Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm"

Transcript

1 Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione Per calcolare i momenti principali d inerzia trascuriamo i raccordi e cerchiamo la posizione del baricentro dell intera area. Possiamo immaginare la sezione a L come somma di due rettangoli, A 1 di dimensioni 100 x 19 e A di dimensioni 19 x (150-19), oppure differenza di due aree rettangolari, B 1 di dimensioni 100 x 150 e B di dimensioni (100-19) x (150 19). Nel primo caso abbiamo: Area A1: A B t mm A 1 g 1 Area A: Area totale: A t Ht mm A A A mm g A Posizione del baricentro dell area A 1 : Posizione del baricentro dell area A : x 50 mm y mm x mm y mm I momenti statici delle due aree rispetto agli assi coordinati x ed y valgono rispettivamente: Momenti statici dell area A 1 : Momenti statici dell area A : I Momenti Statici dell area totale valgono: S A A x mm S A A y mm S A A x mm S A A y mm S A S A S A mm S A S A S A mm La posizione del baricentro dell intera sezione vale: x S A mm A 4389 y S A mm A 4389 I momenti principali d inerzia dell area A 1 (cioè calcolati rispetto al sistema di riferimento locale la cui origine si trova nel baricentro dell area A 1 ) valgono: J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 1

2 I momenti principali d inerzia dell area A valgono: I momenti d inerzia dell area A 1 calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono (vedi la Legge di Huygens): y mm x mm x y mm I momenti d inerzia dell area A calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono: y mm x mm x y mm I momenti centrali d inerzia dell intera sezione valgono: mm mm mm Nel secondo caso abbiamo: Area B1: B B H mm Area B: B Bt Ht10611 mm Area totale: B B B mm B 1 g 1 meno B g Posizione del baricentro dell area B 1 : Posizione del baricentro dell area B : x mm y mm x mm y mm I momenti statici delle due aree rispetto agli assi coordinati x ed y valgono rispettivamente: Momenti statici dell area B 1 : Momenti statici dell area B : I Momenti Statici dell area totale valgono: S B B x mm S B B y mm S B B x mm S B B y mm J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag.

3 S B S B S B mm S B S B S B mm La posizione del baricentro dell intera sezione vale: x. 73mm y. 98 mm I momenti principali d inerzia dell area B 1 rispetto al sistema di riferimento locale valgono : I momenti principali d inerzia dell area B rispetto al sistema di riferimento locale valgono: I momenti d inerzia dell area B 1 calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono (vedi la Legge di Huygens): y mm x mm x y mm I momenti d inerzia dell area B calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono: y mm x mm x y mm I momenti centrali d inerzia dell intera sezione valgono: mm mm mm Come si può notare i risultati ottenuti con i due metodi coincidono. J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 3

4 Disegniamo il cerchio di Mohr dei momenti d inerzia I XY [cm 4 ] α ; I xx, I yy [cm 4 ] Per ottenere i momenti principali d inerzia è necessario ruotare il sistema di riferimento dell angolo: Si tratta di una rotazione positiva, cioè antioraria. Il centro del cerchio di Mohr si trova nel punto di coordinate: mentre il suo raggio vale: ; ; ; Il momento principale d inerzia più grande vale: mm Il momento principale d inerzia più piccolo vale: mm Per calcolare gli sforzi nel punto A, dobbiamo proiettare il momento flettente lungo gli assi principali d inerzia. cos cos sin sin J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 4

5 Poiché il punto A, rispetto al sistema di riferimento baricentrico, ha le seguenti coordinate: la sua posizione rispetto al sistema di riferimento ruotato è la seguente: cos cos cos cos α La tensione nel punto A è la somma del contributo del momento flettente M x e del momento flettente M y, che tendono le fibre del punto A (vedi figura): Per definizione, l asse neutro è il luogo di punti dove si annulla lo sforzo normale agente sulla sezione. Nel nostro caso abbiamo: da cui: tan dove le coordinate ed appartengono al sistema di riferimento ruotato e la sua inclinazione vale: n n α=3 β= J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 5

6 Esercizio N. La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione Per calcolare i momenti principali d inerzia trascuriamo i raccordi; in oltre dal disegno osserviamo che il baricentro si trova nel punto C cm cm 80.00cm I Momenti principali d inerzia dell intera sezione dipendono dal contributo di tre aree rettangolari, A 1 (10 x 40) a destra del punto C, A (10 x 40) a sinistra del punto C e A 3 (90 x 10) centrata sul punto C. I momenti principali d inerzia dell area A 1 e dell area A rispetto ai rispettivi assi orizzontali baricentri valgono: I momenti principali d inerzia dell area A 1 e dell area A rispetto ai rispettivi assi verticali baricentri valgono: Il momento principale d inerzia dell area A 3 rispetto al proprio asse baricentrico orizzontale vale: 7500 Il momento principale d inerzia dell area A 3 rispetto al proprio asse baricentrico verticale vale: I momenti principali d inerzia misti delle aree A 1, A e A 3 sono nulli: 0 Rispetto al sistema di riferimento globale la cui origine è nel punto C, l asse x è orientato verso destra e l asse y è orientato verso l alto: a) il baricentro della sezione A 1, vale: b) il baricentro della sezione A, vale: c) il baricentro della sezione A 3, vale: 0 0 I momenti principali d inerzia dell intera sezione valgono: y y mm x x mm x y x y x y mm J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 6

7 Disegniamo il cerchio di Mohr dei momenti d inerzia I XY [cm 4 ] α ; I xx, I yy [cm 4 ] Per ottenere i momenti principali d inerzia è necessario ruotare il sistema di riferimento dell angolo: Si tratta di una rotazione negativa, cioè oraria. Il centro del cerchio di Mohr si trova nel punto di coordinate: Il raggio del cerchio di Mohr vale: ; ; ; mm Il momento principale d inerzia più grande vale: mm Il momento principale d inerzia più piccolo vale: mm Per calcolare gli sforzi nel punto A, dobbiamo proiettare il momento flettente lungo gli assi principali d inerzia. cos cos sin sin J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 7

8 Il punto A rispetto al sistema di riferimento baricentrico ha coordinate: Di conseguenza, rispetto al sistema di riferimento ruotato, le sue coordinate sono: cos cos M x M y y y r α x x r Lo sforzo nel punto A è la somma del contributo del momento flettente M x e del momento flettente M y che entrambi ne comprimono le fibre (vedi figura): Per definizione, l asse neutro è il luogo di punti dove si annulla lo sforzo normale alla sezione. Nel nostro caso abbiamo: da cui: tan Quindi l inclinazione dell asse neutro rispetto al sistema baricentrico ruotato vale: n y y r M x M y α x x r n J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 8

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale: Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente

Dettagli

Linea elastica, scalata per la rappresentazione grafica

Linea elastica, scalata per la rappresentazione grafica Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensioni tangenziali

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensioni tangenziali Esercizio N.1 Una trave è fabbricata con tre tavole di legno di sezione trasversale 20 mm x 100 mm, inchiodate l una all altra. Sapendo che lo spazio tra i chiodi è di 25 mm e che il taglio verticale nella

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

9 - Geometria delle aree

9 - Geometria delle aree 9 - Geometria delle aree ü [A.a. 0-04 : ultima revisione 4 gennaio 04] In questa esercitazione si applicano le definizioni di baricentro, momento statico, momento d'inerzia, etc. ad alcuni esempi di interesse

Dettagli

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali

Geometria delle Aree. Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali eometria delle ree Finora ci si è occupati di determinare le sollecitazioni che agiscono su sezioni di elementi monodimensionali In realtà lo studio della Meccanica delle Strutture non si accontenta di

Dettagli

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 =

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 = Unità : Stato di tensione e di deformazione Esercizio Dato un tensore della tensione [σ], date inoltre due dimensioni {n} e {n} - trovare le componenti dei vettori della tensione {t} e {t} agenti sulle

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI INGEGNERIA Corso di Scienza delle Costruzioni 1 Laurea in ingegneria civile per l ambiente ed il territorio Prof. Fernando Fraternali Appendice: raccolta di

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Esercizio geometria delle aree

Esercizio geometria delle aree Salvatore Trotta Università degli Studi di Napoli - Federico II 15 aprile 2014 Consideriamo la seguente figura asimmetrica: Suddivisa la figura in tre rettangoli e fissato un sistema di riferimento arbitrario

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

Esercitazioni. Costruzione di Macchine A.A

Esercitazioni. Costruzione di Macchine A.A Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

FINALE: PROVA 1: + = PROVA 2: + =

FINALE: PROVA 1: + = PROVA 2: + = SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 29/06/2006 Tema C : allievo PROVA 1: + = PROVA 2: + = FINALE: ESERCIZIO 1 (punti 12) La struttura una volta iperstatica di figura è soggetta al carico q,

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

ESERCIZIO 2 (punti 13) La sezione di figura è

ESERCIZIO 2 (punti 13) La sezione di figura è SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella

Dettagli

Cerchio di Mohr. n y. n x

Cerchio di Mohr. n y. n x t nm m t n P n s n Sia P un punto generico del continuo e z una generica retta passante per esso. Fissato un riferimento cartesiano {,, z}, siano n=[n n 0] T ed m=[m m 0] T due versori ortogonali nel piano

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

1 La Geometria delle Masse

1 La Geometria delle Masse 1 La eometria delle Masse 1.1 Baricentri e Momenti Statici Due siste di forze vengono detti equivalenti quando generano la stessa risultante e lo stesso momento risultante rispetto ad un polo qualsiasi.

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011 Sussidi didattici per il corso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì RVI ONINUE GGIORNMENO EL 7/0/0 orso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì Per trave continua intendiamo una trave unica,

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

Esercizi svolti Calcolo reazioni vincolari

Esercizi svolti Calcolo reazioni vincolari Esercizi svolti Calcolo reazioni vincolari prof. Carlucci Vincenzo ITIS Einstein Potenza 1 Esercizio 1 Calcolare le reazioni vincolari della struttura isostatica riportata in figura. Prima di procedere

Dettagli

GEOMETRIA DELLE AREE

GEOMETRIA DELLE AREE Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì GEOMETRIA DELLE AREE AGGIORNAMENTO DEL 29/09/2011 Baricentro In un sistema di punti materiali o nel caso di un solido può

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Trasformazione delle tensioni I Cerchi di Mohr

Trasformazione delle tensioni I Cerchi di Mohr Trasformazione delle tensioni I Cerchi di Mohr Riferimenti Bibliografici 1. Beer 4 Ed. pp. 354 e ss.. Shigle Ed. pp. 7 e ss. Sintesi della lezione Obiettivi: Definire completamente lo stato tensionale

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Lezione Analisi Statica di Travi Rigide

Lezione Analisi Statica di Travi Rigide Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

Il segno del momento è positivo perché il corpo ruota in senso antiorario.

Il segno del momento è positivo perché il corpo ruota in senso antiorario. MOMENTO DI UNA FORZA E DI UNA COPPIA DI FORZE Esercizi Esempio 1 Calcola il momento della forza con cui si apre una porta, ruotando in verso antiorario, nell'ipotesi che l'intensità della forza applicata

Dettagli

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

ESERCIZI SUL CAMPO ELETTRICO 2

ESERCIZI SUL CAMPO ELETTRICO 2 ESERIZI SUL AMPO ELETTRIO 5. Una sfera di massa m possiede una carica q positiva. Essa è legata con un filo ad una lastra piana infinita uniformemente carica con densità superficiale σ, e forma un angolo

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q : UIVERSITA DEGLI STUDI ROMA TRE Facolta di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 0/0 Corso di Tecnica delle Costruzioni Prof. Gianmarco de Felice ESERCITAZIOE COSTRUZIOI I ACCIAIO:

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

Calcolo delle sollecitazioni di una struttura

Calcolo delle sollecitazioni di una struttura alcolo delle sollecitazioni di una struttura o scopo di questa esercitazione è il calcolo delle sollecitazioni agenti su una struttura ed il tracciamento dei relativi grafici; in pratica bisogna tracciare

Dettagli

Indice I vettori Geometria delle masse

Indice I vettori Geometria delle masse Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Esercizi con campi magnetici statici

Esercizi con campi magnetici statici Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere

Dettagli

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI . Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Elaborati dattiloscritti. Elaborato. Verifica di galleggiamento del cassone. Traina. 689 Progetto Definitivo 18/06/2013. Rizzo.

Elaborati dattiloscritti. Elaborato. Verifica di galleggiamento del cassone. Traina. 689 Progetto Definitivo 18/06/2013. Rizzo. Elaborati dattiloscritti Data Archivio Elaborato Traina Rizzo 689 Progetto Definitivo 18/06/2013 Mallandrino AUTORITÀ PORTUALE DI PALERMO Porti di Palermo e Termini Imerese LAVORI DI COMPLETAMENTO DEL

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Distanza tra punti e punto medio di un segmento. x1 + x 2

Distanza tra punti e punto medio di un segmento. x1 + x 2 Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema

Dettagli

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE Lavoro svolto da Laura Bianchettin - Flavio Ciprani Premessa Il campo magnetico terrestre è rappresentato da un vettore generalmente

Dettagli

DISPENSA DI GEOMETRIA DELLE MASSE

DISPENSA DI GEOMETRIA DELLE MASSE DISPENSA DI GEOMETRIA DELLE MASSE (Andrea Albero) IPOTESI GENERALI PER LA GEOMETRIA DELLE MASSE E LA SCIENZA DELLE COSTRUZIONI: Materiale omogeneo Densità del materiale uniforme, costante ed unitaria (al

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

La flessione composta, primo e secondo stadio

La flessione composta, primo e secondo stadio La flessione composta, primo e secondo stadio 1 stadio (Formule di Scienza delle Costruzioni) Con riferimento alla sezione omogeneizzata vale la formula di Scienza delle Costruzioni Pertanto: 1 stadio

Dettagli

Elementi di Statica Grafica

Elementi di Statica Grafica Università degli Studi di Messina Facoltà di Ingegneria.. 006/007 Statica e Sismica delle Costruzioni Murarie Docente: Ing. lessandro Palmeri Lezione n. 4: Un corpo rigido è in equilibrio se e solo sono

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue EZIOE 12 I CEMETO ARMATO PRECOMPRESSO I SISTEMA EQUIVAETE AA PRECOMPRESSIOE (SEP) I sistemi i iperstatici ti i precompressi Uso del sistema equivalente per travi continue linea delle pressioni e cavo concordante

Dettagli

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità 4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

Capitolo 3 La torsione Sollecitazioni semplici: la torsione

Capitolo 3 La torsione Sollecitazioni semplici: la torsione Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti

Dettagli

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta Spinta delle terre Teoria di Coulomb o del prisma di massima spinta La valutazione in intensità, verso, punto di applicazione della spinta del terreno su un muro di sostegno presenta tutt ora difficoltà

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Capitolo 3 La torsione Sollecitazioni semplici: la torsione

Capitolo 3 La torsione Sollecitazioni semplici: la torsione Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Una macchina semplice è un dispositivo utilizzato per equilibrare o vincere una forza resistente (resistenza) mediante una forza motrice (po tenza) avente caratteristiche diverse.

Dettagli

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1 Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica

Dettagli

Equilibrio di un punto materiale (anelli, giunti ecc.)

Equilibrio di un punto materiale (anelli, giunti ecc.) Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

IL PROGETTO DI TRAVI IN C.A.P. IPERSTATICHE

IL PROGETTO DI TRAVI IN C.A.P. IPERSTATICHE 7 I PROGETTO DI TRAVI I C.A.P. IPERSTATICHE 7.1 Il sistema equivalente alla precompressione a valutazione delle caratteristiche della sollecitazione nelle travi in c.a.p. può essere condotta, in alternativa

Dettagli