Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm"

Transcript

1 Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione Per calcolare i momenti principali d inerzia trascuriamo i raccordi e cerchiamo la posizione del baricentro dell intera area. Possiamo immaginare la sezione a L come somma di due rettangoli, A 1 di dimensioni 100 x 19 e A di dimensioni 19 x (150-19), oppure differenza di due aree rettangolari, B 1 di dimensioni 100 x 150 e B di dimensioni (100-19) x (150 19). Nel primo caso abbiamo: Area A1: A B t mm A 1 g 1 Area A: Area totale: A t Ht mm A A A mm g A Posizione del baricentro dell area A 1 : Posizione del baricentro dell area A : x 50 mm y mm x mm y mm I momenti statici delle due aree rispetto agli assi coordinati x ed y valgono rispettivamente: Momenti statici dell area A 1 : Momenti statici dell area A : I Momenti Statici dell area totale valgono: S A A x mm S A A y mm S A A x mm S A A y mm S A S A S A mm S A S A S A mm La posizione del baricentro dell intera sezione vale: x S A mm A 4389 y S A mm A 4389 I momenti principali d inerzia dell area A 1 (cioè calcolati rispetto al sistema di riferimento locale la cui origine si trova nel baricentro dell area A 1 ) valgono: J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 1

2 I momenti principali d inerzia dell area A valgono: I momenti d inerzia dell area A 1 calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono (vedi la Legge di Huygens): y mm x mm x y mm I momenti d inerzia dell area A calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono: y mm x mm x y mm I momenti centrali d inerzia dell intera sezione valgono: mm mm mm Nel secondo caso abbiamo: Area B1: B B H mm Area B: B Bt Ht10611 mm Area totale: B B B mm B 1 g 1 meno B g Posizione del baricentro dell area B 1 : Posizione del baricentro dell area B : x mm y mm x mm y mm I momenti statici delle due aree rispetto agli assi coordinati x ed y valgono rispettivamente: Momenti statici dell area B 1 : Momenti statici dell area B : I Momenti Statici dell area totale valgono: S B B x mm S B B y mm S B B x mm S B B y mm J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag.

3 S B S B S B mm S B S B S B mm La posizione del baricentro dell intera sezione vale: x. 73mm y. 98 mm I momenti principali d inerzia dell area B 1 rispetto al sistema di riferimento locale valgono : I momenti principali d inerzia dell area B rispetto al sistema di riferimento locale valgono: I momenti d inerzia dell area B 1 calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono (vedi la Legge di Huygens): y mm x mm x y mm I momenti d inerzia dell area B calcolati rispetto al sistema di riferimento globale (la cui origine si trova sul baricentro dell intera sezione) valgono: y mm x mm x y mm I momenti centrali d inerzia dell intera sezione valgono: mm mm mm Come si può notare i risultati ottenuti con i due metodi coincidono. J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 3

4 Disegniamo il cerchio di Mohr dei momenti d inerzia I XY [cm 4 ] α ; I xx, I yy [cm 4 ] Per ottenere i momenti principali d inerzia è necessario ruotare il sistema di riferimento dell angolo: Si tratta di una rotazione positiva, cioè antioraria. Il centro del cerchio di Mohr si trova nel punto di coordinate: mentre il suo raggio vale: ; ; ; Il momento principale d inerzia più grande vale: mm Il momento principale d inerzia più piccolo vale: mm Per calcolare gli sforzi nel punto A, dobbiamo proiettare il momento flettente lungo gli assi principali d inerzia. cos cos sin sin J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 4

5 Poiché il punto A, rispetto al sistema di riferimento baricentrico, ha le seguenti coordinate: la sua posizione rispetto al sistema di riferimento ruotato è la seguente: cos cos cos cos α La tensione nel punto A è la somma del contributo del momento flettente M x e del momento flettente M y, che tendono le fibre del punto A (vedi figura): Per definizione, l asse neutro è il luogo di punti dove si annulla lo sforzo normale agente sulla sezione. Nel nostro caso abbiamo: da cui: tan dove le coordinate ed appartengono al sistema di riferimento ruotato e la sua inclinazione vale: n n α=3 β= J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 5

6 Esercizio N. La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione Per calcolare i momenti principali d inerzia trascuriamo i raccordi; in oltre dal disegno osserviamo che il baricentro si trova nel punto C cm cm 80.00cm I Momenti principali d inerzia dell intera sezione dipendono dal contributo di tre aree rettangolari, A 1 (10 x 40) a destra del punto C, A (10 x 40) a sinistra del punto C e A 3 (90 x 10) centrata sul punto C. I momenti principali d inerzia dell area A 1 e dell area A rispetto ai rispettivi assi orizzontali baricentri valgono: I momenti principali d inerzia dell area A 1 e dell area A rispetto ai rispettivi assi verticali baricentri valgono: Il momento principale d inerzia dell area A 3 rispetto al proprio asse baricentrico orizzontale vale: 7500 Il momento principale d inerzia dell area A 3 rispetto al proprio asse baricentrico verticale vale: I momenti principali d inerzia misti delle aree A 1, A e A 3 sono nulli: 0 Rispetto al sistema di riferimento globale la cui origine è nel punto C, l asse x è orientato verso destra e l asse y è orientato verso l alto: a) il baricentro della sezione A 1, vale: b) il baricentro della sezione A, vale: c) il baricentro della sezione A 3, vale: 0 0 I momenti principali d inerzia dell intera sezione valgono: y y mm x x mm x y x y x y mm J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 6

7 Disegniamo il cerchio di Mohr dei momenti d inerzia I XY [cm 4 ] α ; I xx, I yy [cm 4 ] Per ottenere i momenti principali d inerzia è necessario ruotare il sistema di riferimento dell angolo: Si tratta di una rotazione negativa, cioè oraria. Il centro del cerchio di Mohr si trova nel punto di coordinate: Il raggio del cerchio di Mohr vale: ; ; ; mm Il momento principale d inerzia più grande vale: mm Il momento principale d inerzia più piccolo vale: mm Per calcolare gli sforzi nel punto A, dobbiamo proiettare il momento flettente lungo gli assi principali d inerzia. cos cos sin sin J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 7

8 Il punto A rispetto al sistema di riferimento baricentrico ha coordinate: Di conseguenza, rispetto al sistema di riferimento ruotato, le sue coordinate sono: cos cos M x M y y y r α x x r Lo sforzo nel punto A è la somma del contributo del momento flettente M x e del momento flettente M y che entrambi ne comprimono le fibre (vedi figura): Per definizione, l asse neutro è il luogo di punti dove si annulla lo sforzo normale alla sezione. Nel nostro caso abbiamo: da cui: tan Quindi l inclinazione dell asse neutro rispetto al sistema baricentrico ruotato vale: n y y r M x M y α x x r n J.T. DeWolf, ed. McGraw-Hill, 00. La loro soluzione è a cura del prof. Filippo Bertolino. Pag. 8

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC Riferimento al linguaggio di programmazione STANDARD ISO 6983 con integrazioni specifiche per il Controllo FANUC M21. RG - Settembre 2008

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

Leonardo Principato Trosso

Leonardo Principato Trosso Leonardo Principato Trosso Software per il calcolo con i metodi delle tensioni ammissibili e agli stati limite ai sensi del D.M. 14 gennaio 2008 * Solai in cemento armato, ferro, legno e a piastra * Sbalzi

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

Cliente: RFI Nr. Commessa: C127485. MONT ELE s.r.l. GIUSSANO ITALY Via S.Chiara, 12 20833 Giussano (MB) ItalyTel.: +39.0362.852291

Cliente: RFI Nr. Commessa: C127485. MONT ELE s.r.l. GIUSSANO ITALY Via S.Chiara, 12 20833 Giussano (MB) ItalyTel.: +39.0362.852291 Cliente: RFI Nr. Commessa: C127485 1 TAVOLA DEI CONTENUTI 1. Introduzione...3 1.1 Materiali...3 1.2 Normative e codici di riferimento...3 2 Analisi dei Carichi e Pesi...4 2.1 Analisi dei pesi...4 3 Carichi

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione composta tensoflessione Risposta della sezione Campo elastico σ + A I Risposta della sezione Al limite elastico el, Per calcolare el, : σ A + el, I f f + el,

Dettagli

I.U.A.V. MECCANICA STRUTTURALE IL PREDIMENSIONAMENTO DELLE STRUTTURE

I.U.A.V. MECCANICA STRUTTURALE IL PREDIMENSIONAMENTO DELLE STRUTTURE I.U.A.V. Corso di laurea magistrale in architettura Architettura costruzione e conservazione LABORATORIO INTEGRATO MECCANICA STRUTTURALE prof. Bruno Zan IL PREDIMENSIONAMENTO DELLE STRUTTURE IN ACCIAIO

Dettagli

ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE

ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE Per ogni superficie trasparente presente sulle facciate degli edifici è possibile costruire una maschera

Dettagli

IL METODO DEGLI STATI LIMITE Esempi di verifica

IL METODO DEGLI STATI LIMITE Esempi di verifica Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 374/003) POTENZA, 004 IL METODO DEGLI STATI LIMITE Esempi di verifica Dott. Ing.. Marco VONA DiSGG, Università di Basilicata

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE Valutazione e riduzione della vulnerabilità sismica di edifici esistenti in c.a. Roma, 29-3 maggio 28 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE Di Ludovico

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

DINAMICA. 1. La macchina di Atwood è composta da due masse m

DINAMICA. 1. La macchina di Atwood è composta da due masse m DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

Unioni saldate. (filo continuo)

Unioni saldate. (filo continuo) Unioni saldate aglio alla fiamma Cannello ossiacetilenico o ossipropilenico getto di ossigeno reazione isotermica aglio al plasma (gas ionizzati) Procedimenti di saldatura Si differenziano per sorgente

Dettagli

la squadratura del foglio Copia.notebook September 21, 2012

la squadratura del foglio Copia.notebook September 21, 2012 la squadratura del foglio cancellare il cerchio di costruzione e lasciare tutti i punti individuati per ricavare la squadratura del foglio e la sua divisione in 4 parti uguali 1 la squadratura del foglio

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Progettazione funzionale di sistemi meccanici e meccatronici.

Progettazione funzionale di sistemi meccanici e meccatronici. Progettazione funzionale di sistemi meccanici e meccatronici. Progetto d anno: Laser 2dof A.A. 2010/2011 Progettazione Funzionale di Sistemi Meccanici e Meccatronici Taglio laser a due gradi di libertà

Dettagli

Dalle tensioni ammissibili agli stati limite

Dalle tensioni ammissibili agli stati limite Dalle tensioni ammissibili agli stati limite Flessione composta Spoleto, 21 maggio 2004 Aurelio Ghersi Verifica di sezioni soggette flessione composta 1 Verifica tensioni ammissibili h d c n A s x σ c

Dettagli

Le forme e le soluzioni per le strutture orizzontali...

Le forme e le soluzioni per le strutture orizzontali... LabCos! 4LabCos! Le forme e le soluzioni per le strutture orizzontali... LabCos! LabCos! il problema della spinta, oltre a quello dei carichi verticali! Strutture inflesse! Strutture spingenti! Un arco

Dettagli

COD. 410.60 FRESATRICE UNIVERSALE

COD. 410.60 FRESATRICE UNIVERSALE COD. 410.60 FRESATRICE UNIVERSALE Precisione e maneggevolezza garantite dalle viti a ricircolo di sfere per la movimentazione dei tre assi X; Y; Z. Macchina comprensiva di schermo antinfortunistico secondo

Dettagli

MODULO GRAT PROCEDURA TRASFXY TEST CASES

MODULO GRAT PROCEDURA TRASFXY TEST CASES TC GRAT/TrasfXY 1 MODULO GRAT PROCEDURA TRASFXY TEST CASES 1 TC TRASFXY 1 - Graticcio a 17 aste carico nel perimetro aste ripartizione in direz. Y Trave 1 Trave 2 Trave 3 Traverso 1 Traverso 2 Traverso

Dettagli

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica Anno scolastico: 2014-2015 Classe: 4^BMM MATERIA Meccanica, Macchine ed Energia Insegnante: Gaspare Di Como Insegnante Compresente: Francesco Porco DIPARTIMENTO DI Meccanica PROGRAMMAZIONE SVOLTA MODULO

Dettagli

idomini MANUALE UTENTE

idomini MANUALE UTENTE idomini MANUALE UTENTE Introduzione al software per la determinazione dei domini di resistenza di sezioni in cemento armato e cemento armato rinforzato con FRP. COPYRIGHT idomini e tutta la relativa documentazione

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Fondazioni con grande eccentricità (al di fuori del terzo medio)

Fondazioni con grande eccentricità (al di fuori del terzo medio) Fondazioni con grande eccentricità (al di fuori del terzo medio) Generalità Poco si trova in letteratura (eccezion fatta per Bowles, Fondazioni, ed. McGraw-Hill) riguardo le fondazioni con carico fortemente

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Verifica agli stati limite: la sollecitazione di taglio

Verifica agli stati limite: la sollecitazione di taglio DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTÀ DI INGEGNERIA UNIERSITÀ DEGLI STUDI DI TRENTO CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI erifica agli stati limite: la sollecitazione

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

AutoCAD 3D. Lavorare nello spazio 3D

AutoCAD 3D. Lavorare nello spazio 3D AutoCAD 3D Lavorare nello spazio 3D Differenze tra 2D e 3 D La modalità 3D include una direzione in più: la profondità (oltre l altezza e la larghezza) Diversi modi di osservazione Maggiore concentrazione

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

ALLEGATO II Dispositivi di attacco

ALLEGATO II Dispositivi di attacco ALLEGATO II Dispositivi di attacco. : il testo compreso fra i precedenti simboli si riferisce all aggiornamento di Maggio 2011 Nel presente allegato sono riportate le possibili conformazioni dei dispositivi

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Motorino elettrico fatto in casa

Motorino elettrico fatto in casa Realiz zato da Giovanni Gerardi VA P.N.I. a.s. 2010-11 Motorino elettrico fatto in casa Premesse. In una lezione di fisica verso metà marzo la professoressa di matematica e fisica Maria Gruarin ha introdotto

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

5. Unioni saldate. (filo continuo)

5. Unioni saldate. (filo continuo) 5. Unioni saldate 5.1.1 Taglio alla fiamma Cannello ossiacetilenico o ossipropilenico getto di ossigeno reazione isotermica Taglio al plasma (gas ionizzati) 5.1. Procedimenti di saldatura Si differenziano

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Calcola l allungamento che subisce un tirante di acciaio lungo l=2,5m (a sez.circolare) con φ =20mm sottoposto ad un carico (in trazione) F=40.000N.

Calcola l allungamento che subisce un tirante di acciaio lungo l=2,5m (a sez.circolare) con φ =20mm sottoposto ad un carico (in trazione) F=40.000N. Edutecnica.it Azioni interne esercizi risolti 1 razione Esercizio no.1 soluzione a pag.7 Determina il diametro di un tirante (a sezione circolare in acciaio Fe0 da sottoporre ad una forza F10.000N di lunghezza

Dettagli

7. PROGETTO DELLE STRUTTURE DI FONDAZIONE 7.1.COLONNA - GIUNTO DI BASE

7. PROGETTO DELLE STRUTTURE DI FONDAZIONE 7.1.COLONNA - GIUNTO DI BASE 7. PROGETTO DELLE STRUTTURE DI FONDAZIONE Come per l analisi del comportamento longitudinale della struttura anche in questo caso è necessario analizzare il percorso di tensione. Esso si basa su tre passi

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

Tecnologia dei Materiali e Chimica Applicata

Tecnologia dei Materiali e Chimica Applicata Franco Medici Giorgio Tosato Tecnologia dei Materiali e Chimica Applicata Complementi ed esercizi Copright MMIX ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo,

Dettagli

Unità di Misura Basso a Sinistra Alto a Destra Lunghezze Angoli Griglia Snap 0,0 29700,21000 Decimali Gradi Decimali 1000 1000

Unità di Misura Basso a Sinistra Alto a Destra Lunghezze Angoli Griglia Snap 0,0 29700,21000 Decimali Gradi Decimali 1000 1000 SAMPLE TEST ECDL CAD Tempo: 60 Minuti Il seguente test per l ECDL CAD richiede di lavorare con disegni esistenti che si riferiscono alla pianta di una pescheria. Nel test si chiede di completare il disegno

Dettagli

Le coperture in legno

Le coperture in legno CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Le coperture in legno LA CAPRIATA Tra scienza ed arte del costruire «Il forte intreccio di storia, tecnologia, architettura e cultura materiale,

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE Dipartimento di Ingegneria Civile e Ambientale Sezione geotecnica (www.dicea.unifi.

UNIVERSITA DEGLI STUDI DI FIRENZE Dipartimento di Ingegneria Civile e Ambientale Sezione geotecnica (www.dicea.unifi. UNIVERSIT DEGLI STUDI DI FIRENZE Dipartimento di Ingegneria Civile e mbientale Sezione geotecnica (www.dicea.unifi.it/geotecnica) SINT DELLE TERRE Corso di Geotecnica Ingegneria Edile,.. 00\0 Johann Facciorusso

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

CNC Robot Robomachine. M-2iA

CNC Robot Robomachine. M-2iA CNC Robot Robomachine M-2iA M-2iA/3S M-2iA/3SL Contenuto Introduzione... 03 Punti di forza del prodotto... 04 Specifiche... 05 Diagramma di carico al polso In modalità inerzia standard... 06 Opzione: in

Dettagli

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI Lezione 3: Proiezioni Ortogonali con il metodo europeo Francesca Campana Le proiezioni ortogonali Le proiezioni ortogonali descrivono bi-dimensionalmente un oggetto

Dettagli

PRESENTAZIONE DEI PROGETTI D ANNO

PRESENTAZIONE DEI PROGETTI D ANNO UNIVERSITÁ DEGLI STUDI DI BERGAMO Facoltà di Ingegneria gg COSTRUZIONE DI MACCHINE II Prof. Sergio Baragetti PRESENTAZIONE DEI PROGETTI D ANNO PRINCIPALI RIFERIMENTI NORMATIVI E BIBLIOGRAFICI: Baragetti

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

Guida a croce LM Tipo CSR

Guida a croce LM Tipo CSR Guida a croce LM Tipo CSR Rotaia LM Tenuta frontale Frontale di ricircolo Sfere Lamierino di trattenuta delle sfere Nipplo ingrassatore Carrello LM Tenuta laterale Rotaia LM Figura 1: Struttura della guida

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA Edifici in muratura portante 2 1 Cosa è ANDILWall? ANDILWall è un software di analisi strutturale che utilizza il motore di calcolo SAM II, sviluppato presso l Università degli Studi di Pavia e presso

Dettagli

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min?

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min? ESECIZIO Un filo è percorso dalla corrente di 3,0 A. (a) Quanta carica attraversa un punto del filo in 5,0 min? (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto

Dettagli

Commessa N. Foglio 1 di 7 Rev A. Titolo commessa. Redatto da ER/EM Data Febbraio 2006. Verificato da HB Data Marzo 2006

Commessa N. Foglio 1 di 7 Rev A. Titolo commessa. Redatto da ER/EM Data Febbraio 2006. Verificato da HB Data Marzo 2006 Commessa N. Foglio di 7 Rev A Dept. Ingeniería de la Construcción Módulo C Campus Norte C/Jordi Girona, -3 Tel: +34 93 40 656 Fax: +34 93 405 435 Esempio di progetto Trave a C formata a freddo Redatto

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

A. INFORMAZIONI GENERALI

A. INFORMAZIONI GENERALI A. INFORMAZIONI GENERALI 1. SISTEMI DI DESIGNAZIONE DEGLI ACCIAI Norme di riferimento UNI EN 10027 UNI EN 10027 Sistemi di designazione degli acciai Parte 1: Designazione alfanumerica, simboli principali

Dettagli

Creare primitive solide

Creare primitive solide Creare primitive solide I solidi sono caratterizzati dal fatto di avere una massa oltre alle superfici e agli spigoli. Rappresentano l intero volume dell oggetto. Caratteristiche Il solido viene creato:

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

165 CAPITOLO 13: PROVE MECCANICHE IN SITO

165 CAPITOLO 13: PROVE MECCANICHE IN SITO 165 Introduzione Rispetto alle prove eseguite in laboratorio, quelle in sito presentano sia dei vantaggi che degli svantaggi. 1. Tra i vantaggi delle prove in sito di può dire che queste sono più rapide

Dettagli

PROGRAMMA DI MECCANICA CLASSE QUARTA MECCANICA 2004-2005

PROGRAMMA DI MECCANICA CLASSE QUARTA MECCANICA 2004-2005 ITIS OMAR NOVARA DIPARTIMENTO DI MECCANICA PROGRAMMA DI MECCANICA CLASSE QUARTA MECCANICA 004-005 La compressione e la trazione semplice Determinazione del modulo di elasticità normale tramite il diagramma

Dettagli

Sforzo normale e flessione

Sforzo normale e flessione Capitolo 4 Sforzo normale e flessione La condizione di sollecitazione più generale che produce tensioni normali è la combinazione di sforzo normale e flessione. La flessione semplice, esaminata nel capitolo

Dettagli

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere

Dettagli

REGOLA 1 IL RETTANGOLO DI GIOCO

REGOLA 1 IL RETTANGOLO DI GIOCO REGOLA 1 IL RETTANGOLO DI GIOCO Superficie del rettangolo di gioco Le gare devono essere giocate su superfici piane, lisce e prive di asperità, preferibilmente fatte di legno o di materiale sintetico,

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

Indice. Premessa 9. parte seconda Meccanica, sollecitazioni B Tavola B1 Asta con tirante 29 Tavola B2 Pantografo 30

Indice. Premessa 9. parte seconda Meccanica, sollecitazioni B Tavola B1 Asta con tirante 29 Tavola B2 Pantografo 30 Indice Premessa 9 parte prima Base A Tavola A1 Carosello motociclette 13 Tavola A2 Manovellismi motori due cilindri 14 Tavola A3 Velocità media 15 Tavola A4 Supporto a filo di un carico 16 Tavola A5 Supporto

Dettagli

Pixel Pitch (mm) 0.248x0.248 Peso solo monitor 2,8kg Profondità (mm) 11,9 Colore nero

Pixel Pitch (mm) 0.248x0.248 Peso solo monitor 2,8kg Profondità (mm) 11,9 Colore nero TOPFLEX 222Y 1920x1080 pixel 2x22" www.multimonitortrading.it PREZZO iva inclusa: 690,00 Totale diagonale : 39" Multimonitor con bracci indipendenti -Supporto con piede a Y Opzione Orizzontale Opzione

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

I ESERCITAZIONE. Soluzione

I ESERCITAZIONE. Soluzione I ESERCITAZIONE 1. Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza tra il punto

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA turbine eoliche ad asse verticale VAWT A.A. 2008/09 Energie Alternative Prof.B.Fortunato

Dettagli

MODELLAZIONE SOLIDA. Scheda Solidi. Disegno di un parallelepipedo

MODELLAZIONE SOLIDA. Scheda Solidi. Disegno di un parallelepipedo MODELLAZIONE SOLIDA Cliccando con il tasto destro sulla barra grigia in alto attiviamo la scheda dei Solidi > Gruppo di schede > Solidi. Tale scheda si compone di diversi gruppi: il gruppo di Modellazione

Dettagli