto anche come Chain Shot! o Same Game. Il campo di gioco è costituito da una parete inizialmente coperta di mattoni, uno per

Dettagli

Biografia linguistica

Biografia linguistica EAQUALS-ALTE Biografia linguistica (Parte del Portfolio Europeo delle Lingue di EAQUALS-ALTE) I 1 BIOGRAFIA LINGUISTICA La Biografia linguistica è un documento da aggiornare nel tempo che attesta perché,

Dettagli

Con un gioco si possono lavorare diversi aspetti: Come proporre un gioco:

Con un gioco si possono lavorare diversi aspetti: Come proporre un gioco: Il gioco se usato e svolto in una maniera consona, farà si che l' allievo si diverta e nello stesso tempo raggiunga degli scopi precisi che voi vi siete proposti. Con un gioco si possono lavorare diversi

Dettagli

LANCIAMO UN DADO PER DECIDERE CHI DEVE INIZIARE IL GIOCO. PARTIRA IL NUMERO PIU ALTO

LANCIAMO UN DADO PER DECIDERE CHI DEVE INIZIARE IL GIOCO. PARTIRA IL NUMERO PIU ALTO IL GIOCO DEL CALCIO I bimbi della sezione 5 anni sono molto appassionati al gioco del calcio. Utilizzo questo interesse per costruire e proporre un gioco con i dadi che assomigli ad una partita di calcio.

Dettagli

All. 1 UDL Il viaggio - Elaborati alunnni Francesca Pulvirenti 1

All. 1 UDL Il viaggio - Elaborati alunnni Francesca Pulvirenti 1 All. 1 1 All. 2 2 All. 3 Visione I sequenza: La partenza I. Chi sono queste persone? Che cosa fanno? Come sono? E. sono i parenti e gli amici. X. Sono contenti perché sperano che trovano lavoro. E. stanno

Dettagli

IMPARARE A GESTIRE LE COPPIE. Quando ci viene servita una coppia di carte uguali dal dealer. è sempre un bel momento, ma non sempre si è in grado di

IMPARARE A GESTIRE LE COPPIE. Quando ci viene servita una coppia di carte uguali dal dealer. è sempre un bel momento, ma non sempre si è in grado di IMPARARE A GESTIRE LE COPPIE Quando ci viene servita una coppia di carte uguali dal dealer è sempre un bel momento, ma non sempre si è in grado di dare il giusto valore alle carte in nostro possesso, tendendo

Dettagli

3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R.

3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R. 1. Scrivere tutti gli anagrammi della parola ARTO. [R. 24] 2. Scrivere tutti gli anagrammi della parola ORE. [R. 6] 3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando

Dettagli

15. FRAZIONI SOVRAPPOSTE

15. FRAZIONI SOVRAPPOSTE 16 o RMT Finale maggio 2008 ARMT.2008 15 15. FRAZIONI SOVRAPPOSTE (Cat. 7, 8, 9, 10) Gianni e Lina hanno disposto ciascuno nove numeri su tre righe e tre colonne e hanno inserito sei linee tra due numeri

Dettagli

RAJA Costruire Palazzi in India Un Gioco di Strategia per 2-5 Giocatori Di Wolfgang Kramer e Michael Kiesling

RAJA Costruire Palazzi in India Un Gioco di Strategia per 2-5 Giocatori Di Wolfgang Kramer e Michael Kiesling RAJA Costruire Palazzi in India Un Gioco di Strategia per 2-5 Giocatori Di Wolfgang Kramer e Michael Kiesling Contenuto 1.0 Introduzione 2.0 Componenti 3.0 Iniziare a Giocare 4.0 Svolgimento 5.0 Posizione

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE

LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE Per cominciare Prepariamo una serie di pannelli, con fogli di carta da pacco, sui quali raccogliere le esperienze e le osservazioni: un

Dettagli

Quanto alcol sto bevendo? Moltiplica per 8!

Quanto alcol sto bevendo? Moltiplica per 8! www.iss.it/stra ISTITUTO SUPERIORE DI SANITÀ DIPARTIMENTO AMBIENTE E CONNESSA PREVENZIONE PRIMARIA REPARTO AMBIENTE E TRAUMI OSSERVATORIO NAZIONALE AMBIENTE E TRAUMI (ONAT) Franco Taggi Quanto alcol sto

Dettagli

Cubo di RUBIK-Guida per principianti (Metodo a strati)

Cubo di RUBIK-Guida per principianti (Metodo a strati) Cubo di RUBIK-Guida per principianti (Metodo a strati) Compilata da Mauro Tombesi Un po di storia. Il "Cubo di Rubik" o "Cubo magico" è uno dei più grandi rompicapi del XX secolo. Fu inventato dall'ungherese

Dettagli

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo

Dettagli

PROGETTO DI MATEMATICA GRUPPO ANNI 3

PROGETTO DI MATEMATICA GRUPPO ANNI 3 SCUOLA DELL INFANZIA ANDERSEN SPINEA 1 CIRCOLO ANNO SC. 2003-2004 PROGETTO DI MATEMATICA GRUPPO ANNI 3 Ins. Aiolfi Anna Cognolato Grazia novembre 2003 Documentazione a cura di Aiolfi Anna Promuovere e

Dettagli

Come si analizza un gioco

Come si analizza un gioco Come si analizza un gioco Parte I Giochi ad informazione completa Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Cosa è un gioco

Dettagli

Persona disabile e adultità: le prospettive di integrazione sociale. carlo.lepri@unige.it

Persona disabile e adultità: le prospettive di integrazione sociale. carlo.lepri@unige.it Persona disabile e adultità: le prospettive di integrazione sociale carlo.lepri@unige.it Un dato di partenza: Le persone con disabilità intellettiva sono state, e spesso continuano ad essere mantenute

Dettagli

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Firenze, 5 maggio 2013 Scuola Città Pestalozzi 8 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Classe prima e seconda Paola Bertini, Antonio

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Yellowstone Park Designed by Uwe Rosenberg Published by Amigo, 2003

Yellowstone Park Designed by Uwe Rosenberg Published by Amigo, 2003 Yellowstone Park Designed by Uwe Rosenberg Published by Amigo, 2003 Giocatori: 2-5 Tempo: 45 minuti Età: 8+ Traduzione: Sargon Introduzione Benvenuti in Yellowstone Park, la casa degli animale feroci e

Dettagli

INDICE PROGRAMMA CORSO

INDICE PROGRAMMA CORSO INDICE PROGRAMMA CORSO PRIMA LEZIONE: Componenti di un computer: Hardware, Software e caratteristiche delle periferiche. SECONDA LEZIONE: Elementi principali dello schermo di Windows: Desktop, Icone, Mouse,

Dettagli